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Abstract. We present here rigourous analytical solutions of the
Boltzmann—-Poisson equations concerning the distribution of
stars perpendicular to the galactic plane. The number density
of stars at the galactic disk is assumed to follow n(m,0) ~
H(m — mgp)m ™%, where m is the mass of the star and x is an
arbitrary exponent greater than 2, while H(m — my) is the unit
Heaviside step function. The velocity dispersion of the stars is
assumed to arise from the stellar motion in arandom force field —
leading to (v%(m)) ~ constant for m < m., (v¥(m)) ~ m~°,
for m > m,, where m, is the stellar mass for which the stellar
life-time equals the galactic age. It is seen that the height distri-
bution of stars is very sensitive to the values of = and 6. Finally
we have derived an expression connecting the surface density
volume density and velocity dispersion of stars, and show that
this relation is a sensitive function of § and z and use them to
obtain certain plausible numbers for our Galaxy in the limits of
the present day data.

Key words: stars: rotation — Galaxy: kinematics and dynamics
— Galaxy: stellar content

1. Introduction

Distribution of stars, perpendicular to the galactic plane (zy
plane) requires the solution of the Boltzmann equation for the
distribution of masses in the phase space, self-consistent with
the Poisson equation for the gravitational potential. The solution
exhibits an interplay between the “randomizing effect” due to
the velocity dispersion (v*(m)) and the “ordering effect” of the
gravitational potential ¢(z), of which the latter depends upon the
mass spectrum and the velocity dispersion via the Boltzmann—
Poisson (BP) eqations. The self-consistency condition, stated
above — serves as the motivation of the present calculations —
concerning the effect of the mass spectrum and velocity dis-
persion on the vertical distribution of stars above the galactic
plane.

The solutions given below are consistent under the assump-
tion of Gaussian velocity dispersion, with the quantity <v2(m)>
assumed to be independent of z (Bahcall 1984a, 1984b). The
important conditions in our theory are as follows

(1) The mass spectrum follows the law:
n(m, 0) ~ H(m — mo)(m/mo)~"

with > 2, where n(m, 0) is the number of stars per unit vol-
ume per unit mass interval in a cylindrical volume of infinitesi-
mal thickness around the galactic plane and H(m — my) is the
Heaviside unit step function.

(2) The velocity dispersion follows:

(v¥(m)) = constant, for m < m,
~ m_e, for m > m.

where m, is the mass for which the stellar lifetime is equal to
the age of the galaxy. The above velocity dispersion is derived
by considering random walk of stars in velocity space under
rapidly fluctuating random force fields, (v?(m)) being directly
proportional to the time ¢ that the star has lived in the random
force field (Wielen 1977).

The solutions given below are exact, in the sense, that they
are non perturbative. They are seen to have sensitive dependence
on z and 6. In the limit z — oo and (or) 8 — 0, i.e. either for all
masses equal and (or) for all the velocities equal, we recover the
well known Spitzer formula (Spitzer 1942). The present work
elegantly takes into account the variation of the masses and the
dependence of the velocity dispersion on mass. The paper is
divided into five sections. Section 2 gives the rigourous method
of self consistent solution of the BP equations. In Sect. 3, we
use the above solutions to obtain a relation between the mass,
stellar velocity dispersion, scale height and the mass dispersion
at the galactic disk. We demonstrate in Sect. 4 that this relation
enables us to ascertain the relative merits of the different sets of
data on the galactic parameters while Sect. 5 covers concluding
remarks with comments on the need to reexamine the existing
data on the basis of the present self consistent solutions.

2. Theory

2.1. The collisionless Boltzmann equation

The distribution function f(z,v,t) for stars in the space per-
pendicular to the galactic plane (zy plane) is known to follow
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the collision-less Boltzmann equation in one dimension (here
z-direction):

[0/t +vD/0z + (Fy(t) + Fx(t)) 8/0v] f(z,v,t) =0 (1)

where Fy denotes the slowly varying and F; denotes the fast
varying acceleration on the stars.

