Abstract:
Effective valence shell Hamiltonian H/supv calculations are used to map out three-dimensional potential energy surfaces for the 12 lowest electronic states of the CaOH radical. Excitation energies and spectroscopic constants are compared with experiment and prior computations where available, but many previously unavailable data are provided, including excited state dipole moments and oscillator strengths. Particular attention is paid to clarify the nature of nonlinear and quasilinear excited states, Renner-Teller couplings, and state mixings. The F/sup2 and G/sup2 (6 2/supA and 8 2/supA’ ) states are both found to possess nonlinear local minima, due to an avoided crossing. Attention is also focused on the characteristics of basis sets necessary in high-accuracy calculations for the CaOH radical.