Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/8311
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartinez, Raquel A-
dc.contributor.authorSallum, Steph-
dc.contributor.authorBanyal, R. K-
dc.contributor.authorBatalha, Natalie-
dc.contributor.authorBatalha, Natasha-
dc.contributor.authorBlake, Geoff-
dc.contributor.authorBrandt, Tim-
dc.contributor.authorBriesemeister, Zack-
dc.contributor.authorKleer, Katherine de-
dc.contributor.authorPater, Imke de-
dc.contributor.authorDesai, Aditi-
dc.contributor.authorEisner, Josh-
dc.contributor.authorFong, Wen-fai-
dc.contributor.authorGreene, Tom-
dc.contributor.authorHonda, Mitsuhiko-
dc.contributor.authorKain, Isabel-
dc.contributor.authorKilpatrick, Charlie-
dc.contributor.authorKupke, Renate-
dc.contributor.authorLach, Mackenzie-
dc.contributor.authorLiu, Mike-
dc.contributor.authorMacintosh, Bruce-
dc.contributor.authorMawet, Dimitri-
dc.contributor.authorMiles, Brittany-
dc.contributor.authorMorley, Caroline-
dc.contributor.authorPowell, Diana-
dc.contributor.authorSheehan, Patrick-
dc.contributor.authorSkemer, Andrew J-
dc.contributor.authorSpilker, Justin-
dc.contributor.authorStelter, Deno-
dc.contributor.authorStone, Jordan-
dc.contributor.authorSurya, Arun-
dc.contributor.authorSivarani, T-
dc.contributor.authorWagner, Kevin-
dc.contributor.authorZhou, Yifan-
dc.date.accessioned2024-01-04T06:02:18Z-
dc.date.available2024-01-04T06:02:18Z-
dc.date.issued2023-10-
dc.identifier.citationProceedings of the SPIE, Vol. 12680, pp. 126801W 11en_US
dc.identifier.issn0277-786X-
dc.identifier.urihttp://hdl.handle.net/2248/8311-
dc.descriptionRestricted Accessen_US
dc.description.abstractThe Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy (SCALES) is an under-construction thermal infrared high-contrast integral field spectrograph that will be located at the W. M. Keck Observatory. SCALES will detect and characterize planets that are currently inaccessible to detailed study by operating at thermal (2–5 µm) wavelengths and leveraging integral-field spectroscopy to readily distinguish exoplanet radiation from residual starlight. SCALES’ wavelength coverage and medium-spectral-resolution (R ∼ 4,000) modes will also enable investigations of planet accretion processes. We explore the scientific requirements of additional custom gratings and filters for incorporation into SCALES that will optimally probe tracers of accretion in forming planets. We use ray-traced hydrogen emission line profiles (i.e., Brγ, Brα) and the SCALES end to-end simulator, scalessim, to generate grids of high-fidelity mock datasets of accreting planetary systems with varying characteristics (e.g., Teff, planet mass, planet radius, mass accretion rate). In this proceeding, we describe potential specialized modes that best differentiate accretion properties and geometries from the simulated observations.en_US
dc.language.isoenen_US
dc.publisherSPIE-The International Society for Optical Engineeringen_US
dc.relation.urihttps://doi.org/10.1117/12.2677530-
dc.rights© 2023 SPIE-
dc.subjectInstrumentation: thermal infrareden_US
dc.subjectIntegral field spectroscopyen_US
dc.subjectSimulationen_US
dc.titleDesigning custom medium resolution observing modes to trace planet accretion with SCALESen_US
dc.typeArticleen_US
Appears in Collections:IIAP Publications

Files in This Item:
File Description SizeFormat 
Designing custom medium resolution observing modes to trace planet accretion with SCALES.pdf
  Restricted Access
7.2 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.