We consider F;(t) to be zero mean Gaussian random vari-
able, with a correlation function:

(Fy()Fx(t)) = | F|* exp(—|t — t'| /70). 2)

In what follows, we determine the distribution function
f(z,v,t)attimest > 79. The method of solution of the stochas-
tic differential equation (1) has been presented by the author
(Chatterjee 1991), which may be referred to for mathematical
details, the techniques being elaborated in the two classic review
articles by Van Kampen on stochastic differential equations (Van
Kampen 1973, 1985). The essential results are as follows.

Atany ¢ > 7, stars possess a velocity dispersion

(v*()) = 0§ +2 ((6v(t))?) ©)

where o is the velocity dispersion of the stars at the time of
their formation while

((6v(®))*) = |Ft[*rot = Cvt @
with
Cy = |Ft|*o

gives the velocity dispersion due to the action of the fast varying
random forces.

Also considering the initial velocity at the time of formation
to be a zero mean Gaussian random variable, one obtains

f(z,v) ~ exp(—p(2)/ (v’ (@®))) )

where (v2(¢)) is given in (3) and (4). Equation (5) is also the
starting point of Bahcall’s calculation (Bahcall 1984a,1984b).
2.2. Mass dependence of the velocity dispersion

The velocity dispersion (v*(t) ) which appears in the distribution
function is seen from (4) to be directly proportional to the time
t, that the star has spent in the random force field.

Considering that the rate of star formation follows

n(t)dt = ng exp(—t/7)dt 6)

— being the number of stars created within the time ¢ and ¢ + dt
— then after a time 7', the average age of the stars is:

T T
(tage) = / (T — tyn(t)dt/ / n(t)dt
0 0
= T+7[{T/7)+1}exp(=T/7) — 1]
/11 —exp(=T/7)]. (7
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If the star generation rate be uniform with time, then we can
put (T'/7) — 0, so that we have, from (7),

<tage> ~ T/2 (8)

For stars with life-time 7(m) much longer than the galactic
age, (Tga) we must put T' = Ty, and hence

(tage) ~ Tgal/ 2. (9)

Similarly, for stars with life-time 7(m) less than T, /2 we
must have 7" = 7(m) and hence

(tage) ~ T(M)/2. (10)

Hence Wielen’s assertion, that on an average the stars have
lived half their main sequence life time, is equivalent to the case
of constant rate of stellar birth.

To estimate the main-sequence life-time, we note that this
is the time needed to burn 10% of the hydrogen. In this process
since only 0.007 fraction of the hydrogen mass is converted into
energy, at the end of the main-sequence life-time, the stellar
mass is 0.9993 of its initial mass.

From the mass-burning formula,

Adm/dt = —Lg (m/mg) " 11
the main-sequence life-time can be calculated as,
i
T(m) = (m@cz/LQO) (m/mg) -0 / y~ Dy
0.9993
-6

= a(m/me) (12)
where
a = 0.001752 (mec?/fL) (13)

Putting mg = 1.989210*% g, Lo = 3.8268ergs™!, ¢ =
310" cms™!, 6 = 2.5 and Ty = 10 yr ~ 310" s, one finds
that for m < m, ~ 0.85mg, 7(m) > Tga.

Thus substituting 7" from Egs. (9) and (10) the velocity dis-
persion follows,

(v’(m)) = of + v} for m < m. (14.2)
(vi(m)) = o +v§ (m/mg) for m > m, (14.b)
where
(v§) = (0.001752Cymec*/Leb) (m@/m*)e
= OyTg/2 = 3000 (kms™')? (15)
— as we find from Wielen’s estimate that Cy

61077 (kms~!)? yr=1.

Once again using 02 ~ 30 (kms~")? one finds that the o3
term in (14.a) and (14.b) can be neglected if (m/m,) < 7.0.
From the mass spectrum given below in (16) we find that for
mo < 0.1mg and z = 2.3, only a fraction 4.6 1073 of the stars
in the galaxy have masses greater than 7mg. The neglect of o
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thus gives a small error. Hence we shall consider the velocity
dispersion to be as given in (17) below, i.e. the o3 term being
neglected.

