IIA Institutional Repository

Why quantum mechanics is complex

Show simple item record

dc.contributor.author Wheeler, J. T
dc.date.accessioned 2008-05-22T07:27:24Z
dc.date.available 2008-05-22T07:27:24Z
dc.date.issued 1997
dc.identifier.citation BASI, Vol. 25, No. 4, pp. 591 - 599 en
dc.identifier.uri http://hdl.handle.net/2248/2339
dc.description.abstract The zero-signature Killing metric of a new, real-valued, 8-dimensional gauging of the conformal group accounts for the complex character of quantum mechanics. The new gauge theory gives manifolds which generalize curved, relativistic phase space. The difference in signature between the usual momentum space metric and the Killing metric of the new geometry gives rise to an imaginary proportionality constant connecting the momentumlike variables of the two spaces. Path integral quantization becomes an average over dilation factors, with the integral of the Weyl vector taking the role of the action. Minimal U(1) electromagnetic coupling is predicted. en
dc.format.extent 595416 bytes
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Astronomical Society of India en
dc.relation.uri http://adsabs.harvard.edu/abs/1997BASI...25..591W en
dc.subject Quantum Mechanics en
dc.subject Geometry en
dc.title Why quantum mechanics is complex en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account