Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/8200
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMishra, Wageesh-
dc.contributor.authorTeriaca, Luca-
dc.date.accessioned2023-05-22T08:43:59Z-
dc.date.available2023-05-22T08:43:59Z-
dc.date.issued2023-06-
dc.identifier.citationJournal of Astrophysics and Astronomy, Vol. 44, No. 1, 20en_US
dc.identifier.issn0973-7758-
dc.identifier.urihttp://hdl.handle.net/2248/8200-
dc.descriptionRestricted Accessen_US
dc.descriptionThe original publication is available at springerlink.com-
dc.description.abstractCoronal mass ejections (CMEs), as they can inject a large amounts of mass and magnetic flux into the interplanetary space, are the primary source of space weather phenomena on the Earth. The present review first briefly introduces the solar surface signatures of the origins of CMEs and then focuses on the attempts to understand the kinematic evolution of CMEs from the Sun to the Earth. CMEs have been observed in the solar corona in white-light from a series of space missions over the last five decades. In particular, LASCO/SOHO has provided almost continuous coverage of CMEs for more than two solar cycles until today. However, the observations from LASCO suffered from projection effects and limited field-of-view (within 30 R from the Sun). In 2006, the launch of the twin STEREO spacecraft has made possible multiple viewpoints imaging observations, which enabled us to assess the projection effects on CMEs. Moreover, heliospheric imagers (HIs) onboard STEREO continuously observed the large and unexplored distance gap between the Sun and the Earth. Finally, the Earth-directed CMEs that earlier have been routinely identified only near the Earth at 1 AU in in situ observations from ACE and WIND, could also be identified at longitudes away from the Sun–Earth line using the in situ instruments onboard STEREO. We describe the key signatures for the identification of CMEs using in situ observations. Our review presents the frequently used methods for estimation of the kinematics of CMEs and their arrival time at 1 AU using primarily SOHO and STEREO observations. We emphasize the need of deriving the three-dimensional (3D) properties of Earth-directed CMEs from the locations away from the Sun–Earth line. The results improving the CME arrival time prediction at Earth and the open issues holding back progress are also discussed. Finally, we summarize the importance of heliospheric imaging and discuss the path forward to achieve improved space weather forecasting.en_US
dc.language.isoenen_US
dc.publisherIndian Academy of Sciencesen_US
dc.relation.urihttps://doi.org/10.1007/s12036-023-09910-6-
dc.rights© Indian Academy of Sciences-
dc.subjectSunen_US
dc.subjectCoronal mass ejectionsen_US
dc.subjectHeliospheric imagersen_US
dc.titlePropagation of coronal mass ejections from the Sun to the Earthen_US
dc.typeArticleen_US
Appears in Collections:IIAP Publications

Files in This Item:
File Description SizeFormat 
Propagation of coronal mass ejections from the Sun to the Earth.pdf
  Restricted Access
3.1 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.