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ABSTRACT

In a stellar atmosphere, the resonance line polarization arises from scattering of limb-darkened radiation field by atoms. This
spectral line polarization gets affected particularly in the wings, when the line photons suffer scattering on electrons in thermal
motion. Scattering of line photons by atoms and electrons are, respectively, described by the atomic and Thomson electron
scattering redistribution functions, which in general depend on both the frequencies and directions of incident and scattered
photons. In this paper, we consider the polarized spectral line formation in spherically symmetric extended and expanding media
accounting for the angle-dependent partial frequency redistribution (AD-PRD) in scattering on both atoms and electrons. We
solve this computationally demanding polarized transfer problem using an accelerated lambda iteration method and a method
based on orders of scattering approach. In the case of expanding spherical medium, the concerned transfer problem is solved
in the comoving frame. Because of the computational limitations, we consider optically thin isothermal spherically symmetric
media of different extensions for the static case as well as when the velocity fields are present. For the considered model, we

show that the AD-PRD effects on the linear polarization profiles are significant and have to be accounted for.
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1 INTRODUCTION

In a scattering event, frequencies and directions of incident and
scattered photons in general get intertwined with each other. This
angle and frequency coupling is conveniently described by the
angle-dependent partial frequency redistribution (AD-PRD) func-
tions (Hummer 1962; Mihalas 1978; Hubeny & Mihalas 2015) in
the unpolarized case and by AD-PRD matrices in the polarized
case (Domke & Hubeny 1988; Stenflo 1994; Bommier 1997a,b).
Numerical solution of the polarized transfer equation including AD-
PRD is, however, known to be computationally challenging because
of the difficulty involved in evaluating the scattering terms. Despite
this complexity, there have been several polarized transfer studies
in the literature that included AD-PRD effects (see e.g. Dumont
et al. 1977; Faurobert 1987, 1988; Nagendra, Frisch & Faurobert
2002; Sampoorna, Nagendra & Stenflo 2008, 2017; Nagendra &
Sampoorna 2011; Sampoorna, Nagendra & Frisch 2011; Anusha &
Nagendra 2012; Nagendra & Sampoorna 2012; Supriya et al. 2012,
2013a,b; Sampoorna & Nagendra 2015a,b; del Pino Alemén et al.
2020; Nagendra et al. 2020; Janett et al. 2021; Benedusi et al. 2022,
2023; Anusha 2023). These studies considered either one-, two-,
or three-dimensional atmospheres defined in a Cartesian coordinate
system. While these are a good representation of stellar atmospheres,
they generally do not account for sphericity effects that are partic-
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ularly important in highly extended atmospheres such as the ones
found in early-type hot stars (Hubeny & Mihalas 2015). On the other
hand, to a good approximation, highly extended atmospheres are
well represented by a spherically symmetric medium. In Sampoorna,
Megha & Supriya (2022), we considered scattering on both atoms
and electrons along with the polarized resonance line transfer in a
spherically symmetric extended as well as expanding atmosphere.
However, the scattering computations were done for a simpler case
of angle-averaged partial frequency redistribution (AA-PRD). In this
study, we investigate the above-said problem by including AD-PRD
and highlight its impact on the linear polarization signals.

The outline of this paper is as follows. In Section 2, we present the
basic equations. The numerical methods of solution are described
in Section 3. Numerical results are presented in Section 4, where
the AD-PRD effects on the linear polarization profiles are discussed.
Concluding remarks are given in Section 5.

2 BASIC EQUATIONS

In this paper, we consider a one-dimensional spherically symmetric
extended and expanding medium. We account for resonance line
scattering on a two-level atom and Thomson scattering of line
photons by electrons. For both type of scatterings we use the exact
AD-PRD matrices. We solve the spherically symmetric polarized
transfer equation by the tangent-ray method (Hummer & Rybicki
1971). In this method, the transfer equation is solved along a set of
tangent rays defined in the (p, z) coordinate system, where p is the
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impact parameter of the ray and z is distance along it (see fig. 1 of
Megha et al. 2019). Furthermore, we consider the comoving frame
(CMF) formulation of the transfer equation (Hubeny & Mihalas
2015). This allows us to take into account the presence of a non-
zero non-relativistic radial velocity v, in the medium. In Section 2.1,
we present the CMF transfer equation in the Stokes vector basis and
then in Section 2.2, the irreducible spherical tensorial representation,
which is well suited for devising efficient numerical schemes (Frisch
2009, 2010).

2.1 Stokes vector representation

The CMF polarized transfer equation in the (p, z) coordinate system
and in the non-relativistic limit is given by

I (z, p,Vv)
ot(z,v)

where I* = (I*, Q)T denotes the Stokes vector for the incoming
‘—’ and the outgoing ‘4’ tangent rays, with / representing the specific
intensity and Q the linear polarization. The reference direction for
positive Q is defined to be perpendicular to the radius vector. The
monochromatic optical depth along the tangent ray is given by
dt(z, v) = —x(r, v)dz, where v is the frequency, r is the radius,
and x(r, v) = xi(Ne(V) + xc(r) + xe(r) is the total absorption
coefficient. The line-integrated absorption coefficient y,(r), contin-
uum absorption coefficient y.(r), and the electron scattering opacity
Xe(r) are assumed to vary as 1//% (namely, the inverse square law
opacity distribution). The line absorption profile ¢(v) is given by the
normalized Voigt function. The total source vector is given by
p(W)Si(z, p,v) + BeSc + BeSe(z, p, V)

5@ pv)= o)+ Be + Be ’ @

where B, = x./x; and B, = x./x;. For scattering on a two-level
atom, the line source vector has the form

Si(z, p,v) = €B,,U
R.(v, Q2,Vv, Q)

/ f{ dQ' R
o)

Scattering of an incoming ray with frequency v’ and direction ' (6’,
¢’) by a two-level atom into an outgoing ray with frequency v
and direction 2 (6, ¢) is described by the AD-PRD matrix R, (see
Domke & Hubeny 1988; Bommier 1997a). The explicit form of this
matrix is given in equations (1) and (2) of Sampoorna (2014). The
ray direction (0, ¢) with 6 the inclination and ¢ the azimuth is
defined about the local radius vector. In the above equations, u =
cos 6. In the (p, z) coordinate system, y varies along a given impact
parameter ray and is given by u(r, p) = /1 — (p/r)?. Because we
do not consider any external magnetic fields and work in the CMF,
the polarized radiation field is azimuthally symmetric, so that the
Stokes vector depends only on . In the above equation, € denotes
the thermalization parameter, B, the Planck function at the line
centre, and U = (1, 0)T. Since this paper aims to study the effects
of AD-PRD on linear polarization profiles formed in spherically
symmetric medium, we assume the background continuum to be
unpolarized. Consequently, the continuum source vector is of the
form S. = B,,U.
The electron scattering source vector is given by

o0 dQ/
Su(z p.v) = / v’ 7{
O 4

The AD-PRD matrix for electron scattering is given by
Re(v, 2,1, @) = Pr(2, Q)Rc(v, V', ©). (&)