As is well known, the gravitational force on a body being
propotional to its mass, any gravitational field imparts the same
acceleration on all masses. Thus different masses under identical
gravitational field would, after a time ¢, gain the same velocity
Av(t) over the initial value. This would make (v?(mn)) the same
for all masses had all the stars lived for equal lengths of time
in the random force field. However, since different masses have
different average life times, their average velocity dispersions
also acquire a mass dependence at any given time. These man-
ifestations have been derived in this section, to be used in the
subsequent calculations.

2.3. Solution of the Poisson equation
with mass spectrum and velocity spectrum

We use the above input to solve the Poisson equation. Here we
introduce the mass spectrum of the stars to be

ni(m,0) = H(m — mnim$* = (@, — m ™"

(16)

with all z; > 2.0, where the subscript ¢ denotes the species
under consideration (e.g. may mean the thin disk or the thick
disk cases), according to Salpeter’s estimate, x = 2.35, for the
initial mass spectrum (Salpeter 1955).

From the foregoing discussions, we take the velocity dis-
persion to be,

{v*(m)

2
vy for

m < My
an
va(m./m)? for m >m,

From (5) the Poisson equation is given by,
(d? /dz2)¢(z)=47rGZ / ni(m)ymexp(—¢(z)/ (vi(m)))dm(18)

Multiplying both sides of (18) by 2d¢/dz and integrating,
with the boundary condition: ¢(0) = 0, ¢’(0) = 0, we get

(dn/dx)? = Z { [1 — (ma/ma) " 205/ (@, + 6, — 2)]

x[1—e ™+ [((xi —2)/ (zi +6; — 2)|

x (mq/ma) @G e (19)

where we have introduced the dimensionless variables,

n = ¢/v (19.1)
X = 2/ (19.2)
& = pi(0)/p(0) (19.3)
with

z = v}/(8rGp(0)) (19.4)
p0) = Y pi(0) (19.5)

i

where
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pi(0) = nym;(z; — 1)/ (x5 — 2) (19.6)

denotes the midplane mass density contributed by the i-th lot
so that p(0) gives the total midplane mass density, and Q1 (n) is
the integral defined as,

o0
Q= [ et mmlgg o)
n
We can also write the above result as,
(dn/dx)? =Y [1 = (mi/ma)" 2] [1—exp(-m)] (1)

+(m /ma )™ (i — 2) /(i + 6; — 2)]
X[1 = ((z; +6; — 2)/60;) exp(—mU (1, (2 — z3)/03, M]es

U(a, b, 2) being a confluent hypergeometric series (Gradstey’n
& Ryzhik 1980; Abramowicz & Stegun 1965).

Equations (19-21) give exact relationships for the gravita-
tional field when z; and 6; are any set of arbitrary constants,
with z; > 2. The exponent 8; given above is consldered to be a
constant but in reality is itself m dependent, — though the depen-
dence on m is not very rapid. However, since the integral given
in (20) is a Laplace type integral, its magnitude is dominated by
the values where exp(—n) is maximum (see, for example, Jef-
fereys 1962; Olver 1964). Hence, we shall take 6 = 2.5, which
is the value around m = m, ~ mg (Lang 1984).

2.4. Special cases

For the moment we consider a single species case, the extension
to a multiple species case is straightforward and a case with two
species will be presented in the last part of the paper.

(1) Low x limits

In the limit 7 — O one can evaluate (20) as

Lt Q) ~ 16/(z = 21~/ 22
and hence (19) reduces to

dn/dx)* =1 23)
ie. n~x/4 24)
so that the gravitational potential ¢(z) goes as,

¢(z) ~ 2mGp(0)2* (25)

i.e. has a quadratic dependence on the height, z and the fleld K,
goes linearly as,

K; = ¢ ~4nGp(0)z . (26)
(2) High x limit

For n — o0, as given in (20) can be asymptotically expanded
by Laplace’s method (Jeffereys 1962; Olver 1964) as:

Lt Q@) ~ e [n@0=D/ @7
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Fig. 1. n versus x plot for 6 = 2.5 with z = 2.3, 2.4, 20.0

Equation (19) then reads,

(dn/dx)* =1 — (mo/m.)*2[0/(0 + = — 2)] (28)
so that
0~ (1= (mo/ma)™210/@ +x — 21> x 9)

i.e. there is a uniform gravitational field pointed towards the
galactic mid-plane. As seen from (29), the value of the field
depends crucially on the values of z and § and hence on the mass
spectrum and the velocity spectrum. These asymptotic power
law trends are independent of the mass and velocity spectra but
are characteristic of the fact that we are dealing here with a one
dimensional problem.

