| dc.contributor.author | Athiray, P. S | |
| dc.contributor.author | Sudhakar, M | |
| dc.contributor.author | Tiwari, M. K | |
| dc.contributor.author | Narendranath, S | |
| dc.contributor.author | Lodha, G. S | |
| dc.contributor.author | Deb, S. K | |
| dc.contributor.author | Sreekumar, P | |
| dc.contributor.author | Dash, S. K | |
| dc.date.accessioned | 2013-12-06T10:29:22Z | |
| dc.date.available | 2013-12-06T10:29:22Z | |
| dc.date.issued | 2013-12 | |
| dc.identifier.citation | Planetary and Space Science, Vol. 89, pp. 183–187 | en |
| dc.identifier.issn | 0032-0633 | |
| dc.identifier.uri | http://hdl.handle.net/2248/6447 | |
| dc.description | Restricted Access | en |
| dc.description.abstract | We have developed an algorithm (x2abundance) to derive the lunar surface chemistry from X-ray fluorescence (XRF) data for the Chandrayaan-1 X-ray Spectrometer (C1XS) experiment. The algorithm converts the observed XRF line fluxes to elemental abundances with uncertainties. We validated the algorithm in the laboratory using high Z elements (20<Z<30) published in Athiray et al. (2013). In this paper, we complete the exercise of validation using samples containing low Z elements, which are also analogous to the lunar surface composition (ie., contains major elements between 11<Z<30). The paper summarizes results from XRF experiments performed on Lunar simulant (JSC-1A) and anorthosite using a synchrotron beam excitation. We also discuss results from the validation of x2abundance using Monte Carlo simulation (GEANT4 XRF simulation). | en |
| dc.language.iso | en | en |
| dc.publisher | Elsevier B.V. | en |
| dc.relation.uri | http://dx.doi.org/10.1016/j.pss.2013.08.022 | en |
| dc.rights | © Elsevier B.V. | en |
| dc.subject | X-ray Fluorescence (XRF) | en |
| dc.subject | Chandrayaan-1 | en |
| dc.subject | Fundamental parameter | en |
| dc.subject | C1XS | en |
| dc.subject | Lunar chemistry | en |
| dc.title | Experimental validation of XRF inversion code for Chandrayaan-1 | en |
| dc.type | Article | en |