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Chapter 1 

Introduction 

1.1 General Introduction 

If we have X-·ray eyes, the night-sky would appear very different from the Olle we 

see now. We would be blinded by a few hundred very bright sources, that are mostly 

concentrated towards the center of our galaxy. These X-ray sources (like SeQ X-I, 

Cyg X-I ete.) were first discovered in 1962 by the rocket-borne X-ray det(~ctors 

(Giaccoui d ai. UJ62), and a.re of considerable interest in high-energy astrophysics, 

because of their connection with compact objects such as black holes and neutron 

stars. There are now almost 200 known ~tellar X-ray sources, discovered by various 

rocket, balloon and satellite experiments (see e.g. van Paradijs 1995). The discovery 

of an optical counterpart: an old 12th-13th magnitude star, to Sco X·1 (Sandage et 

al. 1966) led to suggestions (Shklovskii 1967) that the X-rays may be originating from 

the vidnity of a neutron star accreting from an ordinary dwarf companion, revolving 

in a dose binary orbit around it. Hence these sources are termed as compact X-ray 

binaries and the X--rays are believed to be produced due to accreted matter falling 

into the strong gravitational potential well of the eompact star at the center of such 

a binary system. 

Accretion is the process by which a stellar object gravitationally captures ambient 

matter. This process serves to eonvert. gravitational energy into radiat.ion. For a 

1 



dlll.pt,crl 2 

partide accreted by a compact object (nent.roll star or black hole), more than 10 % 

of its rest-mass energy can be converted into radiation. This is considerably large 

when compared to the release of energy in nuclear fusion reactions, whose efficiency 

is less than 0.7% of the rest-mass energy. Therefore, accretion onto neutron stars (or 

black holes) is the most efficient way of converting gravitational energy into radiation 

as compared to any other processes in the universe. Accretion.can take place in two 

modes, namely, (i) spherical accretion: this takes place when the capt.ured matter is 

in direct free fall towards the central accreting object and (ii) disk accretion: this 

takes place if the matter possesses substantial angular momentum when entering the 

gravitational field of the star. As the infalling matter strikes the star, a part of the 

kinetic energy, gained due to infall, will go into transferring momentum to the star 

and only the remainder will be radiated. 

Center of mass 

\ 
- .,. ... - - - "" .. co10urs of equal 

." " ",f:""" , .... J",\ gravitational pull 
,." ;:../ 'I l .. 

J '. , \...--,,.. ~ 

I • ' •. - IV'" .. 1 ~ " {E::--- - ""-'~"~~" \. ~." r '\ \ .r 

'---L'"' \1.(····... \\ ~ RocheLobe 
agrange ~, ),J"'-
pomt "'---- ...... 

Figure 1.1: Roche lobes (the first common gravitational C!qllipotmltial flurfa(:e) en

veloping a binary system. Matter enters the vicinity of one Htar t.hrough the in

ner La.grange point, which is the point of contact of tiw individllal nquipoten

tial surfaces of ea.ch star. (Courtesy: Martha P. Hayne.'l, Comdl UnitJersitv: 

http://www.astrosun.tn.comell.edu/courses/astro201/roche_lobe.htm ) 

Observationally, it is inferred that accretion takes place at \'n,rioIlH distance scales: 
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kilo parsec scales (galaxies) to neutron star radius scales (low mass X-ray binaries). 

Protostars are powered by spherical accretion where matter is in free-fall (from the 

surrounding cloud) towards the center of the system, while in cataclysmic variables 

(accreting white dwarfs) due to the proximity of the companion, the accreting matter 

possesses substantial angular momentum giving rise to disk accretion. 

For two stars revolving around each other in binary orbits, transfer of matter from 

one star to the other is governed by the loca.tion of the first common gravitational 

equipotential surface (termed as Roche lobes - see Fig. 1.1 ) that surround them. 

Matter enters the vicinity of one star through the inner Lagrange point which is the 

point of contact of the individual equipotential surfaces of each star. 

Accretion can occur either if (see Fig. 1.2 ) 

I Two Models of X'laY Binaries I 
... - "."" .. 

