Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/2567| Title: | Distribution of stars perpendicular to the plane of the Galaxy. II. |
| Authors: | Chatterjee, S |
| Keywords: | Stars: Rotation Galaxy: Kinematics And Dynamics Galaxy: Stellar Content |
| Issue Date: | Jun-1995 |
| Publisher: | EDP Sciences |
| Citation: | A&A, Vol. 298, No. 2, pp. 438 - 444 |
| Abstract: | We present here rigourous analytical solutions of the Boltzmann-Poisson equations concerning the distribution of stars perpendicular to the galactic plane. The number density of stars at the galactic disk is assumed to follow n(m,0)~H(m-m_0_)m^-x^, where m is the mass of the star and x is an arbitrary exponent greater than 2, while H(m-m_0_) is the unit Heaviside step function. The velocity dispersion of the stars is assumed to arise from the stellar motion in a random force field - leading to <v^2^(m)>~constant for m<=m_*_, <v^2^(m)>~m^-θ^, for m>m_*_, where m_*_ is the stellar mass for which the stellar life-time equals the galactic age. It is seen that the height distribution of stars is very sensitive to the values of x and θ. Finally we have derived an expression connecting the surface density volume density and velocity dispersion of stars, and show that this relation is a sensitive function of θ and x and use them to obtain certain plausible numbers for our Galaxy in the limits of the present day data. |
| URI: | http://hdl.handle.net/2248/2567 |
| ISSN: | 0004-6361 |
| Appears in Collections: | IIAP Publications |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Chatterjee S.pdf | 985.34 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.