=I*(z, p,v) — S(z, p,v) — 8(z, p, ), 1)

—————1(z, /,v"). (3)

Re(v, 2,V Q) (z, 1, v"). (C))
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Here, P denotes the Rayleigh phase matrix (see Chandrasekhar
1950) and R.(v, v/, ®) the AD-PRD function for scattering of line
photons on electrons (see the un-numbered equation in p. 420 of
Mihalas 1978, see also equation (38) of Supriya et al. 2012), with ©
representing the scattering angle between the incoming and outgoing
rays.

The CMF term represented by S has the following form :

- alt(z, p,v)
S(z, p,v) =y(r,p,v) oy (6)
v
where
Vov \% dv
)/(r, p, V): o (I_MZ)*‘FN—Zi . (7)
cx(r,v) r dr

Here, vy is the line-centre frequency, c is the speed of light, vy, is the
thermal velocity of the atom, and V = v,/vy,. We have assumed vy,
to be constant throughout the spherical medium.

2.2 Irreducible spherical tensorial representation

Solution of the Stokes vector transfer equation including AD-PRD
is known to be computationally very demanding. Therefore, to
relatively reduce the computational costs involved, Frisch (2009,
2010) devised a Stokes vector decomposition technique. In this
technique, the Stokes and source vectors are decomposed into their
irreducible components using the spherical or geometrical tensors
(Landi Degl’Innocenti & Landolfi 2004) and an azimuthal Fourier
expansion of the AD-PRD functions (Domke & Hubeny 1988). The
cosine Fourier series expansion of these functions over the azimuth
difference (¢ — ¢’) consists of azimuthal Fourier coefficients of
different order k, which in general takes values k = 0, 1, 2, ---, 00
(see e.g. equation 13 of Frisch 2009). However, in the non-magnetic
case, because of the azimuthal symmetry of the radiation field, the
azimuthal Fourier coefficients get limited to orders 0, 1, and 2 (see
equation 14 of Frisch 2010). This technique originally devised for
transfer in planar medium is applied here for transfer in spherical
medium.

For convenience, here we consider the component form of the
Stokes vector, namely I* with i = 0, 1 representing the specific
intensity /= and linear polarization QF, respectively. Following
Frisch (2010), the decomposition of the Stokes vector component
I into its four irreducible components Ig * can be written as

K
Z ZTQK("’ WIy*(@z p.v), i=0,1, ®)

K=0.20>0

Iii(za p, U) =

where '7'QK (i, w) are the irreducible spherical tensors (Frisch 2010).
Similarly, the components of the source vectors S;, S; i, S¢, i, and S, ;,
the CMF term S;, and U; can also be decomposed into their respective
irreducible components S SIKQ, S oS, K 0 85 , and L{g . Clearly,
SC’fQ = k0800 By, and Uy = xodgo. The CMF polarized transfer
equation in the irreducible spherical tensor representation can be
written as

0Z%(z, p,v)

:Ii(zs ps‘))_S(Zs psv)_g(zs va)s (9)
at(z,v)

T
where the four-component vectors Z* = [Ig’i, Io* 1", Izz’i] ,

S§=[8),82,52,82", and & =[50, 8282 82" Following
Supriya et al. (2012), we combine line and electron source vectors
into a single source vector S, given by

S.(z, p,v) = eB, U+ T(z, p,v), (10)
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where U = [1, 0, 0, 0]", and the scattering integral has the form

Haw R ,
Tpov) = / / 4 (”:}; ROV ) f 0T ).
(11

The elements of the 4 x 4 matrix I' is given in appendlx of
Frisch (2010). The 4 x 4 matrix R is diagonal, namely, R =
diag [R{, R}, R}, R3], where the diagonal elements are of the form

RO = ail? + [BO —a] 7 7O 4 B0, (12)

Ry =W, {ar® + [ -

where W, is the atomic polarizability factor (which is unity for a
normal Zeeman triplet considered here). The symbol 7y 7@ with X=
IL, II1, or e, respectively, represent the Qth-order aernuthal Fourier
coefficients of the type-II and type-III AD-PRD functions of Hummer
(1962) and of R.(v, V', ®). They are given by

o] fﬁ‘f”} FRFD, 0=0,1,2,(13)

2— 80Q
2w

ORI

21
x /0 Rx(vs 11 v, 1 6 — ') cos[O(¢ — $)1d(@d — #). (14)

The branching ratios « and % are of the form (Bommier 1997a)

= Lx (15)
T TR+, 4+
r
(K) _ R 16
p Fg+T;+ D®’ (16)

where 'y is the radiative deexcitation rate, I'; and 'y are, respec-
tively, the inelastic deexcitation and elastic collisional rates, and D
the collisional depolarization rate (with D© = 0).

In the irreducible spherical tensor representation, the total source
vector takes the following form:
S(Z, P, U) — (/)(V)SL(Z, p, V) + ﬂcsc’ (17)

o)+ B + Be

where S, = B,,U. The CMF term S in the irreducible spherical
tensor representation has the same form given in equation (6), but
with Z in place of I*.

3 NUMERICAL METHODS OF SOLUTION

In this section, we describe the solution to the CMF polarized transfer
equation (9) using two different iterative schemes namely, polarized
accelerated lambda iteration method (see Section 3.1) and scattering
expansion method (see Section 3.2). The latter method is preferred
from a computational point of view.

3.1 The polarized accelerated lambda iteration

An iterative method begins with a guess value for the unknown,
namely the irreducible source vector S(z, p,v), followed by a
call to the formal solver to compute the irreducible Stokes vector
Z*(z, p, v) and subsequently an updated value of S(z, p, v). This
process is repeated until the solution converges. It is well-known that
such an iterative method is prone to very slow or even no convergence
especially for optically thick scattering dominated media (Hubeny &
Mihalas 2015). This difficulty is overcome by accelerating the
convergence via the so-called operator splitting methods (Cannon
1973). These methods are known as accelerated lambda iteration
(ALI). ALI methods have been applied to a wide variety of problems,
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both unpolarized (Hubeny & Mihalas 2015) and polarized (see the
reviews by Trujillo Bueno 2003; Nagendra 2019a,b).

