Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/8336
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sampoorna, M | - |
dc.contributor.author | Supriya, H. D | - |
dc.date.accessioned | 2024-01-11T05:28:16Z | - |
dc.date.available | 2024-01-11T05:28:16Z | - |
dc.date.issued | 2023-12 | - |
dc.identifier.citation | Monthly Notices of the Royal Astronomical Society, Vol. 526, No. 4, pp. 6004-6014 | en_US |
dc.identifier.issn | 0035-8711 | - |
dc.identifier.uri | http://hdl.handle.net/2248/8336 | - |
dc.description | Open Access | en_US |
dc.description | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. | - |
dc.description.abstract | In a stellar atmosphere, the resonance line polarization arises from scattering of limb-darkened radiation field by atoms. This spectral line polarization gets affected particularly in the wings, when the line photons suffer scattering on electrons in thermal motion. Scattering of line photons by atoms and electrons are, respectively, described by the atomic and Thomson electron scattering redistribution functions, which in general depend on both the frequencies and directions of incident and scattered photons. In this paper, we consider the polarized spectral line formation in spherically symmetric extended and expanding media accounting for the angle-dependent partial frequency redistribution (AD-PRD) in scattering on both atoms and electrons. We solve this computationally demanding polarized transfer problem using an accelerated lambda iteration method and a method based on orders of scattering approach. In the case of expanding spherical medium, the concerned transfer problem is solved in the comoving frame. Because of the computational limitations, we consider optically thin isothermal spherically symmetric media of different extensions for the static case as well as when the velocity fields are present. For the considered model, we show that the AD-PRD effects on the linear polarization profiles are significant and have to be accounted for | en_US |
dc.language.iso | en | en_US |
dc.publisher | Oxford University Press on behalf of Royal Astronomical Society | en_US |
dc.relation.uri | https://doi.org/10.1093/mnras/stad3148 | - |
dc.rights | © 2023 The Author(s) | - |
dc.subject | Line: formation | en_US |
dc.subject | Line: profiles | en_US |
dc.subject | Polarization | en_US |
dc.subject | Radiative transfer | en_US |
dc.subject | Scattering | en_US |
dc.subject | Stars: atmospheres | en_US |
dc.title | Polarized resonance line transfer in a spherically symmetric medium with angle-dependent partial frequency redistribution | en_US |
dc.type | Article | en_US |
Appears in Collections: | IIAP Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Polarized resonance line transfer in a spherically symmetric medium with.pdf | 1.24 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.