(3) All masses are equal
This corresponds to the case £ — co. Since (mg/m) < 1, we
have (mo/m)*~2 — 0. Equation (19) then yields,

(dn/dx)*=[1—e™"] (30)

Hence one finds the well-known Spitzer result (Spitzer
1942),

n = 2In[ch(x/2)] 31)
p(z) = p(0)e™"
= p(O)sech?(x/2). (32)
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Fig. 2. 5 versus x plot for = 1.0 with £ = 2.3, 2.4, 20.0

Similar results (25-32) could be derived from equation (21)
also, as was done by using the limiting expressloh for U(a, b, z)
in our earlier paper (Chatterjee 1991).

(4) Dispersion in the position of the stars
The quantity (2%(m)) is calculated from:

(22 (m)) = 1(2)/1(0) (33)
where
I(a) = /O 2% exp(—¢(z)/ (v*(m)))dz . (34)

For m < m., (v*(m)) = v3 and hence the integrals in (34)
are mass independent, so that using (33) one gets,

(2%(m)) = constant for m < m, (35)
~ (my/m)?  for m>m, (36)

Thus measurements of (z%(m)) enable us to find 6.
3. Mass M (z) contained within z = —z and z = z: relation

with the velocity dispersion and the mass density in the
galactic midplane

By definition,
M(z) =2 / p(z)dz
0
= 2(4rG)7'K, (37
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Fig. 3. Plot of e™" and M (z) versus x for § = 2.5 and z = 2.3, 2.4,
20.0

where Kz = |d¢/dz| is the magnitude of the gravitational field
at z = z. Some manifestations of the above result are shown,
for a single species case, in Figs. (1-4). Since Kz = (v% /20).
(dn/dx), M(z) can be easily calculated from (19) and (21). It is
seen that M (z) ~ z for z <« zy while M (z) tends to a constant
for z > 2.

The value of M(z) in the limit z/2p — oo, gives us the
surface density of matter () in the galaxy to be

¥ = 2(47G) " K (o0) (38)
so that

TGX? = 2V2p(0) (39)
where V2 is defined as

V2= O} fi0 )/ pO) (40)
with

fil@s, i) = [1 = (M /ma )™ 7218, /(6 + mi — 2)]] 1)

In Eq. (39) V? refers to an average velocity dispersion of the
system, the factors f;(6;, z;) being the weightage factors for the
respective lots of the masses given in the system.

Equation (39) is an interesting formula, which connects the
surface density of mass with the velocity dispersion and the mid-
plane mass density. The general form of f;(6;, x;), as given in
(41) shows it to be a sensitive function of x;. We have plotted
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Fig. 4. Plot of e™" and M (z) versus x for # = 1.0 and = = 2.3, 2.4,
20.0

the variation of f;(6;, ;) with z; for a case m; = 0.1mg and
m, = mg with 6; being chosen as 2.5 which is a typical value.
The graphical plot is shown in Fig. 5. It shows that for z; greater
than 2.5, f;(6;, x;) saturates very rapidly.

Equation (40) is in fact, a manifestation of the Virial theo-
rem, connecting the kinetic energy of the system with the po-
tential energy when the particles undergo random motion. It
can be used as a rule of thumb to ascertain many of the galactic
parameters. This is easily explained on examination of Egs. (39—
41). What needs to be explained is that, for any z; < 2.5 any
small error in the knowledge of the exponent x; may lead to
large discrepancies in the evaluation of the right hand side of
Eq. (39). This point should be taken note of in future analy-
ses of data regarding galactic mass density. In what follow, we
use Eq. (39) to judge the relative merits of the different sets of
data. While doing this we recognize that the solutions of the
Boltzmann-Poisson equations introduce different scale lengths
in the system, which we can use in determining the different
galactic properties. The importance of these scale lengths we
proceed to discuss next. Possibilities of direct measurements of
some of these scale lengths lead us directly to ascertain some
of the parameters introduced in this paper.

