IIA Institutional Repository

Propagation of coronal mass ejections from the Sun to the Earth

Show simple item record

dc.contributor.author Mishra, Wageesh
dc.contributor.author Teriaca, Luca
dc.date.accessioned 2023-05-22T08:43:59Z
dc.date.available 2023-05-22T08:43:59Z
dc.date.issued 2023-06
dc.identifier.citation Journal of Astrophysics and Astronomy, Vol. 44, No. 1, 20 en_US
dc.identifier.issn 0973-7758
dc.identifier.uri http://hdl.handle.net/2248/8200
dc.description Restricted Access en_US
dc.description The original publication is available at springerlink.com
dc.description.abstract Coronal mass ejections (CMEs), as they can inject a large amounts of mass and magnetic flux into the interplanetary space, are the primary source of space weather phenomena on the Earth. The present review first briefly introduces the solar surface signatures of the origins of CMEs and then focuses on the attempts to understand the kinematic evolution of CMEs from the Sun to the Earth. CMEs have been observed in the solar corona in white-light from a series of space missions over the last five decades. In particular, LASCO/SOHO has provided almost continuous coverage of CMEs for more than two solar cycles until today. However, the observations from LASCO suffered from projection effects and limited field-of-view (within 30 R from the Sun). In 2006, the launch of the twin STEREO spacecraft has made possible multiple viewpoints imaging observations, which enabled us to assess the projection effects on CMEs. Moreover, heliospheric imagers (HIs) onboard STEREO continuously observed the large and unexplored distance gap between the Sun and the Earth. Finally, the Earth-directed CMEs that earlier have been routinely identified only near the Earth at 1 AU in in situ observations from ACE and WIND, could also be identified at longitudes away from the Sun–Earth line using the in situ instruments onboard STEREO. We describe the key signatures for the identification of CMEs using in situ observations. Our review presents the frequently used methods for estimation of the kinematics of CMEs and their arrival time at 1 AU using primarily SOHO and STEREO observations. We emphasize the need of deriving the three-dimensional (3D) properties of Earth-directed CMEs from the locations away from the Sun–Earth line. The results improving the CME arrival time prediction at Earth and the open issues holding back progress are also discussed. Finally, we summarize the importance of heliospheric imaging and discuss the path forward to achieve improved space weather forecasting. en_US
dc.language.iso en en_US
dc.publisher Indian Academy of Sciences en_US
dc.relation.uri https://doi.org/10.1007/s12036-023-09910-6
dc.rights © Indian Academy of Sciences
dc.subject Sun en_US
dc.subject Coronal mass ejections en_US
dc.subject Heliospheric imagers en_US
dc.title Propagation of coronal mass ejections from the Sun to the Earth en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account