Abstract:
Astrophysical compact objects, viz., white dwarfs, neutron stars and black holes, are the remnants of stellar deaths at the end of their life cycles. They are ideal testbeds for various fundamental physical processes under extreme conditions that are unique in nature. Observational radio astronomy with uGMRT and OORT facilities has led to several important breakthroughs in studies of different kinds of pulsars and their emission mechanisms. On the other hand, accretion processes around compact objects are at the core of Indian astronomy research. In this context, AstroSat mission revolutionized spectro-temporal observations and measurements of accretion phenomena, quasi-periodic oscillations, and jet behaviour in binary systems hosting compact objects. Moreover, recently launched XPoSat mission is set to provide an impetus to these high-energy phenomena around compact objects by enabling us to conduct polarization measurements in the X-ray band. Further, during the past decade, numerous gravitational wave signals have been observed from coalescing black holes and neutron stars in binary systems. Recent simultaneous observation of GW170817 event in both gravitational waves and electromagnetic channels has ushered in the era of multi-messenger astronomy. In the future, synergistic efforts among several world-class observational facilities, e.g., LIGO-India, SKA, TMT, etc., within the Indian astrophysics community will provide a significant boost to achieve several key science goals that have been delineated here. In general, this paper plans to highlight scientific projects being pursued across Indian institutions in this field, the scientific challenges that this community would be focusing, and the opportunities available in the coming decade. Finally, we have also mentioned the required resources, both in the form of infrastructural and human resources.