Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnnikrishnan, C. S-
dc.identifier.citationOptics and Spectroscopy, Vol. 91, No. 3, pp. 393 – 398en
dc.description.abstractThe Einstein-Podolsky-Rosen (EPR) nonlocality puzzle has been recognized as one of the most important unresolved issues in the foundational aspects of quantum mechanics. We show that the problem is more or less entirely resolved, if the quantum correlations are calculated directly from local quantities, which preserve the phase information in the quantum system. We assume strict locality for the probability amplitudes instead of local realism for the outcomes and calculate an amplitude correlation function. Then the experimentally observed correlation of outcomes is calculated from the square of the amplitude correlation function. Locality of amplitudes implies that measurement on one particle does not collapse the companion particle to a definite state. Apart from resolving the EPR puzzle, this approach shows that the physical interpretation of apparently “nonlocal” effects, such as quantum teleportation and entanglement swapping, are different from what is usually assumed. Bell-type measurements do not change distant states. Yet the correlations are correctly reproduced, when measured, if complex probability amplitudes are treated as the basic local quantities. As examples, we derive the quantum correlations of two-particle maximally entangled states and the three-particle Greenberger-Horne-Zeilinger entangled state.en
dc.format.extent3894 bytes-
dc.subjectQuantum Mechanicsen
dc.subjectAmplitude Correlation Functionen
dc.subjectEPR Puzzleen
dc.titleQuantum correlations from local amplitudes and the resolution of the Einstein-Podolsky-Rosen nonlocality puzzleen
Appears in Collections:IIAP Publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.