Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/7922
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sasikumar Raja, K | - |
dc.contributor.author | Maksimovic, Milan | - |
dc.contributor.author | Kontar, Eduard P | - |
dc.contributor.author | Bonnin, Xavier | - |
dc.contributor.author | Zarka, Philippe | - |
dc.contributor.author | Lamy, Laurent | - |
dc.contributor.author | Reid, Hamish | - |
dc.contributor.author | Vilmer, Nicole | - |
dc.contributor.author | Lecacheux, Alain | - |
dc.contributor.author | Krupar, Vratislav | - |
dc.date.accessioned | 2022-02-17T05:22:01Z | - |
dc.date.available | 2022-02-17T05:22:01Z | - |
dc.date.issued | 2022-01-10 | - |
dc.identifier.citation | The Astrophysical Journal, Vol. 924, No. 2, 58 | en_US |
dc.identifier.issn | 1538-4357 | - |
dc.identifier.uri | http://hdl.handle.net/2248/7922 | - |
dc.description | Open access | en_US |
dc.description.abstract | We present the statistical analysis of the spectral response of solar radio type III bursts over the wide frequency range between 20 kHz and 410 MHz. For this purpose, we have used observations that were carried out using both spaced-based (Wind/Waves) and ground-based (Nançay Decameter Array and Nançay Radioheliograph) facilities. In order to compare the flux densities observed by the different instruments, we have carefully calibrated the data and displayed them in solar flux units. The main result of our study is that type III bursts, in the metric to hectometric wavelength range, statistically exhibit a clear maximum of their median radio flux density around 2 MHz. Although this result was already reported by inspecting the spectral profiles of type III bursts in the frequency range 20 kHz–20 MHz, our study extends such analysis for the first time to metric radio frequencies (i.e., from 20 kHz to 410 MHz) and confirms the maximum spectral response around 2 MHz. In addition, using a simple empirical model we show that the median radio flux S of the studied data set obeys the polynomial form Y = 0.04X3 − 1.63X2 + 16.30X − 41.24, with X=ln(FMHZ) and with Y=ln(SSFU) Using the Sittler and Guhathakurtha model for coronal streamers, we have found that the maximum of radio power therefore falls in the range 4 to 10 R⊙, depending on whether the type III emissions are assumed to be at the fundamental or the harmonic. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Publishing | en_US |
dc.relation.uri | https://doi.org/10.3847/1538-4357/ac34ed | - |
dc.rights | © The Author(s) Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. | - |
dc.subject | Solar corona | en_US |
dc.subject | Solar coronal radio emission | en_US |
dc.subject | Solar wind | en_US |
dc.title | Spectral Analysis of Solar Radio Type III Bursts from 20 kHz to 410 MHz | en_US |
dc.type | Article | en_US |
Appears in Collections: | IIAP Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Spectral Analysis of Solar Radio Type III Bursts from 20 kHz to 410 MHz.pdf | 1.01 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.