Formal solution of the polarized transfer equation (9) can be
written symbolically as

I (p,v) = A5 (p, VISP, v) + S(p, W] + TE(p, v), (18)

where the directly transmitted part of the four-component Stokes
vector is denoted by T*(p, v). For a given impact parameter p and
frequency v the 4N, x 4N, integral operator is denoted by A (p, v),
where N, is the total number of depth points. The elements of this
lambda operator is determined by the optical distances between the
grid points along the depth. A short-characteristic method (Olson &
Kunasz 1987) modified to treat the CMF term (Hauschildt & Baron
2004) is used to find the formal solution. For the problem at hand, the
explicit form of this CMF short-characteristic formal solution can be
found in Sampoorna, Megha & Supriya (2022, see their section 2).
An iterative scheme is set up via

8" (p,v) = 8"(p,v) +88"(p, v), 19)

where n is the index of iteration and §S” is the source vector
correction. A similar expression can be written for the combined
source vector 8;. As for the CMF term S, since it is evaluated
within the formal solver at each iteration, an iterative correction is
unnecessary (Megha et al. 2020). Now using the operator splitting
technique, namely, A = A* + (A — A*) wherein A* is a diagonal
approximate operator (Olson, Auer & Buchler 1986), we obtain for
the combined source vector correction the following expression :

du R R i
581 (p.v) — / / WRE 1V W) iy

@(v)
Xl(")‘/’(‘) ) n o
W A, V) [ Siu,v )]
=r"(p,v), (20)
where the residual vector r"(p,v)=€B, U+ 7"(19, V) —

87 (p, v). The scattering integral J" at the nth iterate is obtained
from the formal solver using the nth iterate source vector. The linear
system of equations (20) for the combined source vector corrections
can be recast in the following form:

ASS: =", 63))

where at each depth point, " and §S7 are vectors of length 4N, 2N,,
and A is a matrix of size 4N,2N,, x 4N,2N,,. The total number of
frequency points is denoted by N,, while N,, denotes the number of
angle points in the range [0 < p <1]. We solve this linear system
of equations using a frequency-angle by frequency-angle method
described in Sampoorna, Nagendra & Frisch (2011, see also Supriya
et al. 2012). In the case of spherical transfer in (p, z) coordinate
system, not all the impact parameter rays intersect a given spherical
shell. While all the rays intersect the outermost spherical shell, only
the core rays intersect the innermost spherical shell. This is expected
because impact parameter rays are defined to be tangent to spherical
shells (see fig. 1 of Megha et al. 2019). Thus the number of rays
intersecting a given spherical shell varies with the depth point. In
other words N, varies with the depth point. For example, if N,
denotes the number of core rays, then N,, = N, for the innermost
spherical shell, while N, = N. 4+ N, for the outermost spherical
shell. Therefore, the size of linear system of equations (21) changes
from one depth point to the other and is much larger than that
in the corresponding planar case. As a result, the computational
costs involved in solving equation (21) using the frequency-angle
by frequency-angle method is significantly larger than in the planar
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case. To somewhat reduce the computational costs, in the following
subsection we present the so-called scattering expansion method.

3.2 The scattering expansion method

This iterative method was originally proposed in Frisch et al. (2009)
for polarized transfer in planar medium with complete frequency
redistribution and turbulent magnetic fields. Here, a Neumann series
expansion of the polarized component of the source vector in the
mean number of scattering events allows to include the contribution
of multiple scatterings iteratively. The intensity component of the
source vector is computed with an ALI method neglecting its cou-
pling with the linear polarization. This scattering expansion method
has been generalized to both AA-PRD and AD-PRD problems with
and without weak magnetic fields in a planar medium (see the
reviews by Nagendra 2019a,b). More recently, this method has been
extended to polarized transfer in arbitrary magnetic fields with AA-
PRD (Sampoorna et al. 2019) and AD-PRD (Nagendra et al. 2020).
Here, we apply this iterative method to polarized line transfer in a
spherical medium with AD-PRD.

In the component form, the combined source vector given in
equation (10) can be re-written as

SK oz pov) = €B UL + T (2. p.v), (22)
where
aw RE, v/, 1)
T oz p.v / /
Q( p,v) = (p(l))
x> ZFQQ,(M)IK,(z,u,v). (23)
K'=0,20'>0

As already mentioned, we first compute the intensity I*(z, p, v)
by neglecting its coupling to linear polarization. In other words
we assume the Stokes I*(z, p, v) to be given by the compo-
nent Ig’i(z, p, V). The corresponding combined source function

40
8P o(z, p.v) = €By, + Tz, p, v), where

+1 d RO ,
To(z, p.v) = / / & (Uﬁv; Ro@o it VoD g0 oy, 24y

In the above equation, we have neglected the coupling to other Zé
components and used 1:88 (') = 1(see appendix of Frisch 2010). The
component Ig'i(z, p,v) and Sgo(z, p, v) are obtained by solving
the scalar version of the transfer equation (9) using the CMF ALI
method described in Section 3.1. In this case, for a given depth point
the size of the vectors r” and 88’ reduces to N,2N,, and that of
matrix A to N,2N, x N,2N,,. Clearly, solving this scalar version
of the linear system of equations is computationally less demanding
than the vector version.

Once the Ig’i(z, p,v) and Sg,o(z, p, V) are available, the other
K =2and Q = 0, 1, 2 components are computed iteratively as
described below. In the first iteration, since only K =0 and Q =0
components are known, equation (23) for K =2 and Q =0, 1, 2
reduces to

) “dp_R(vu,v 7]
EARCYE / / o)

x Fgo(u/ )Ig(z, W), (25)
The above equation basically represents the single scattering contri-

bution to the scattering integral, which is indicated with a superscript
(1). A call to the CMF formal solver would then provide the

6007

o 2.+]® Q) .
radiation field [IQ’ . Clearly, in the
second iteration all the (K, Q) components of Stokes and source
vectors are available. Thus, all the terms on the right hand side of
equation (23) for K = 2 can be determined. This process is repeated
to derive an iterative sequence, where, in each iteration higher orders
of scattering are included. This iterative sequence for the nth iteration
(or scattering) can be written as

; 2
corresponding to [SQ]

[7;}@ (z, p,v) = [72}(]) (z, p,v)

/ /“d,uR(VMUM)
o)

< B

0'>0

0 R COTORT W)

Iterations are stopped when the solution converges. For our compu-
tations, we adopt the same convergence criteria defined in section 5
of Sampoorna, Nagendra & Frisch (2011).

