Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/6792
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Harvey-Smith, L | - |
dc.contributor.author | Hardwick, J. A | - |
dc.contributor.author | De Marco, O | - |
dc.contributor.author | Parthasarathy, M | - |
dc.contributor.author | Gonidakis, I | - |
dc.contributor.author | Shaila Akhter | - |
dc.contributor.author | Cunningham, M | - |
dc.contributor.author | Green, J. A | - |
dc.date.accessioned | 2020-11-10T13:43:01Z | - |
dc.date.available | 2020-11-10T13:43:01Z | - |
dc.date.issued | 2018-09 | - |
dc.identifier.citation | Monthly Notices of the Royal Astronomical Society, Vol. 479, No. 2, pp. 1842-1849 | en_US |
dc.identifier.issn | 1365-2966 | - |
dc.identifier.uri | http://prints.iiap.res.in/handle/2248/6792 | - |
dc.description | Restricted Access © Royal Astronomical Society; https://doi.org/10.1093/mnras/sty1513 | en_US |
dc.description.abstract | We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4–23 GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula – this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free–free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Oxford University Press on behalf of the Royal Astronomical Society | en_US |
dc.subject | Stars: AGB and post-AGB | en_US |
dc.subject | Stars: evolution | en_US |
dc.subject | Planetary nebulae: general | en_US |
dc.subject | Planetary nebulae: individual (Stingray Nebula) | en_US |
dc.subject | Radio continuum: general | en_US |
dc.subject | Individual : SAO 244567 (Hen 3-1357) | en_US |
dc.title | The nature of the Stingray nebula from radio observations | en_US |
dc.type | Article | en_US |
Appears in Collections: | IIAP Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
The nature of the Stingray nebula from radio observations.pdf Restricted Access | 1.12 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.