Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/8604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChanda, Sumanto-
dc.date.accessioned2024-12-06T05:27:48Z-
dc.date.available2024-12-06T05:27:48Z-
dc.date.issued2024-11-
dc.identifier.citationThe European Physical Journal Plus, Vol. 139, No. 11, 983en_US
dc.identifier.issn2190-5444-
dc.identifier.urihttp://hdl.handle.net/2248/8604-
dc.descriptionRestricted Accessen_US
dc.descriptionThe original publication is available at springerlink.com-
dc.description.abstractIn this article, I demonstrate a new method to derive Jacobi metrics from Randers–Finsler metrics by introducing a more generalised approach to Hamiltonian mechanics for such spacetimes and discuss the related applications and properties. I introduce Hamiltonian mechanics with the constraint for relativistic momentum, including a modification for null curves and two applications as exercises: derivation of a relativistic harmonic oscillator and analysis of Schwarzschild Randers–Finsler metric. Then I describe the main application for constraint mechanics in this article: a new derivation of Jacobi metric for time-like and null curves, comparing the latter with optical metrics. After that, I discuss frame dragging with the Jacobi metric and two applications for Randers–Finsler metrics: an alternative to Eisenhart lift, and different metrics that share the same Jacobi metric.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.urihttps://doi.org/10.1140/epjp/s13360-024-05775-y-
dc.rights© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024-
dc.titleMore on jacobi metric: Randers–Finsler metrics, frame dragging and geometrisation techniquesen_US
dc.typeArticleen_US
Appears in Collections:IIAP Publications

Files in This Item:
File Description SizeFormat 
More on Jacobi metric Randers Finsler metrics frame dragging and geometrisation techniques.pdf
  Restricted Access
516 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.