IIA Institutional Repository

The Physical Conditions in a Polar Coronal Hole and Nearby Regions from Norikura and SOHO Observations

Show simple item record

dc.contributor.author Raju, K. P
dc.contributor.author Sakurai, T
dc.contributor.author Ichimoto, K
dc.contributor.author Singh, J
dc.date.accessioned 2008-09-01T10:21:06Z
dc.date.available 2008-09-01T10:21:06Z
dc.date.issued 2000-11
dc.identifier.citation Astrophysical Journal, Vol. 543, No. 2, Part 1, pp. 1044 - 1050 en
dc.identifier.issn 0004-637X
dc.identifier.uri http://hdl.handle.net/2248/3307
dc.description.abstract The distribution of emission-line intensities, Doppler velocities, and line widths in a polar coronal hole and nearby regions are obtained from the spectroscopic observations carried out on 1998 November 3 at the Norikura Solar Observatory, Japan. The coronal red line [Fe X] λ6374 that is prominent at coronal hole temperatures is used for the study. The coronal images in Fe IX and Fe X 171 Å and Fe XII 195 Å from the Extreme-Ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) are used to get the temperature map of the corona at the time of observation. Combining both, we have obtained the nonthermal velocities in the region without the usual assumption of a uniform ion temperature. Several plume structures are identified within the coronal hole, and it is found that line widths are smaller in plumes than in the interplume regions, which is also reported from recent SOHO observations. The line-of-sight Doppler velocities in the coronal hole are larger than those in the quiet region, probably because of the excess outflow in the coronal hole. A rough negative correlation between intensity and Doppler velocity, similar to that between intensity and line width, is observed in the coronal hole. The typical nonthermal velocity in coronal holes is 24 km s-1 while that in quiet regions is 15 km s-1. The enhanced nonthermal velocity in the coronal hole is suggestive of the important role of the nonthermal broadening mechanism in the acceleration of fast solar wind. Also, the nonthermal velocities are larger (up to 27%) at the interplume regions as compared to plumes. The findings generally support the prevailing view that the interplume regions are the source regions of the fast solar wind. en
dc.language.iso en en
dc.publisher The American Astronomical Society en
dc.relation.uri http://www.journals.uchicago.edu/doi/abs/10.1086/317143 en
dc.subject Sun: Corona en
dc.subject Sun: UV Radiation en
dc.subject Radiation Mechanisms: Nonthermal en
dc.title The Physical Conditions in a Polar Coronal Hole and Nearby Regions from Norikura and SOHO Observations en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account