4 NUMERICAL RESULTS

In this section, we illustrate the AD-PRD effects on the linear polar-
ization profiles emerging from a spherically symmetric isothermal
medium. We parametrize this medium by a set of input parameters,
namely, R, T, a, €, B., and B,. The extension of the spherical medium
is specified via an outer radius R that is measured in units of the
core radius R ... Here, we consider low (R = 2), mid (R = 20),
and highly (R = 200) extended spherical media. Furthermore, the
extended spherical medium is characterized by a frequency integrated
total radial line optical thickness of 7. We recall that the underlying
line-integrated absorption coefficient is assumed to fall off like 1/,
which is also the case for the continuum absorption coefficient as
well as the electron scattering opacity. Because of the computational
limitations, here we consider only optically thin cases of T = 10
and T = 100. For the same reason, here we do not consider the
effects of a depolarizing elastic collisions, namely, D® = 0 and
also 'y = 0. In other words, we consider only type-II AD-PRD
function. We take the damping width of the Voigt profile to be
a = 1073, As in Sampoorna, Megha & Supriya (2022), the ratio
of electron to atomic Doppler width is taken to be 43. For the
optically thin cases considered here, we use a reflecting boundary
condition, namely, Z*(t =T, p,v) =Z (t =T, p, v) for all the
rays. For the rays that intersect the core, namely the core rays,
this condition is applied at r = R o, While for all the other rays,
called lobe rays, this condition is applied at the spherical shell where
the ray is tangent to it. The reflecting boundary for the core rays
implies that the central core is hollow and non-emitting. This is
equivalent to a finite planar slab that is symmetric about its mid-
plane. Furthermore, we assume that there is no radiation incident on
the top boundary, namely, Z~(zr = 0, p, v) = 0. Finally, we recall
that in the tangent-ray method the direction cosine u depends on p
and r, namely p = u(r, p) (see the discussion below equation 3). In
all the figures presented in this paper, the line-of-sight jt),s at which
the emergent Stokes profiles are illustrated corresponds to p at r =
R. Since each of the impact parameter ray p emerges at r = R with a
unique value of p, the 10s = (R, p) corresponds to a unique p.
Figs 1 and 2 show the behaviour of emergent / and Q/I profiles as
a function of the logarithm of non-dimensional frequency x (which
is defined as x = (v — vg)/Avp, with vy and Avp, respectively,
representing the line-centre frequency and atomic Doppler width).
The profiles computed using the AD-PRD are shown as black solid
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Figure 1. A comparison of the emergent Stokes 7 and fractional linear polarization Q/I profiles at jtjos = 0.1 computed using AD-PRD (black solid and dotted
lines) and AA-PRD (pink dashed and dot—dashed lines) functions. Bottom row displays the error A(Q/I) in percentage (see equation 27) when electron scattering
is included. A spherically symmetric static medium with line integrated radial optical thickness of 7'= 10 is considered. Panels (a), (b), and (c) correspond,

respectively, to R = 2, 20, and 200. Other model parameters are §. = 0, € = 10_4, a= 10_3, and I'g = 0. Electron scattering opacity 8, = 0 for black solid

and pink dashed lines, while it is 10~ for black dotted and pink dot—dashed lines. Black solid and dotted lines coincide in the line core (namely, log (x) < 0.5)

and near wing (namely, 0.5 < log (x) < 1) regions of Q/I (middle row). This is also the case for pink dashed and dot—dashed lines. As for the I profiles (upper

row), all the different lines coincide in panels (b) and (c), while black solid and pink dashed, and black dotted and pink dot—dashed lines coincide in panel (a).
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Figure 2. Same as Fig. 1, but for 7= 100.

and dotted lines, while those computed using AA-PRD are shown
as pink dashed and dot—dashed lines. These line sets in-turn also
highlight the effects of including (black dotted and pink dot—dashed
lines) and neglecting (black solid and pink dashed lines) electron
scattering. A spherically symmetric static media with outer radius
R =2 (panel (a)), R = 20 (panel (b)), and R = 200 (panel (c)) are
considered. In this case, the Stokes profiles are symmetric about the
line centre, and hence only the profiles corresponding to x > 0 are
shown. In Figs 1 and 2, the line integrated radial optical thickness
T is 10 and 100, respectively. The AD-PRD solutions are computed
using the scattering expansion method presented in Section 3.2, as
it is computationally less demanding than the polarized ALI method
discussed in Section 3.1, although both the methods give identical
results. The AA-PRD solutions are computed using the polarized
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ALI method discussed in Sampoorna, Megha & Supriya (2022). In

the bottom rows of Figs 1 and 2, we also plot the error A(Q/I) in

percentage. Following Riva et al. (2023), we define this error as
|X/(max X) — Y /(max X)|

A/ = 1+ [X/(max X)| @7)

where X stands for Q/I obtained using AD-PRD and Y stands for Q/1
obtained using AA-PRD.

The effect of electron scattering redistribution on / and Q/I profiles
is morphologically similar for AA-PRD and AD-PRD solutions,
namely it gives rise to a bulge in the wings of the intensity profile
and a far wing secondary peak in the Q/I profiles (compare black solid
and dotted lines as well as pink dashed and dot—dashed lines). For an
optically thin spherical medium considered here, electron scattering
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Figure 3. Centre-to-limb variation of the emergent Stokes / and fractional linear polarization Q/I profiles computed using AD-PRD (panel (a)) and AA-PRD
(panel (b)) functions. A spherically symmetric static medium with input parameters R = 2, T = 100, 8, =0, B, = 107, e = 107*,a = 1073, and T'g = O is
considered. Different lines correspond to a different value of p)s, which is indicated in figure legend.

does not affect the near wing PRD peak (see also Sampoorna,
Megha & Supriya 2022), and hence the black solid (pink dashed)
and black dotted (pink dot—dashed) lines coincide in the line core
and near wing regions. Here, the line core region corresponds to
log (x) < 0.5, the near wing region where the near wing PRD peak
is seen corresponds to 0.5 < log(x) < 1, and the far wing region
where the secondary peak is seen corresponds to 1 < log (x) < 2.5.
The dependence of the / and Q/I profiles on the outer radius R is
also similar for AD-PRD and AA-PRD cases. We refer the reader
to Sampoorna, Megha & Supriya (2022), wherein the nature of this
dependence has been discussed for the 7 = 100 case (see their
figs 2(a)-4(a) and the related discussions). Unlike the case of T =
100, the Q/I monotonically decreases with increasing R for 7= 10
because the spherical medium becomes highly dilute.

