IIA Institutional Repository

Evolution of the thermodynamic properties of a coronal mass ejection in the inner Corona

Show simple item record

dc.contributor.author Sheoran, Jyoti
dc.contributor.author Pant, V
dc.contributor.author Ritesh Patel
dc.contributor.author Banerjee, D
dc.date.accessioned 2023-10-12T08:57:55Z
dc.date.available 2023-10-12T08:57:55Z
dc.date.issued 2023-02
dc.identifier.citation Frontiers in Astronomy and Space Sciences, Vol. 10, No. 1, 27 en_US
dc.identifier.issn 2296-987X
dc.identifier.uri http://hdl.handle.net/2248/8278
dc.description Open Access en_US
dc.description This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.description.abstract The thermodynamic evolution of Coronal Mass Ejections (CMEs) in the inner corona (≤1.5 Rsun) is not yet completely understood. In this work, we study the evolution of thermodynamic properties of a CME core observed in the inner corona on 20 July 2017, by combining the MLSO/K-Cor white-light and the MLSO/CoMP Fe XIII 10747 Å line spectroscopic data. We also estimate the emission measure weighted temperature (TEM) of the CME core by applying the Differential Emission Measure (DEM) inversion technique on the SDO/AIA six EUV channels data and compare it with the effective temperature (Teff) obtained using Fe XIII line width measurements. We find that the Teff and TEM of the CME core show similar variation and remain almost constant as the CME propagates from ∼1.05 to 1.35 Rsun. The temperature of the CME core is of the order of million-degree kelvin, indicating that it is not associated with a prominence. Further, we estimate the electron density of this CME core using K-Cor polarized brightness (pB) data and found it decreasing by a factor of ∼3.6 as the core evolves. An interesting finding is that the temperature of the CME core remains almost constant despite expected adiabatic cooling due to the expansion of the CME core, which suggests that the CME core plasma must be heated as it propagates. We conclude that the expansion of this CME core behaves more like an isothermal than an adiabatic process. en_US
dc.language.iso en en_US
dc.publisher Frontiers en_US
dc.relation.uri https://doi.org/10.3389/fspas.2023.1092881
dc.rights © 2023 Sheoran, Pant, Patel and Banerjee.
dc.subject Solar atmosphere en_US
dc.subject Corona en_US
dc.subject Coronal mass ejections (CMEs) en_US
dc.subject Spectroscopy en_US
dc.subject Thermodynamics en_US
dc.title Evolution of the thermodynamic properties of a coronal mass ejection in the inner Corona en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account