Please use this identifier to cite or link to this item:
http://hdl.handle.net/2248/5086
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mahapatra, U. S | - |
dc.contributor.author | Chattopadhyay, S | - |
dc.contributor.author | Chaudhuri, R. K | - |
dc.date.accessioned | 2010-03-26T15:30:41Z | - |
dc.date.available | 2010-03-26T15:30:41Z | - |
dc.date.issued | 2010-03-18 | - |
dc.identifier.citation | Journal of Physical Chemistry A, Vol. 114, No. 10, pp. 3668 – 3682 | en |
dc.identifier.issn | 1089-5639 | - |
dc.identifier.uri | http://hdl.handle.net/2248/5086 | - |
dc.description | Restricted Access | en |
dc.description.abstract | The performance of a numerically oriented gradient scheme for the previously introduced second-order state-specific multireference Moller-Plesset perturbation theory (SS-MRMPPT) has been tested to Compute certain geometrical parameters (Such as bond lengths and angles). Various examples [H2O, O-3, N2H2, C2H4, C2H2F2 1,3-butadiene, (C4H6), cyclobutadiene (C4H4), and 2,6-pyridynium Cation (C5NH4+)] have been presented to validate the implementation of the SS-MRMPPT gradient approach. To illustrate the reliability Of Our Findings, comparisons have been made with the previously reported theoretical results. The accuracy Of Our calculations has further been assessed by comparing with the experimental results whenever available. on the basis of the present work, we arrive at the Conclusion that the SS-MRMPPT gradient scheme has substantial potential in computing the geometrical parameters for several rather diverse molecular Systems, whether charged or neutral and having the closed-shell ground state or being open-shell radicals or biradicals or strongly perturbed by intruders. It is worthwhile to emphasize that file present work represents the first systematic application of the SS-MRMPPT numerical gradient approach. | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.uri | http://dx.doi.org/10.1021/jp911581f | en |
dc.rights | © American Chemical Society | en |
dc.subject | Coupled-Cluster-Methods | en |
dc.subject | Analytic Energy Derivatives | en |
dc.subject | Consistent Wave-Functions | en |
dc.subject | Shell Hamiltonian Method | en |
dc.subject | Van-Vleck Variant | en |
dc.subject | Ab initio | en |
dc.subject | Configuration-Interaction | en |
dc.subject | Electronic-Structure | en |
dc.subject | Size-Consistent | en |
dc.subject | Excited-States | en |
dc.title | Second-order state-specific multireference moller-plesset perturbation theory (SS-MRMPPT) applied to geometry optimization | en |
dc.type | Article | en |
Appears in Collections: | IIAP Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Second-order state-specific multireference moller-plesset perturbation theory Restricted Access | Restricted Access | 249.57 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.