Like in the planar case, the differences between AD-PRD and AA-
PRD solutions are mainly seen in the fractional linear polarization
profiles. For R = 2, noticeable differences in the shape and amplitude
of Q/I are seen at the near wing PRD peak (compare black solid and
pink dashed lines in panel (a) of Figs 1 and 2) and the secondary
peak (compare black dotted and pink dot—dashed lines in panel (a)
of Figs 1 and 2). Small differences in amplitude of Q/I near the line
centre are also seen (see the bottom row in panel (a) of Figs 1 and 2).
These differences continue to remain for larger values of R, although
the near wing PRD peak is highly reduced or nearly non-existent for
larger R (see panels (b) and (c) of Figs 1 and 2). For T = 10, the
difference in amplitude of Q/I near the line centre increases with R
(see bottom row in Fig. 1), while for 7 = 100 this difference first
increases for R = 20 and then decreases when R = 200 (see bottom
row in Fig. 2).

4.1 Centre-to-limb variations

In Figs 3 and 4, we show the centre-to-limb variation of emergent /
and Q/I profiles computed with AD-PRD (panel (a)) and AA-PRD
(panel (b)), for 7= 100 and R = 2 and R = 20, respectively. The

different lines-of-sight ;s at which these profiles are illustrated
represent the cosine of the angle made by the impact parameter
ray p with the outermost spherical shell, namely wios = w(R, p).
Clearly, different values of pos basically correspond to different
values of the impact parameter p. As expected, when the line of sight
changes from close to the limb (w15 = 0.1) to near disc centre
(m10s = 0.9), I profiles exhibit limb-darkening and Q/I profiles show
limb-brightening. The Q/I computed with AA-PRD monotonically
decreases towards zero polarization with increasing values of ftjos.
However, the Q/I computed with AD-PRD exhibits this behaviour
only in a region close to the line centre (namely, for log (x) < 0.2),
while the regions to the left of near wing PRD peak (namely, for 0.2
< log (x) < 0.6) and to the left of the secondary peak (namely, for
1.1 < log (x) < 2.1) exhibit negative polarization. Furthermore, the
near wing PRD peak and the secondary peak themselves are shifted
to larger frequencies (see e.g. green and blue lines in panel (a) of
Figs 3 and 4). As R increases the (o5 at which negative polarization
starts to be seen in Q/I also increases. For example, for R = 2 this
occurs at (s = 0.5 (see panel (a) of Fig. 3), for R = 20 at s =
0.7 (see panel (a) of Fig. 4), while for R = 200 it occurs at iy =
0.8 (figure not illustrated). In other words, the differences in Q/I
computed with AD-PRD and AA-PRD functions is relatively larger
for a 05 close to the disc centre than near the limb (e.g. compare
green and blue lines in panels (a) and (b) of Figs 3 and 4). This is
in contrast to the planar medium, wherein the differences between
AD-PRD and AA-PRD solutions decrease with increasing values of
Mios (see e.g. fig. 8 of Sampoorna, Nagendra & Frisch 2011). This
relatively large difference between AD-PRD and AA-PRD solutions
can be attributed to the spherical nature of the problem. In a spherical
medium, along a given impact parameter ray, u(r, p) changes from
0 at an inner spherical shell where the ray is tangent to it to the
corresponding emergent (s = (R, p) value, thereby enhancing the
AD-PRD effects for a larger emergent p1),s value than the smaller one.

To better understand the differences between AD-PRD and AA-
PRD solutions, we show in Fig. 5 a comparison of the corresponding
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Figure 4. Same as Fig. 3, but for R = 20.
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Figure 5. A comparison of the emergent Ig and Ié /Ig at 1os = 0.1 (panel (a)) and w05 = 0.7 (panel (b)) computed using AD-PRD (solid lines) and AA-PRD
(dashed lines) functions. A spherically symmetric static medium with input parameters R =2, 7= 100, 8. =0, B, = 1075, e =10"% a= 1073, and I'g =0is
considered.

MNRAS 526, 6004—6014 (2023)

$20z Asenuer go uo Jasn soiskydo.isy Jo a1nyisu| ueipul Aq €0/ /2 1E2/7009/7/92S /2101 e/seuw/woo dno olwapede//:sdiy woll papeojumo(]



Ig components emerging at jos = 0.1 (panel (a)) and s = 0.7
(panel (b)) for R = 2 and T = 100. In the case of AD-PRD, from
equation (8) one readily obtains the following relation between the
Stokes parameters and the irreducible components for the outgoing
ray :

1
I(Zv P, V) = Ig(Z, P, U) + ﬁ(:;:u‘z - I)Ig(z’ P, U)

V3o ——
_TI’L 1 _:U“zz-lz(zv p, V)

3
+%ﬁ—#ﬁmnm (28)
3
Qmmw=—£5aﬂhﬁmnw
3
- %le - Iz p,v)
3
—%ﬁ+ﬁﬂmuw 29)

For notational simplicity, we have suppressed the superscript ‘+’
on the Stokes parameters as well as their irreducible components,
which indicates the outgoing ray. Furthermore, the p in the above
equations represent u(r, p) because these equations are valid for all
the spherical shells that a given impact parameter ray p intersects
along its path before it emerges from the outermost shell. In the
case of AA-PRD, the only non-zero irreducible components are Z{
and Z2. The component Z{ is essentially identical for AD-PRD and
AA-PRD, while the other components show a significant difference
(compare solid and dashed lines in Fig. 5). Since Z{ is the dominant
contributor to Stokes / (see equation 28), the latter is insensitive to
AD-PRD or AA-PRD. On the other hand the Stokes Q is composed
of three components Ié with Q = 0, 1, 2 (see equation 29). When
Uos = U(R, p) is small (namely, close to the limb), only I§ and
73 contribute. However, the dominant contribution comes from Z3.
On the other hand, when pos is large Ilz also contributes resulting
in relatively larger difference between Q/I computed with AD-PRD
and AA-PRD.

