Abstract:
Understanding the evolution of radial sizes and instantaneous expansion speeds of coronal mass ejections (CMEs) is crucial for assessing their impact duration on Earth’s environment. We introduce a non-conventional approach to derive the CME’s radial sizes and expansion speeds at different instances during its passage over a single-point in situ spacecraft. We also estimate the CME’s radial sizes and expansion speeds during its journey from the Sun to 1 au using the 3D kinematics of different CME features, including the leading edge, centre, and trailing edge. The continuous 3D kinematics of the CME is estimated by employing the graduated cylindrical shell and stereoscopic self-similar expansion reconstruction methods on multipoint observations from coronagraphs and heliospheric imagers combined with the drag-based model. We choose the 2010 April 3 CME as a suitable case for our study, promising a more accurate comparison of its remote and in situ observations. We show that the introduced non-conventional approach can provide better accuracy in estimating radial sizes and instantaneous expansion speeds of CMEs at different instances. We examine the aspect ratio of the CME, which influences its expansion behaviour and shows the discrepancy between its value in the corona and interplanetary medium. Our study highlights significant inconsistencies in the arrival time, radial size, and expansion speed estimates obtained from remote and in situ observations. We advocate for future studies leveraging multispacecraft in situ observations and our non-conventional approach to analyse them to improve the comprehension of CME dynamics in the solar wind.