dc.contributor.author |
Athiray, P. S |
|
dc.contributor.author |
Sudhakar, M |
|
dc.contributor.author |
Tiwari, M. K |
|
dc.contributor.author |
Narendranath, S |
|
dc.contributor.author |
Lodha, G. S |
|
dc.contributor.author |
Deb, S. K |
|
dc.contributor.author |
Sreekumar, P |
|
dc.contributor.author |
Dash, S. K |
|
dc.date.accessioned |
2013-12-06T10:29:22Z |
|
dc.date.available |
2013-12-06T10:29:22Z |
|
dc.date.issued |
2013-12 |
|
dc.identifier.citation |
Planetary and Space Science, Vol. 89, pp. 183–187 |
en |
dc.identifier.issn |
0032-0633 |
|
dc.identifier.uri |
http://hdl.handle.net/2248/6447 |
|
dc.description |
Restricted Access |
en |
dc.description.abstract |
We have developed an algorithm (x2abundance) to derive the lunar surface chemistry from X-ray fluorescence (XRF) data for the Chandrayaan-1 X-ray Spectrometer (C1XS) experiment. The algorithm converts the observed XRF line fluxes to elemental abundances with uncertainties. We validated the algorithm in the laboratory using high Z elements (20<Z<30) published in Athiray et al. (2013). In this paper, we complete the exercise of validation using samples containing low Z elements, which are also analogous to the lunar surface composition (ie., contains major elements between 11<Z<30). The paper summarizes results from XRF experiments performed on Lunar simulant (JSC-1A) and anorthosite using a synchrotron beam excitation. We also discuss results from the validation of x2abundance using Monte Carlo simulation (GEANT4 XRF simulation). |
en |
dc.language.iso |
en |
en |
dc.publisher |
Elsevier B.V. |
en |
dc.relation.uri |
http://dx.doi.org/10.1016/j.pss.2013.08.022 |
en |
dc.rights |
© Elsevier B.V. |
en |
dc.subject |
X-ray Fluorescence (XRF) |
en |
dc.subject |
Chandrayaan-1 |
en |
dc.subject |
Fundamental parameter |
en |
dc.subject |
C1XS |
en |
dc.subject |
Lunar chemistry |
en |
dc.title |
Experimental validation of XRF inversion code for Chandrayaan-1 |
en |
dc.type |
Article |
en |