dc.contributor.author |
Xu, Fengwei |
|
dc.contributor.author |
Wang, Ke |
|
dc.contributor.author |
Liu, Tie |
|
dc.contributor.author |
Eden, David |
|
dc.contributor.author |
Liu, Xunchuan |
|
dc.contributor.author |
Juvela, Mika |
|
dc.contributor.author |
He, Jinhua |
|
dc.contributor.author |
Johnstone, Doug |
|
dc.contributor.author |
Goldsmith, Paul |
|
dc.contributor.author |
Garay, Guido |
|
dc.contributor.author |
Wu, Yuefang |
|
dc.contributor.author |
Archana Soam |
|
dc.contributor.author |
Traficante, Alessio |
|
dc.contributor.author |
Ristorcelli, Isabelle |
|
dc.contributor.author |
Falgarone, Edith |
|
dc.contributor.author |
Chen, Huei-Ru Vivien |
|
dc.contributor.author |
Hirano, Naomi |
|
dc.contributor.author |
Doi, Yasuo |
|
dc.contributor.author |
Kwon, Woojin |
|
dc.contributor.author |
White, Glenn J |
|
dc.contributor.author |
Whitworth, Anthony |
|
dc.contributor.author |
Sanhueza, Patricio |
|
dc.contributor.author |
Rawlings, Mark G |
|
dc.contributor.author |
Alina, Dana |
|
dc.contributor.author |
Ren, Zhiyuan |
|
dc.contributor.author |
Lee, Chang Won |
|
dc.contributor.author |
Tatematsu, Kenichi |
|
dc.contributor.author |
Zhang, Chuan-Peng |
|
dc.contributor.author |
Zhou, Jianjun |
|
dc.contributor.author |
Lai, Shih-Ping |
|
dc.contributor.author |
Ward-Thompson, Derek |
|
dc.contributor.author |
Liu, Sheng-Yuan |
|
dc.contributor.author |
Gu, Qilao |
|
dc.contributor.author |
Chakali, Eswaraiah |
|
dc.contributor.author |
Zhu, Lei |
|
dc.contributor.author |
Mardones, Diego |
|
dc.contributor.author |
Toth, L. Viktor |
|
dc.date.accessioned |
2024-03-22T09:22:48Z |
|
dc.date.available |
2024-03-22T09:22:48Z |
|
dc.date.issued |
2024-03-01 |
|
dc.identifier.citation |
The Astrophysical Journal Letters, Vol. 963, No. 1, L9 |
en_US |
dc.identifier.issn |
2041-8205 |
|
dc.identifier.uri |
http://hdl.handle.net/2248/8378 |
|
dc.description |
Open Access. |
en_US |
dc.description |
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
|
dc.description.abstract |
High-latitude (|b| > 30°) molecular clouds have virial parameters that exceed 1, but whether these clouds can form stars has not been studied systematically. Using JCMT SCUBA-2 archival data, we surveyed 70 fields that target high-latitude Planck Galactic cold clumps (HLPCs) to find dense cores with density of 105
–106 cm−3 and size of <0.1 pc. The sample benefits from both the representativeness of the parent sample and its coverage of the densest clumps at the high column density end (>1 × 1021 cm−2). At an average rms of 15 mJy beam−1, we detected Galactic dense cores in only one field, G6.04+36.77 (L183) while also identifying 12 extragalactic objects and two young stellar objects. Compared to the low-latitude clumps, dense cores are scarce in HLPCs. With synthetic observations, the densities of cores are constrained to be nc ≲ 105 cm−3 should they exist in HLPCs. Low-latitude clumps, Taurus clumps, and HLPCs form a sequence where a higher virial parameter corresponds to a lower densecore detection rate. If HLPCs were affected by the Local Bubble, the scarcity should favor turbulence-inhibited rather than supernova-driven star formation. Studies of the formation mechanism of the L183 molecular cloud are warranted. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Astronomical Society |
en_US |
dc.relation.uri |
https://doi.org/10.3847/2041-8213/ad21e6 |
|
dc.rights |
© 2024. The Author(s) |
|
dc.subject |
Star formation |
en_US |
dc.subject |
Molecular clouds |
en_US |
dc.subject |
High latitude field |
en_US |
dc.title |
On the Scarcity of Dense Cores (n>105 cm−3 ) in High-latitude Planck Galactic Cold Clumps |
en_US |
dc.type |
Article |
en_US |