4.2 Dependence on electron scattering opacity g,

Spherical polarized line transfer with AD-PRD 6011
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In Fig. 6, we illustrate the dependence of the differences between the
Q/I computed with AD-PRD (panel (a)) and AA-PRD (panel (b)) on
the electron scattering opacity parametrized as .. The corresponding
error as defined in equation (27) is shown in panel (c). Since the
differences between AD-PRD and AA-PRD solutions are mainly
seen in the Q/I profiles, we do not present the corresponding intensity
profiles (also in the next subsection). We have considered R = 2 and
T =100 for this purpose. As in Sampoorna, Megha & Supriya (2022),
we have varied 8, from 1078 to 10~ in steps of one dex. The Q/I
profiles for g, = 0 are also shown. The influence of varying 8, on
the Q/I profiles is similar for both AD-PRD and AA-PRD cases,
and has been described in detail in Sampoorna, Megha & Supriya
(2022). For the optically thin case considered here, the effect of
varying B, is mainly seen in the far wings, namely in and around the
secondary peak. Only for 8, as large as 1073 the influence of electron
scattering redistribution is seen in the line core and near wing PRD
peak. Thus the differences between AD-PRD and AA-PRD are nearly
independent of S, in the line core and near wing PRD peak, which
is also reflected in the error A(Q/I) (see panel (c) of Fig. 6), except
for B, = 1073 (see the blue line in panel (c) of Fig. 6). On the other
hand, the differences between AD-PRD and AA-PRD in and around

Figure 6. A comparison of the fractional linear polarization Q/I profiles
at fjos = 0.1 computed using AD-PRD (panel (a)) and AA-PRD (panel
(b)) functions for varying values of B,. Panel (c) shows the corresponding
error A(Q/I) in percentage (see equation 27). A spherically symmetric static
medium with input parameters R =2, 7= 100, 8, =0, € = 10’4, a=1073,
and I'g = 0 is considered. Different lines correspond to a different value of
Be and are indicated in panel (a), which remain valid for both the panels (b)
and (c).

the secondary peak in Q/I shows a strong dependence on B,. This
difference in general increases with g, as also reflected in A(Q/I)
(see panel (c) of Fig. 6). For example, while the secondary peak
in Q/I computed with AA-PRD exhibits flat topped profile shape
for B, = 107, the corresponding AD-PRD case exhibits a more
rounded profile shape (compare purple lines in panels (a) and (b)
of Fig. 6).

MNRAS 526, 6004-6014 (2023)

$20z Asenuer go uo Jasn soiskydo.isy Jo a1nyisu| ueipul Aq €0/ /2 1E2/7009/7/92S /2101 e/seuw/woo dno olwapede//:sdiy woll papeojumo(]



6012 M. Sampoorna and H. D. Supriya

(a) AD-PRD
207 B.=0 T T ]
r— .=107"° ]
151 B.=107° .
—1n-6 ]
g —_— ﬁc_lo 1
N 10F ]
C|3' i
5 ]
o | 1 1 1
0 1 2 3

log()
(b) AA—PRD
20 * * *

-Q/1 (%)
Lo b by

L

3

3 ]
< ]
§ ]
3 ]
0 1 2 3

log(x)

Figure 7. A comparison of the fractional linear polarization Q/I profiles
at fjos = 0.1 computed using AD-PRD (panel (a)) and AA-PRD (panel
(b)) functions for varying values of B.. Panel (c) shows the corresponding
error A(Q/I) in percentage (see equation 27). A spherically symmetric static
medium with input parameters R = 2, T = 100, 8, = 1075, e=10"%a=
1073, and I'e = 0 is considered. Different lines correspond to a different
value of 8. and are indicated in panel (a), which remain valid for both the
panels (b) and (c).

4.3 Dependence on continuum parameter 3,

For R =2 and T = 100, we illustrate in Fig. 7, the dependence of the
differences between the Q/I computed with AD-PRD (panel (a)) and
AA-PRD (panel (b)) on the background continuum parameter ..
The corresponding error (see equation 27) is shown in panel (c). We
have varied . from 107! to 102 in steps of two dex. The Q/I profiles
for the pure line case (8. = 0) are also shown. Since the background
continuum is assumed to be unpolarized, it drives the polarization
towards zero at frequencies where the continuum opacity dominates

MNRAS 526, 6004—6014 (2023)

over the line and electron scattering opacities. As . increases, this
occurs at progressively smaller frequency, thereby confining the Q/1
profiles to smaller frequency bandwidths around the line core region.
Therefore, in the far wings (namely, in and around the secondary peak
in Q/I) the differences between AD-PRD and AA-PRD decreases
with B, (see panel (c) in Fig. 7). However, surprisingly in the region
close to the line centre the differences slightly increase with ., while
at the near wing PRD peak differences initially increase until g, =
10~¢ and then decreases (see e.g. red and purple coloured lines in
panel (c) of Fig. 7). This clearly shows the importance of including
AD-PRD effects even when the background continuum parameter is
as large as 8. = 1072,

4.4 Impact of velocity field

A comparison of emergent Stokes profiles computed with AD-PRD
(solid lines) and AA-PRD (dashed lines) in the presence of radial
velocity fields is shown in Figs 8 and 9 for T = 100 and R = 2
(panel (a)), 20 (panel (b)), and 200 (panel (c)). Since the velocity
field introduces asymmetries, the Stokes profiles are shown for both
positive and negative values of the non-dimensional frequency x.
Both the above-mentioned figures are identical, except for the choice
of frequency range for the abscissa. A larger frequency bandwidth
is used for Fig. 8 to display the far wing region where the electron
scattering dominates, while a smaller frequency bandwidth is used
for Fig. 9 to display the line core and near wing regions where the
atomic scattering dominates. The velocity field is given by an arctan
velocity law (see e.g. Mihalas, Kunasz & Hummer 1975, 1976) of
the form

V(r) = Vi [tan™"(ar + b) — tan"'(a + )], (30

with a maximum expansion velocity Vp,, of two mean thermal units.
Following Mihalas, Kunasz & Hummer (1975), we have chosen
the radius r,(= —b/a) at which the maximum velocity gradient
occurs to be at (R + 1)/2 and the parameter a such that we have
one characteristic width of the velocity function (namely, a(r, —
H=1.

