Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/5598
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVigeesh, G-
dc.contributor.authorSteiner, O-
dc.contributor.authorHasan, S. S-
dc.date.accessioned2011-10-12T09:19:11Z-
dc.date.available2011-10-12T09:19:11Z-
dc.date.issued2011-10-
dc.identifier.citationSolar Physics, Vol. 273, No. 1, pp. 15-38en
dc.identifier.urihttp://hdl.handle.net/2248/5598-
dc.descriptionRestricted Accessen
dc.descriptionThe original publication is available at springerlink.com-
dc.description.abstractThe solar atmosphere is magnetically structured and highly dynamic. Owing to the dynamic nature of the regions in which the magnetic structures exist, waves can be excited in them. Numerical investigations of wave propagation in small-scale magnetic flux concentrations in the magnetic network on the Sun have shown that the nature of the excited modes depends on the value of plasma β (the ratio of gas to magnetic pressure) where the driving motion occurs. Considering that these waves should give rise to observable characteristic signatures, we have attempted a study of synthesised emergent spectra from numerical simulations of magneto-acoustic wave propagation. We find that the signatures of wave propagation in a magnetic element can be detected when the spatial resolution is sufficiently high to clearly resolve it, enabling observations in different regions within the flux concentration. The possibility to probe various lines of sight around the flux concentration bears the potential to reveal different modes of the magnetohydrodynamic waves and mode conversion. We highlight the feasibility of using the Stokes-V asymmetries as a diagnostic tool to study the wave propagation within magnetic flux concentrations. These quantities can possibly be compared with existing and new observations in order to place constraints on different wave excitation mechanisms.en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urihttp://dx.doi.org/10.1007/s11207-011-9851-1en
dc.relation.urihttp://arxiv.org/abs/1104.4069en
dc.rights© Springeren
dc.subjectMagnetic fieldsen
dc.subjectPhotosphere – Magnetic fieldsen
dc.subjectModels – Magnetohydrodynamics – Polarisationen
dc.subjectOptical – Spectral lineen
dc.subjectIntensity and diagnostics – Wavesen
dc.subjectMagnetohydrodynamic – Wavesen
dc.titleStokes Diagnostics of Magneto-Acoustic Wave Propagation in the Magnetic Network on the Sunen
dc.typeArticleen
Appears in Collections:IIAP Publications

Files in This Item:
File Description SizeFormat 
Stokes Diagnostics of Magneto-Acoustic Wave Propagation
  Restricted Access
Restricted Access1.33 MBAdobe PDFView/Open Request a copy
Stokes Diagnostics of Magneto-Acoustic Wave PropagationOpen Access910.31 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.