Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/8230
Title: BEYONDPLANCK - IV. Simulations and validation
Authors: Brilenkov, M
Fornazier, K. S. F
Hergt, L. T
Hoerning, G. A
Marins, A
Murokoshi, T
Fazlu Rahman
Stutzer, N-O
Zhou, Y
Abdalla, F. B
Andersen, K. J
Aurlien, R
Banerji, R
Basyrov, A
Battista, A
Bersanelli, M
Bertocco, S
Bollanos, S
Colombo, L. P. L
Eriksen, H. K
Eskilt, J. R
Foss, M. K
Franceschet, C
Fuskeland, U
Galeotta, S
Galloway, M
Gerakakis, S
Gjerløw, E
Hensley, B
Herman, D
Hoang, T. D
Ieronymaki, M
Ihle, H. T
Jewell, J. B
Karakci, A
Keihänen, E
Keskitalo, R
Maggio, G
Maino, D
Maris, M
Paradiso, S
Partridge, B
Reinecke, M
Suur-Uski, A-S
Svalheim, T. L
Tavagnacco, D
Thommesen, H
Tomasi, M
Watts, D. J
Wehus, I. K
Zacchei, A
Keywords: Cosmic background radiation
Cosmology:observations
Diffuse radiation
Issue Date: Jul-2023
Publisher: EDP Sciences
Citation: Astronomy and Astrophysics, Vol. 675, A4
Abstract: End-to-end simulations play a key role in the analysis of any high-sensitivity cosmic microwave background (CMB) experiment, providing high-fidelity systematic error propagation capabilities that are unmatched by any other means. In this paper, we address an important issue regarding such simulations, namely, how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained realization derived from the data or as a random realization independent from the data. We refer to these as posterior and prior simulations, respectively. We show that the two options lead to significantly different correlation structures, as prior simulations (contrary to posterior simulations) effectively include cosmic variance, but they exclude realization-specific correlations from non-linear degeneracies. Consequently, they quantify fundamentally different types of uncertainties. We argue that as a result, they also have different and complementary scientific uses, even if this dichotomy is not absolute. In particular, posterior simulations are in general more convenient for parameter estimation studies, while prior simulations are generally more convenient for model testing. Before BEYONDPLANCK, most pipelines used a mix of constrained and random inputs and applied the same hybrid simulations for all applications, even though the statistical justification for this is not always evident. BEYONDPLANCK represents the first end-to-end CMB simulation framework that is able to generate both types of simulations and these new capabilities have brought this topic to the forefront. The BEYONDPLANCK posterior simulations and their uses are described extensively in a suite of companion papers. In this work, we consider one important applications of the corresponding prior simulations, namely, code validation. Specifically, we generated a set of one-year LFI 30 GHz prior simulations with known inputs and we used these to validate the core low-level BEYONDPLANCK algorithms dealing with gain estimation, correlated noise estimation, and mapmaking.
Description: Open Access
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2248/8230
ISSN: 1432-0746
Appears in Collections:IIAP Publications

Files in This Item:
File Description SizeFormat 
BEYONDPLANCK-IV.Simulations and validation.pdf6.78 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.