The effect of the velocity fields on the emergent / and Q/I profiles
are identical to those discussed in section 3.3 of Sampoorna, Megha &
Supriya (2022), and hence we do not repeat them here. Primarily,
the velocity fields give rise to I and Q/I profiles that are asymmetric
about the line centre. For the optically thin case considered here, the
asymmetry in Q/I profiles is more apparent for all the different outer
radius R unlike the [ profiles (see Figs 8 and 9). Furthermore, the
influence of electron scattering on / and Q/I profiles emanating from a
moving spherical medium is similar to the corresponding static case,
namely, an enhancement of the intensity in the wings and generation
of a secondary peak in the Q/I profiles. The secondary peak is,
however, asymmetric for the moving case (see Fig. 8). The nature
of the differences between the AA-PRD and AD-PRD solutions is
also similar to the corresponding static case (compare Figs 2 and 8).
However, the overall error A(Q/I) is somewhat smaller for the moving
medium than the corresponding static spherical medium (compare
the bottom rows of Figs 2 and 8).

5 CONCLUSIONS

In this paper, we investigate the impact of AD-PRD on resonance
line polarization emerging from a spherically symmetric extended
and expanding medium. We account for both scattering of line
photons by atoms and electrons. To numerically solve this problem,
we apply an accelerated lambda iteration method (Hauschildt &
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Figure 8. A comparison of the emergent Stokes 7 and fractional linear polarization Q/I profiles at i, = 0.1 computed using AD-PRD (solid lines) and AA-PRD
(dashed lines) functions. Bottom row displays the corresponding error A(Q/I) in percentage (see equation 27). A spherically symmetric moving medium with
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Figure 9. Same as Fig. 8. However, the profiles are shown for a shorter frequency range to better resolve the region in and around the line core and near wings.

Baron 2004) as well as a scattering expansion method (Frisch et al.
2009). These numerical schemes are applied to the CMF polarized
transfer equation in the irreducible spherical tensorial representation
(Frisch 2010). In this approach, the Stokes and source vectors are
decomposed into their irreducible components and the AD-PRD
functions are expanded over the azimuth difference of the incoming
and outgoing radiation using a cosine Fourier series. The scattering
expansion method is computationally more advantageous than the
ALI method. This is in particular true for transfer in spherical
medium, where the spatial and angle grids are coupled as we solve
the concerned transfer problem in the (p, z) coordinate system
(Hummer & Rybicki 1971).

Despite using the scattering expansion method, the heavy com-
putational requirements have limited us to consider optically thin
isothermal spherical medium with inverse square law opacity distri-
bution. For our studies, we have considered different extension R of
the spherical medium with R = 2, 20, and 200, and line integrated
radial optical thickness of 7= 10 and 100. In this region of parameter
space, the linear polarization Q/I is highly sensitive to the choice
of the redistribution function, namely AD-PRD or AA-PRD (see

Figs 1 and 2). Significant differences between Q/I computed with
AD-PRD and AA-PRD are seen in both amplitude and shape in the
near wing PRD peak (which arises due to type-II atomic scattering)
and the secondary peak (which arises due to electron scattering
redistribution). Noticeable differences in the amplitude of Q/I in
the line core region is also seen. Because of the spherical nature
of the problem, the AD-PRD effects on Q/I are relatively larger
for a line of sight close to the disc centre than near the limb (see
Figs 3 and 4). We have also shown that when the contribution of
electron scattering increases, the differences between Q/I computed
with AD-PRD and AA-PRD at the secondary peak in general also
increases (see Fig. 6). However, when the contribution from the
background continuum is added, these differences decrease since
the secondary peak significantly decreases with increasing values of
B. (see Fig. 7). On the other hand the differences around the line
core and near wing PRD peak somewhat increases. In the presence
of a non-zero radial velocity field, the effects of AD-PRD on Q/I
are similar to the corresponding static case, but the error A(Q/I)
is relatively smaller. From these numerical studies, we therefore
conclude that AD-PRD effects have to be included for modelling
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the linear polarization profiles of optically thin lines emanating from
spherically symmetric extended and expanding media, although such
calculations are computationally expensive.

ACKNOWLEDGEMENTS

We acknowledge the use of the high-performance computing facility
at the Indian Institute of Astrophysics. MS acknowledges the support
from the Science and Engineering Research Board (SERB), Depart-
ment of Science and Technology, Government of India via a SERB-
Women Excellence Award research grant WEA/2020/000012. We
thank the referee for helpful comments that improved the presentation
of the paper.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Anusha L. S., 2023, ApJ, 949, 84

Anusha L. S., Nagendra K. N., 2012, ApJ, 746, 84

Benedusi P, Janett G., Riva S., Krause R., Belluzzi L., 2022, A&A, 664,
A197

Benedusi P, Riva S., Zulian P, gtépén J., Belluzzi L., Krause R., 2023, J.
Comput. Phys., 479, 112013

Bommier V., 1997a, A&A, 328, 706

Bommier V., 1997b, A&A, 328, 726

Cannon C. J., 1973, ApJ, 185, 621

Chandrasekhar S., 1950, Radiative Transfer. Clarendon Press, Oxford

del Pino Aleman T., Trujillo Bueno J., Casini R., Manso Sainz R., 2020, ApJ,
891,91

Domke H., Hubeny 1., 1988, AplJ, 334, 527

Dumont S., Omont A., Pecker J. C., Rees D., 1977, A&A, 54, 675

Faurobert M., 1987, A&A, 178, 269

Faurobert M., 1988, A&A, 194, 268

Frisch H., 2009, in Berdyugina S. V., Nagendra K. N., Ramelli R., eds, ASP
Conf. Ser. Vol. 405, Solar Polarization 5: In Honor of Jan Stenflo. Astron.
Soc. Pac., San Francisco, p. 87

Frisch H., 2010, A&A, 522, A4l

Frisch H., Anusha L. S., Sampoorna M., Nagendra K. N., 2009, A&A, 501,
335

Hauschildt P. H., Baron E., 2004, A&A, 417, 317

Hubeny 1., Mihalas D., 2015, Theory of Stellar Atmospheres: An Introduction
to Astrophysical Non-equilibrium Quantitative Spectroscopic Analysis.
Princeton University Press, Princeton, NJ

Hummer D. G., 1962, MNRAS, 125, 21

Hummer D. G., Rybicki G. B., 1971, MNRAS, 152, 1

Janett G., Alsina Ballester E., Guerreiro N., Riva S., Belluzzi L., del Pino
Aleman T., Trujillo Bueno J., 2021, A&A, 655, A13

Landi Degl’Innocenti E., Landolfi M., 2004, Polarization in Spectral Lines.
Kluwer, Dordrecht

