Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/8028
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Singh, B | - |
dc.contributor.author | Srivastava, A. K | - |
dc.contributor.author | Sharma, K | - |
dc.contributor.author | Mishra, S. K | - |
dc.contributor.author | Dwivedi, B. N | - |
dc.date.accessioned | 2022-08-24T05:56:15Z | - |
dc.date.available | 2022-08-24T05:56:15Z | - |
dc.date.issued | 2022-04 | - |
dc.identifier.citation | Monthly Notices of the Royal Astronomical Society, Vol. 511, No. 3, pp. 4134–4146 | en_US |
dc.identifier.issn | 1365-2966 | - |
dc.identifier.uri | http://hdl.handle.net/2248/8028 | - |
dc.description | Restricted Access | en_US |
dc.description.abstract | We perform a 2.5D magnetohydrodynamic simulation to gain a comprehensive understanding of the formation of spicule-like cool jets caused by initial transverse velocity pulses akin to Alfven´ pulses in the solar chromosphere. We invoke multiple velocity (Vz) pulses between 1.5 and 2.0 Mm in the solar atmosphere, which create the initial transverse velocity perturbations. These pulses transfer energy non-linearly to the field-aligned perturbations via the ponderomotive force. This physical process further creates magnetoacoustic shocks followed by quasi-periodic plasma motions in the solar atmosphere. The field-aligned magnetoacoustic shocks move upwards, which subsequently causes the quasi-periodic rise and fall of chromospheric plasma into the overlying corona as thin and cool spicule-like jets. The magnitude of the initial applied transverse velocity pulses is taken in the range of 50–90 km s−1. These pulses are found to be strong enough to generate spicule-like jets. We analyse the evolution, kinematics and energetics of these spicule-like jets. We find that the transported mass flux and kinetic energy density are substantial in the local solar corona. These mass motions generate in situ quasi-periodic oscillations on the scale of 4.0 min above the transition region. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Oxford University Press on behalf of Royal Astronomical Society | en_US |
dc.relation.uri | https://doi.org/10.1093/mnras/stac252 | - |
dc.rights | © Royal Astronomical Society | - |
dc.subject | MHD | en_US |
dc.subject | Shock waves | en_US |
dc.subject | Waves | en_US |
dc.subject | Sun: chromosphere | en_US |
dc.subject | Sun: corona | en_US |
dc.subject | Sun: oscillations | en_US |
dc.title | Quasi-periodic spicule-like cool jets driven by Alfvén pulses | en_US |
dc.type | Article | en_US |
Appears in Collections: | IIAP Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Quasi-periodic spicule-like cool jets driven by Alfven´ pulses.pdf Restricted Access | 3.42 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.