Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/7095
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakraborti, S-
dc.contributor.authorRay, A-
dc.contributor.authorSmith, R-
dc.contributor.authorMargutti, R-
dc.contributor.authorPooley, D-
dc.contributor.authorBose, S-
dc.contributor.authorSutaria, F. K-
dc.contributor.authorChandra, P-
dc.contributor.authorDwarkadas, V. V-
dc.contributor.authorRyder, S-
dc.contributor.authorMaeda, K-
dc.date.accessioned2020-11-17T13:59:40Z-
dc.date.available2020-11-17T13:59:40Z-
dc.date.issued2016-01-
dc.identifier.citationThe Astrophysical Journal, Vol. 817, No. 1, 22en_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://prints.iiap.res.in/handle/2248/7095-
dc.descriptionRestricted Access © The American Astronomical Society http://dx.doi.org/10.3847/0004-637X/817/1/22en_US
dc.description.abstractMassive stars shape their surroundings with mass loss from winds during their lifetimes. Fast ejecta from supernovae (SNe), from these massive stars, shock this circumstellar medium. Emission generated by this interaction provides a window into the final stages of stellar evolution, by probing the history of mass loss from the progenitor. Here we use Chandra and Swift X-ray observations of the type II-P/L SN 2013ej to probe the history of mass loss from its progenitor. We model the observed X-rays as emission from both heated circumstellar matter and SN ejecta. The circumstellar density profile probed by the SN shock reveals a history of steady mass loss during the final 400 years. The inferred mass loss rate of 3 ´ 10 yr - - 6 1 M points back to a 14 Mprogenitor. Soon after the explosion we find significant absorption of reverse shock emission by a cooling shell. The column depth of this shell observed in absorption provides an independent and consistent measurement of the circumstellar density seen in emission. We also determine the efficiency of cosmic ray acceleration from X-rays produced by Inverse Compton scattering of optical photons by relativistic electrons. Only about 1% of the thermal energy is used to accelerate electrons. Our X-ray observations and modeling provide stringent tests for models of massive stellar evolution and micro-physics of shocks.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.subjectCircumstellar matteren_US
dc.subjectShock wavesen_US
dc.subjectStars: mass-lossen_US
dc.subjectSupernovae: individual (SN 2013ej)en_US
dc.subjectX-rays: generalen_US
dc.titleProbing final stages of stellar evolution with x-ray observations of SN 2013ejen_US
dc.typeArticleen_US
Appears in Collections:IIAP Publications

Files in This Item:
File Description SizeFormat 
Probing final stages of stellar evolution with x-ray observations of SN 2013ej.pdfRestricted Access480.79 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.