IIA Institutional Repository

The Three-dimensional Structure of the Small Magellanic Cloud

Show simple item record

dc.contributor.author Subramanian, S
dc.contributor.author Subramaniam, A
dc.date.accessioned 2011-12-29T16:20:16Z
dc.date.available 2011-12-29T16:20:16Z
dc.date.issued 2012-01-10
dc.identifier.citation The Astrophysical Journal, Vol. 744, No. 2 , 128 en
dc.identifier.uri http://hdl.handle.net/2248/5650
dc.description Open Access en
dc.description.abstract The three-dimensional structure of the inner Small Magellanic Cloud (SMC) is investigated using the red clump (RC) stars and the RR Lyrae stars (RRLS), which represent the intermediate-age and the old stellar populations of a galaxy. The V- and I-band photometric data from the OGLE III catalog are used for our study. The mean dereddened I 0 magnitude of the RC stars and the RRLS are used to study the relative positions of the different regions in the SMC with respect to the mean SMC distance. This shows that the northeastern part of the SMC is closer to us. The line-of-sight depth (front to back distance) across the SMC is estimated using the dispersion in the I 0 magnitudes of both the RC stars and the RRLS and found to be large (~14 kpc) for both populations. The similarity in their depth distribution suggests that both of these populations occupy a similar volume of the SMC. The surface density distribution and the radial density profile of the RC stars suggest that they are more likely to be distributed in a nearly spheroidal system. The tidal radius estimated for the SMC system is ~7-12 kpc. An elongation along the NE-SW direction is seen in the surface density map of the RC stars. The surface density distribution of the RRLS in the SMC is nearly circular. Based on all of the above results the observed structure of the SMC, in which both the RC stars and RRLS are distributed, is approximated as a triaxial ellipsoid. The parameters of the ellipsoid are obtained using the inertia tensor analysis. We estimated the axes ratio, inclination of the longest axis with the line of sight (i), and the position angle (phi) of the longest axis of the ellipsoid on the sky from the analysis of the RRLS. The analysis of the RC stars with the assumption that they are extended up to a depth of 3.5 times the sigma (width of dereddened I 0 magnitude distribution, corrected for intrinsic spread and observational errors) was also found to give similar axes ratio and orientation angles. The above estimated parameters depend on the data coverage of the SMC. Using the RRLS with equal coverage in all three axes (data within 3° in X-, Y-, and Z-axes), we estimated an axes ratio of 1:1.33:1.61 with i = 2fdg6 and phi = 70fdg2. Our tidal radius estimates and the recent observational studies suggest that the full extent of the SMC in the XY plane is of the order of the front to back distance estimated along the line of sight. These results suggest that the structure of the SMC is spheroidal or slightly ellipsoidal. We propose that the SMC experienced a merger with another dwarf galaxy at ~4-5 Gyr ago, and the merger process was completed in another 2-3 Gyr. This resulted in a spheroidal distribution comprising stars older than 2 Gyr. en
dc.language.iso en en
dc.publisher IOP Publishing en
dc.relation.uri http://dx.doi.org/10.1088/0004-637X/744/2/128 en
dc.rights © IOP Publishing en
dc.subject Galaxies: structure en
dc.subject Magellanic Clouds en
dc.subject Stars: horizontal-branch en
dc.subject Stars: variables: RR Lyrae en
dc.title The Three-dimensional Structure of the Small Magellanic Cloud en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account