Science with the Daksha high energy transients mission
Bhalerao, Varun; Sawant, Disha; Pai, Archana; Tendulkar, Shriharsh; Vadawale, Santosh; Bhattacharya, Dipankar; Rana, Vikram; Adalja, Hitesh Kumar L; Anupama, G. C; Bala, Suman; Banerjee, Smaranika; Basu, Judhajeet; Belatikar, Hrishikesh; Beniamini, Paz; Bhaganagare, Mahesh; Bhaskar, Ankush; Bhattacharjee, Soumyadeep; Bose, Sukanta; Cenko, Brad; Chanda, Mehul Vijay; Dewangan, Gulab; Dixit, Vishal; Dutta, Anirban; Gawade, Priyanka; Ghodgaonkar, Abhijeet; Goyal, Shiv Kumar; Gunasekaran, Suresh; Hemanth, Manikantan; Hotokezaka, Kenta; Iyyani, Shabnam; Guruprasad, P. J; Kasliwal, Mansi; Koyande, Jayprakash G; Kulkarni, Salil; Kutty, APK; Ladiya, Tinkal; Mahapatra, Suddhasatta; Marla, Deepak; Mate, Sujay; Mehla, Advait; Mithun, N. P. S; More, Surhud; Mote, Rakesh; Mukherjee, Dipanjan; Narang, Sanjoli; Narendranath, Shyama; Nema, Ayush; Nimbalkar, Sudhanshu; Nissanke, Samaya; Palit, Sourav; Patel, Jinaykumar; Patel, Arpit; Paul, Biswajit; Pradeep, Priya; Ramachandran, Prabhu; Roy, Kinjal; Saiguhan, B.S. Bharath; Saji, Joseph; Saleem, M; Saraogi, Divita; Sastry, Parth; Shanmugam, M; Sharma, Piyush; Shetye, Amit; Singh, Nishant; Singh, Shreeya; Singhal, Akshat; Sreekumar, S; Sridhar, Srividhya; Srinivasan, Rahul; Tallur, Siddharth; Tiwari, Neeraj K; Vadladi, Amrutha Lakshmi; Vaishnava, C.S; Vishwakarma, Sandeep; Waratkar, Gaurav
Date:
2024-06
Abstract:
We present the science case for the proposed Daksha high energy transients mission.
Daksha will comprise of two satellites covering the entire sky from 1 keV to > 1 MeV.
The primary objectives of the mission are to discover and characterize electromagnetic
counterparts to gravitational wave source; and to study Gamma Ray Bursts (GRBs). Daksha is a versatile all-sky monitor that can address a wide variety of science
cases. With its broadband spectral response, high sensitivity, and continuous all-sky
coverage, it will discover fainter and rarer sources than any other existing or proposed
mission. Daksha can make key strides in GRB research with polarization studies,
prompt soft spectroscopy, and fine time-resolved spectral studies. Daksha will provide
continuous monitoring of X-ray pulsars. It will detect magnetar outbursts and high
energy counterparts to Fast Radio Bursts. Using Earth occultation to measure source
fluxes, the two satellites together will obtain daily flux measurements of bright hard
X-ray sources including active galactic nuclei, X-ray binaries, and slow transients like
Novae. Correlation studies between the two satellites can be used to probe primordial
black holes through lensing. Daksha will have a set of detectors continuously pointing
towards the Sun, providing excellent hard X-ray monitoring data. Closer to home, the
high sensitivity and time resolution of Daksha can be leveraged for the characterization
of Terrestrial Gamma-ray Flashes.
Description:
Restricted Access
The original publication is available at the springerlink.com
Show full item record