Megha A., Sampoorna M., Nagendra K. N., Anusha L. S., Sankarasubrama-
nian K., 2019, ApJ, 879, 48

Megha A., Sampoorna M., Nagendra K. N., Anusha L. S., Sankarasubrama-
nian K., 2020, ApJ, 903, 6

Mihalas D., 1978, Stellar Atmospheres. W.H. Freeman, San Francisco

Mihalas D., Kunasz P. B., Hummer D. G., 1975, ApJ, 202, 465

Mihalas D., Kunasz P. B., Hummer D. G., 1976, ApJ, 210, 419

Nagendra K. N., 2019a, in Werner K., Stehle C., Rauch T., Lanz T., eds, ASP
Conf. Ser. Vol. 519, Radiative Signatures from the Cosmos. Astron. Soc.
Pac., San Francisco, p. 51

Nagendra K. N., 2019b, in Belluzzi L., Casini R., Romoli M., Trujillo Bueno
J., eds, ASP Conf. Ser. Vol. 526, Solar Polarization Workshop 8. Astron.
Soc. Pac., San Francisco, p. 99

Nagendra K. N., Sampoorna M., 2011, A&A, 535, A88

Nagendra K. N., Sampoorna M., 2012, ApJ, 757, 33

Nagendra K. N, Frisch H., Faurobert M., 2002, A&A, 395, 305

Nagendra K. N., Sowmya K., Sampoorna M., Stenflo J. O., Anusha L. S.,
2020, ApJ, 898, 49

Olson G. L., Kunasz P. B, 1987, J. Quant. Spectrosc. Radiat. Transfer, 38,
325

Olson G. L., Auer L. H., Buchler J. R., 1986, J. Quant. Spectrosc. Ra-
diat. Transfer, 35, 431

Riva S., Guerreiro N., Janett G., Rossinelli D., Benedusi P., Krause R.,
Belluzzi L., 2023, A&A, in press

Sampoorna M., 2014, in Nagendra K. N, Stenflo J. O., Qu Z. Q., Sampoorna
M., eds, ASP Conf. Ser. Vol. 489, Solar Polarization 7. Astron. Soc. Pac.,
San Francisco, p. 197

Sampoorna M., Nagendra K. N., 2015a, in Nagendra K. N., Bagnulo S.,
Centeno R., Jesis Martinez Gonzédlez M., eds, Proc. IAU Symp. 305,
Polarimetry: From the Sun to Stars and Stellar Environments. Kluwer,
Dordrecht, p. 387

Sampoorna M., Nagendra K. N., 2015b, ApJ, 812, 28

Sampoorna M., Nagendra K. N., Stenflo J. O., 2008, ApJ, 679, 889

Sampoorna M., Nagendra K. N., Frisch H., 2011, A&A, 527, A89

Sampoorna M., Nagendra K. N., Stenflo J. O., 2017, ApJ, 844, 97

Sampoorna M., Nagendra K. N., Sowmya K., Stenflo J. O., Anusha L. S.,
2019, ApJ, 883, 188

Sampoorna M., Megha A., Supriya H. D., 2022, ApJ, 937, 25

Stenflo J. O., 1994, Solar Magnetic Fields - Polarized Radiation Diagnostics.
Kluwer, Dordrecht

Supriya H. D., Nagendra K. N., Sampoorna M., Ravindra B., 2012, MNRAS,
425, 527

Supriya H. D., Sampoorna M., Nagendra K. N., Ravindra B., Anusha L. S.,
2013a, J. Quant. Spectrosc. Radiat. Transfer, 119, 67

Supriya H. D., Smitha H. N., Nagendra K. N., Ravindra B., Sampoorna M.,
2013b, MNRAS, 429, 275

Trujillo Bueno J., 2003, in Hubeny I., Mihalas D., Werner K., eds, ASP
Conf. Ser. Vol. 288, Stellar Atmosphere Modeling. Astron. Soc. Pac., San
Francisco, p. 551

This paper has been typeset from a TEX/IATgX file prepared by the author.

© 2023 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 526, 6004—6014 (2023)

$20z Asenuer go uo Jasn soiskydo.isy Jo a1nyisu| ueipul Aq €0/ /2 1E2/7009/7/92S /2101 e/seuw/woo dno olwapede//:sdiy woll papeojumo(]


http://dx.doi.org/10.3847/1538-4357/acc9a8
http://dx.doi.org/10.1088/0004-637X/746/1/84
http://dx.doi.org/10.1051/0004-6361/202243059
http://dx.doi.org/10.1016/j.jcp.2023.112013
http://dx.doi.org/10.1086/152442
http://dx.doi.org/10.3847/1538-4357/ab6bc9
http://dx.doi.org/10.1086/166857
http://dx.doi.org/10.1051/0004-6361/201015167
http://dx.doi.org/10.1051/0004-6361/200911696
http://dx.doi.org/10.1051/0004-6361:20034473
http://dx.doi.org/10.1093/mnras/152.1.1
http://dx.doi.org/10.1051/0004-6361/202141549
http://dx.doi.org/10.3847/1538-4357/ab24cc
http://dx.doi.org/10.3847/1538-4357/abb6f4
http://dx.doi.org/10.1086/153996
http://dx.doi.org/10.1086/154845
http://dx.doi.org/10.1051/0004-6361/201117491
http://dx.doi.org/10.1088/0004-637X/757/1/33
http://dx.doi.org/10.1051/0004-6361:20021349
http://dx.doi.org/10.3847/1538-4357/ab9747
http://dx.doi.org/10.1016/0022-4073(87)90027-6
http://dx.doi.org/10.1016/0022-4073(86)90030-0
http://dx.doi.org/10.1051/0004-6361/202346615
http://dx.doi.org/10.1088/0004-637X/812/1/28
http://dx.doi.org/10.1086/587477
http://dx.doi.org/10.1051/0004-6361/201015813
http://dx.doi.org/10.3847/1538-4357/aa7a15
http://dx.doi.org/10.3847/1538-4357/ab3805
http://dx.doi.org/10.3847/1538-4357/ac83b2
http://dx.doi.org/10.1111/j.1365-2966.2012.21497.x
http://dx.doi.org/10.1016/j.jqsrt.2012.12.016
http://dx.doi.org/10.1093/mnras/sts335
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 BASIC EQUATIONS
	3 NUMERICAL METHODS OF SOLUTION
	4 NUMERICAL RESULTS
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