4. Different scale lengths in the system

These can be understood by investigating in gross terms the
asymptotic dependence of ¢(z) on z. Equations (26) and (28)
show how the gravitational field has a linear dependence on z
for low 2z and becomes a constant for higher z. The height z. at
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Fig. 5. Dependence of f(0,x) on 6 and x

given in the present paper. In these calculations, we have used
the values = = 2.35 (i.e. the Salpeter value) and § = 2.5. The
calculated values show that the values obtained for z = 2.35
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02} -
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2.0 2.2 24 2.6 2.8 3.0 3.2 3.4 3.6
x
which this transition takes place, can be estimated as,
1/2
2% = [V2/20Gp(0)]"
= X/20(0) (42)

In the region z > z. i.e. where the potential goes linearly
with height, it is possible to define a scale length z,.(m), such
that the number distribution of star with mass m follows a decre-
ment,

v(m, z) ~ exp(—z/zs.(m)). 43)
It is easy to see
ze(m) = (v*(m)) /(27 GY). (44)

The mass dependence of z,. () can be gathered from the
velocity spectrum (35,36). It also allows us to introduce another
scale height
Zge = (v7) /27 GE) (45)
which is the scale height for stars with mass less than m... Thus
a study of the scale heights (z(m)) can help us to determine the
velocity spectrum and hence the exponent 6.

It is seen from the above that z. depends only on the gross
features like ¥ and p(0) and is insensitive to the mass spec-
trum exponent x; or the exponent of mass consumption 6;. The
other scale length z,. on the other hand depends on both these
exponents and for a one component case we also get a simple
relation, 22 /zs. = $p(0).

1. Single-component case

This is the case where 7 = 0. To test the efficacy of the formula
we have tried to use it to compare the different sets of data, —
giving widely different values for ¥ and p(0). In Table 1, we
exhibit some of the values calculated from the known data. The
quantities selected from the observations are the ones for ¥ and
p(0) while all other quantities are calculated from the formulae,

show closer agreement with observation than those given for
T — 00, i.e. the Spitzer case which considers all masses to be
equal. The value of 6 given above is indeed an average one. In
order to ascertain it accurately, one has to study (z%(m)) for
different masses of stars and extract the value of 6.

2. Two-component case

Recent data analyses by Kuijken & Gilmore (Kuijken & Gilmore
1989, 1989a) have shown that the stellar population in our
galaxy is composed of two parts — a thin disk with a low ve-
locity dispersion (suffix ¢ = 0) and a thick disk with a high
velocity dispersion (suffix ¢ = 1). It is seen from their data
that the K dwarfs in the thin disk have scale height 249 pc
while for those in the thick disk It is 1000 pc, which gives
us (v?/v3) ~ (1000/249) ~ 4.016. Further using the thick
disk data in the range 1500pc < z < 2500pc, we have
v? ~ 871 (kms™")? so that v3 ~ 217.11 (kms~!)%. For the
thin disk we take x¢ ~ 2.35 and for the thick disc x; — oc.
Thus we have f2(61,z1) = 1.0. and f2(6o, zo) = 0.588, which
when substituted in (39-41) give us p;(0)/p(0) = 0.098 and
p0(0)/p(0) = 0.902. A different set of values for the 6 and z pa-
rameters in these disks would give us different values for these
parameters, thus justifying the importance of the mass and ve-
locity dispersion spectra.

