Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/8074
Title: Li Distribution, Kinematics, and Detailed Abundance Analysis among Very Metal-poor Stars in the Galactic Halo from the HESP-GOMPA Survey
Authors: Bandyopadhyay, A
Sivarani, T
Beers, Timothy C
Susmitha, A
Nayak, Prasanta K
Pandey, Jeewan C
Keywords: Stellar atmospheres
Abundance ratios
Stellar abundances
Lithium stars
Metallicity
Population II stars
Chemically peculiar stars
High resolution spectroscopy
Stellar nucleosynthesis
Nucleosynthesis
Stellar populations
Issue Date: 1-Oct-2022
Publisher: American Astronomical Society
Citation: The Astrophysical Journal, Vol. 937, No. 2, 52
Abstract: We present a study on the detailed elemental abundances of newly identified, bright, very metal-poor stars with the detection of lithium, initially observed as part of the SDSS/MARVELS pre-survey. These stars were selected for high-resolution spectroscopic follow-up as part of the HESP-GOMPA survey. In this work, we discuss the Li abundances detected for several stars in the survey, which include main-sequence stars, subgiants, and red giants. Different classes of stars are found to exhibit very similar distributions of Li, which points toward a common origin. We derive a scaling relation for the depletion of Li as a function of temperature for giants and main-sequence stars; the majority of the samples from the literature were found to fall within 1σ (0.19 and 0.12 dex K−1 for giants and dwarfs, respectively) of this relationship. We also report the existence of a slope of the Li abundance as a function of distance from the Galactic plane, indicating mixed stellar populations. Most Li-rich stars are found to be in or close to the Galactic plane. Along with Li, we have derived detailed abundances for C, odd-Z, α-, Fe-peak, and neutron-capture elements for each star. We have also used astrometric parameters from Gaia-EDR3 to complement our study, and derived kinematics to differentiate between the motions of the stars—those formed in situ and those accreted. The stellar population of the Spite plateau, including additional stars from the literature, is found to have significant contributions from stars formed in situ and through accretion. The orbits for the program stars have also been derived and studied for a period of 5 Gyr backwards in time.
Description: Open Access
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI
URI: http://hdl.handle.net/2248/8074
ISSN: 1538-4357
Appears in Collections:IIAP Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.