| dc.contributor.author | Krishan, V | |
| dc.date.accessioned | 2009-01-29T14:21:13Z | |
| dc.date.available | 2009-01-29T14:21:13Z | |
| dc.date.issued | 1985-02 | |
| dc.identifier.citation | Solar Physics, Vol. 95, No. 2, pp. 269 - 280 | en |
| dc.identifier.issn | 0038-0938 | |
| dc.identifier.uri | http://hdl.handle.net/2248/4297 | |
| dc.description.abstract | A statistical mechanics of the velocity and magnetic fields is formulated for an active region plasma. The plasma subjected to the conservation laws emerges in a most probable state which is described by an equilibrium distribution function containing a lagrange multiplier for every invariant of the system. The lagrange multipliers are determined by demanding that the measured expectation values of the invariants be reproduced. For a numerical exercise, we have assumed some probable values for these invariants. The total energy of a coronal loop is estimated from energy balance considerations. Doppler widths of the UV and EUV lines excited in the coronal loop plasma give a measure of the root-mean-square velocities. Measurements of magnetic helicity are not available for the solar corona. | en |
| dc.language.iso | en | en |
| dc.publisher | Springer | en |
| dc.relation.uri | http://dx.doi.org/10.1007/BF00152405 | en |
| dc.relation.uri | http://adsabs.harvard.edu/abs/1985SoPh...95..269K | en |
| dc.subject | Turbulence | en |
| dc.subject | Coronal Loops | en |
| dc.subject | Magnetohydrodynamic | en |
| dc.subject | Solar Activity | en |
| dc.subject | Solar Magnetic Field | en |
| dc.subject | Solar Velocity | en |
| dc.subject | Statistical Mechanics | en |
| dc.subject | Distribution Functions | en |
| dc.subject | Incompressible Fluids | en |
| dc.title | Statistical mechanics of velocity and magnetic fields in solar active regions | en |
| dc.type | Article | en |