5. Conclusion

The present paper gives a detailed calculation of the distribu-
tion of mass above the galactic plane, for any arbitrary mass
spectrum given in (16) and the velocity spectrum given in (17).
In Figs. 1-4 we present the manifestations of these results, for
the single species case in which we have chosen z = 2.3, 2.4,
20 and 0 = 2.5, 1.0. The values = = 2.3, 2. 4 are chosen in the
spirit of Salpeter’s suggestion that for the initial mass function,
one has in the solar neighbourhood, z = 2.35, while z = 20.0
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Table 1. Comparison of galactic parameters, calculated from different observational sets

Ref. X

p(0) 0 Vo Vo Zsc Zsc
r—o00 x=235 x—o00 x=2.35
1. 78+5 0.18% 25 1434 17.92 137.88 202.15
0.02 +0.92 +1.15 +8.83 +40.95
2. 67+5 0.185+ 2.5 1230 15.37 119.32 149.15
0.02 +0.90 +1.13 +9.94 +9.95
3. 52 0.0985 2.5 13.80 17.25 191.90 239.80
4, 46+9 0.1 2.5 11.96 14.96 162.63 203.24
+2.34 +2.90 +£31.82  £39.76

Units: £ in mg pc™?; p(0) in me pe™>; vy in kms™!; z in pc.

References: 1. Hill, Hilditch & Barnes 1979. 2. Bahcall & Soneira 1980; Bahcall, Schmidt, Soneira 1983. 3. Hill, Hilditch & Barnes 1979;

Bahcall 1984. 4. Kuijken & Gilmore 1989, 1989a.

corresponds to the Spitzer case of > 1. In choosing the ve-
locity spectrum, one has been led by the concept of random
walk in velocity space under rapidly fluctuating forces. In this
respect, the interstellar collisions have been neglected. These
interstellar collisions are expected to lead to an equipartition
result in thermal equilibrium, (v*(m)) ~ 1/m.ie. 6 = 1. At
the present epoch, when the age of the galaxy is much smaller
than the relaxation time, the relaxation processes can be ne-
glected, as has been done here. The 6 = 1 cases are considered
to show the dependence of the results on 6. It is to be noted that
since the velocity spectrum exponent § appears as an exponen-
tial term exp(—m), as compared to the mass spectrum exponent
x, which appears as a power law term (mg/m)®, in expressions
(19,21), the results are more sensitive to the choice of the veloc-
ity spectrum exponent 8. Hence, for any fit with observations,
it is natural to demand that the value of § should be ascertained.
Most of the theories, as also observational fits take 8 = 0, i.e.
the velocity dispersion is independent of the mass of the star,
a hypothesis accepted more on account of paucity of data than
due to compelling physical grounds. To extract this parameter
observationally, one must extend the observations to A and B
type stars, while the present day observations are limited to K
dwarfs and F type stars. The situation may improve when the
Hipparcos data on the stellar positions and stellar motions are
available.

The present paper has employed a relation between the ve-
locity dispersion and the mass of the star by estimating the time
spent by the stars in a stochastic field — the time being related
to the life-time of the stars, which is calculated from the mass
burning formula. In the computations, we have used the average
value 0 = 2.5, mp = 0.1mg and m, = 0.85mg,.

It follows from this work that observational data on the dis-
tribution of stars above the galactic plane are required to be
fitted to a more general theory as given here than to empirical
fits that have been done till now (Van der Kruit 1988; Hill et
al. 1979; Kuijken & Gilmore 1989). In the Part 3 of the present
paper we have obtained a relation between the surface density
of matter (X), mass density (p(0)) and the velocity dispersion
(V?)in a disk like galaxy — this relation being a manifestation of
the virial theorem. The sensitivity of the calculated parameters

to the choice of z is shown in Table 1. These have been done
for several sets of data and it is seen that for the same set, the
case z — 2.35 i.e. the Salpeter case gives better fit than the
Spitzer case z — o00. This is seen from the fact that the scale
height of old stars, like K giants is given by v/2 2z, which in the
Salpeter case works out to lie between 200-300 pc, while that
in the Spitzer case lies between 150-200 pc as can be calculated
from the last two columns of Table 1. The observed data, though
not definitive, give the scale height to be 250 pc. This, we be-
lieve, is an indication that in order to determine the midplane
mass density and the surface density, the proper mass spectrum
is to be considered.
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