Please use this identifier to cite or link to this item:
Title: Radiative transfer with J-state interference in a two-term atom Partial frequency redistribution in the non-magnetic case
Authors: Smitha, H. N
Nagendra, K. N
Sampoorna, M
Stenflo, J. O
Keywords: Line: formation;Methods: numerical;Polarization;Radiative transfe;Scattering;Sun: atmosphere
Issue Date: Nov-2011
Publisher: EDP Sciences
Citation: Astronomy & Astrophysics, Vol. 535, A35
Abstract: Context. Quantum interference phenomena play a fundamental role in the formation of linear polarization that arises from scattering processes in multiplets of the solar spectrum. In particular, the J-state interference between different line components of a multiplet (arising from transitions in a two-term atom) produces significant effects in the linearly polarized spectra. Aims. We aim to solve the polarized radiative transfer equation for a two-term atom with the unpolarized lower term in isothermal slabs, including the effect of the interference between the upper J-states and partial frequency redistribution (PRD). We consider only the case of non-magnetic scattering. Methods. The PRD matrix for the J-state interference derived in previous works is incorporated into the polarized transfer equation. The standard form of the two-level atom transfer equation is extended to a two-term atom. The transfer problem is then solved using a traditional polarized approximate lambda iteration method. Results. We show how the PRD and the J-state interference together affect the shapes of the (I,Q/I) profiles. We present the benchmark solutions for isothermal, constant-property slabs of a given optical thickness. We consider a hypothetical doublet produced by an L = 0 → 1 → 0 scattering transition with spin S = 1/2. We present the results in the form of Stokes (I,Q/I) profiles for different values of (i) the line separation, (ii) optical thickness, (iii) thermalization parameter, and (iv) the continuum opacity.
???metadata.dc.rights???: © ESO
Appears in Collections:IIAP Publications

Files in This Item:
File Description SizeFormat 
Radiative transfer with J-state interference.pdf358.42 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.