Abstract:
We report on the co-existence of longitudinal and transverse oscillations in an active-region filament. On March 15, 2013, an M1.1 class flare was observed in Active Region AR 11692. A coronal mass ejection (CME) was found to be associated with the flare. The CME generated a shock wave that triggered the oscillations in a nearby filament, situated south-west of the active region as observed from National Solar Observatory (NSO) Global Oscillation Network Group (GONG) Hα images. In this work we report the longitudinal oscillations in the two ends of the filament, which co-existed with the transverse oscillations. We propose a scenario in which an incoming shock wave hits the filament obliquely and triggers both longitudinal and transverse oscillations. Using the observed parameters, we estimate the lower limit of the magnetic field strength. We use a simple pendulum model with gravity as the restoring force to estimate the radius of curvature. We also calculate the mass accretion rate that causes the filament motions to damp quite fast.