Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/7709
Title: | Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3 |
Authors: | Kasliwal, Mansi M Anand, Shreya Ahumada, Tomas Stein, Robert Carracedo, Ana Sagues Andreoni, Igor Coughlin, Michael W Singer, Leo P Kool, Erik C Kishalay De Harsh Kumar Waratkar, Gaurav Webb, Sara Yu, Po-Chieh Zhang, Bin-Bin Zhou, Rongpu Zolkower, Jeffry AlMualla, Mouza Yao, Yuhan Bulla, Mattia Dobie, Dougal Reusch, Simeon Perley, Daniel A Cenko, S. Bradley Bhalerao, Varun Kaplan, David L Sollerman, Jesper Goobar, Ariel Copperwheat, Christopher M Bellm, Eric C Anupama, G. C Corsi, Alessandra Nissanke, Samaya Agudo, Ivan Bagdasaryan, Ashot Barway, Sudhanshu Belicki, Justin Bloom, Joshua S Bolin, Bryce Buckley, David A. H Burdge, Kevin B Burruss, Rick Caballero-Garcia, Maria D Cannella, Chris Castro-Tirado, Alberto J Cook, David O Cooke, Jeff Cunningham, Virginia Dahiwale, Aishwarya Deshmukh, Kunal Dichiara, Simone Duev, Dmitry A Anirban Dutta Feeney, Michael Franckowiak, Anna Frederick, Sara Fremling, Christoffer Gal-Yam, Avishay Gatkine, Pradip Ghosh, Shaon Goldstein, Daniel A Zach Golkhou, V Graham, Matthew J Graham, Melissa L Hankins, Matthew J Helou, George Youdong Hu Ip, Wing-Huen Jaodand, Amruta Karambelkar, Viraj Kong, Albert K. H Kowalski, Marek Khandagale, Maitreya Kulkarni, S. R Brajesh Kumar Laher, Russ R Li, K. L Mahaba, Ashish Masci, Frank J Miller, Adam A Mogotsi, Moses Mohite, Siddharth Mooley, Kunal Mroz, Przemek Newman, Jeffrey A Ngeow, Chow-Choong Oates, Samantha R Patil, Atharva Sunil Pandey, S. B Pavana, M Pian, Elena Riddle, Reed Sanchez-Ramirez, Ruben Sharma, Yashvi Singh, A Smith, Roger Soumagnac, Maayane T Taggart, Kirsty Tan, Hanjie Tzanidakis, Anastasios Troja, Eleonora Valeev, Azamat F Walters, Richard |
Keywords: | Neutron stars Black holes Gravitational waves Nucleosynthesis R-process Compact objects Compact objects Spectroscopy Sky surveys Photometry |
Issue Date: | 20-Dec-2020 |
Publisher: | IOP Publishing |
Citation: | The Astrophysical Journal, Vol. 905, No. 2, 145 |
Abstract: | We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg2, a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10−25 yr−1. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day−1 (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than −16.6 mag assuming flat evolution (fading by 1 mag day−1) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than −16.6 mag. Comparing to model grids, we find that some kilonovae must have Mej < 0.03 M⊙, Xlan > 10−4, or phgr > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%. |
Description: | Restricted Access |
URI: | http://hdl.handle.net/2248/7709 |
ISSN: | 1538-4357 |
Appears in Collections: | IIAP Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3.pdf Restricted Access | 5.82 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.