Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/7147
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mathew, J | - |
dc.contributor.author | Prakash, A | - |
dc.contributor.author | Mayuresh, Sarpotdar | - |
dc.contributor.author | Sreejith, A. G | - |
dc.contributor.author | Nirmal, K | - |
dc.contributor.author | Ambily, S | - |
dc.contributor.author | Safonova, M | - |
dc.contributor.author | Murthy, J | - |
dc.contributor.author | Brosch, N | - |
dc.date.accessioned | 2020-11-17T14:21:56Z | - |
dc.date.available | 2020-11-17T14:21:56Z | - |
dc.date.issued | 2017-02 | - |
dc.identifier.citation | Astrophysics and Space Science, Vol. 362, 37 | en_US |
dc.identifier.issn | 0004-640X | - |
dc.identifier.uri | http://prints.iiap.res.in/handle/2248/7147 | - |
dc.description | Restricted Access The original publication is available at springerlink.com © Springer http://dx.doi.org/10.1007/s10509-017-3010-6 | en_US |
dc.description.abstract | We present a design for a near-ultraviolet (NUV) imaging instrument which may be flown on a range of available platforms, including high-altitude balloons, nanosatellites, or space missions. Although all current UV space missions adopt a Ritchey-Chrétien telescope design, this requires aspheric optics, making the optical system complex, expensive and challenging for manufacturing and alignment. An all-spherical configuration is a cost-effective and simple solution. We have aimed for a small payload which may be launched by different platforms and we have designed a compact, light-weight payload which will withstand all launch loads. No other UV payloads have been previously reported with an all-spherical optical design for imaging in the NUV domain and a weight below 2 kg. Our main science goal is focused on bright UV sources not accessible by the more sensitive large space UV missions. Here we discuss various aspects of design and development of the complete instrument, the structural and finite-element analysis of the system performed to ensure that the payload withstands launch-load stresses and vibrations. We expect to fly this telescope—Lunar Ultraviolet Cosmic Imager (LUCI)—on a spacecraft to the Moon as part of the Indian entry into Google X-Prize competition. Observations from the Moon provide a unique opportunity to observe the sky from a stable platform far above the Earth’s atmosphere. However, we will explore other opportunities as well, and will fly this telescope on a high-altitude balloon later this year. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.subject | Opto-mechanical design | en_US |
dc.subject | Space instrumentation | en_US |
dc.subject | Telescope | en_US |
dc.subject | UV astronomy | en_US |
dc.title | Prospect for UV observations from the Moon. II. Instrumental design of an ultraviolet imager LUCI | en_US |
dc.type | Article | en_US |
Appears in Collections: | IIAP Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Prospect for UV observations from the Moon. II. Instrumental design of an ultraviolet imager LUCI.pdf Restricted Access | 2.38 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.