.... 1···· -... ..' ' .. .. ,.- \ -,,_ . • .~, X'l8.YS 
"~" ,..J ~ 

.' ..... J).~ ) ',: 
.~.-~ 

... ~ _ ... 

disk 

Figure 1.2: The two cirCWilstances when accretion occurs: (1) Wind accretion: when 

the companion (necessarily a high mass star), even when on the main sequence throws 

away matter by a stellar wind. (2) Roche lobe overflow: when the companion (even 

a relatively low mass star) in later stages (post main sequence) of evolution gets dis

tended beyond the Roche limit. (Courtesy: Martha P. Haynes, Cornell University: 

http://www.astrosun.tn.comell.edu/courses/astro201/bh.xray.binary.htm) 

(i) one of the star throws away matter by a stellar wind that "blows" into the 
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Roche lobe of the other. 

(ii) one of the star in its course of evolution gets distended beyond the Roche 

limit. 

Wind accretion occurs when the companion star is very massive. Our discussions, 

throughout this thesis, are confined to the se~ond case of disk accretion. 

In compact binaries, the period of revolution ofthe individual stars can be as small 

as a few days. This implies that the matter that enters the gravitational potential of 

the central accretor due to Roche lobe overflow of the companion star, will possess 

a large angular momentum and will consequently be dragged around the star several 

times before reaching its surface. It can, therefore, be envisaged that accretion in 

such close binaries takes place through a disk. III an accretion disk, friction between 

neighbouring co-rotating layers lead to energy dissipation and a slow radial infall 

of matter. In mder to qualitatively understand the transport properties in a disk, 

consider a distribution of matter in a small ring around a (noIl--magIletiz(~d) central 

object of mass M. Let the mass distribution in this ring be m(r) where 7' is the 

radial' coordinate with respect to the central object. As matter ill thiB ring rotates 

around the central star, constituent partieleH eollid(~ with each other and, through the 

consequent viscous dissipation, heat up tIlt>, system. This heat is event.ually radiated 

away and in order to conserve eIlergy, tlw ring has t.o Hhrink to a leRser radius. Tlw 

angular momentum: l ex: m(r)r50K '" rn('r)r6 /2 JGM (where G is the universal 

gravitational constant and ro is the mean radius at which the ring is lo(~ated and 

OK is the Keplerian angular velocity of the matter in th(~ ring, m(r) is the mass 

distribution in the ring and M is the mass of the c(mtral ac:cret.or). COllservation 

of angular momentum implies that the mass distribution m(r) has t.o spread over, 

The mass element that spreads outwards carries away angular mOIll(mtulll from the 

system. 

Accretion through a disk there/ore entails mass transport inward and angular mo

mentum outwards. 

Among such accreting systems, of particular interest are t.he neutron st.ar accre

tors, as these possess a hard surface, and therefore radiate away the (,1H'rgy released 
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by matter striking it. In contrast, black holes possess an event horizon that absorbs 

all energy impingent thereon_ For a neutron star possessing substantial surface mag

netic field strength, the rotating plasma in the disk will get pinned on to the field 

lines at the Alfven radius of the star i.e. the radius at which magnetic pressure equals 

ram pressure in the disk. The inner edge of the disk will therefore get terminated at 

the Alfven radius and the matter that gets pinned to the magnetic field lines, will 

be channeled onto the poles of the star. In contrast, accretion onto non-magnetized 

neutron stars essentially differ from that onto magnetized stars in that the disk can 

extend all the way upto the surface of the star. In such a case, matter falling onto the 

star can transfer substantial amount of angular momentum, spinning it up to very 

short periods that are f'V milliseconds (see Bhattacharya & van den Heuvel 1991 and 

references therein). 

In this chapter, we present a review of the main features of accreting Ilon--magnetic 

neutron stars. In section 1.2 we review the observations related to accretion onto weak 

magnetic field neutron starR in X-ray binaries; in section 1.3 we emphasize the difficult 

point.s that Heed to be modeled theoretically_ Section 1.4 contains an outline of the 

accretion disk theor~r (in N(~wtoniall framework) and ill section 1.5 we make a few 

concludiJl,E!; rf'llIarkB. 

1.2 Observations 

There are now almost 200 known compact X-ray binary sources (van Paradijs 1995) 

in the Galaxy. Several X-ray satellite missions over almost four decades of X-ray as

tronomy present a complicated phenomenological picture of LMXBs, that are highly 

restrictive of models and at the same time suggestive of interpretation. A chrono

logical summary, with a list of major astrophysical X-ray satellite missions and their 

principal discovery related to X-ray binaries is listed in Table 1.l. 

There exist at least two very different kinds of stellar systems comprising compact 

X--ray binaries. One group contains sources with identified optical counterparts (the 

companion star) associated with very massive and luminous (stellar type: late 0 
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Mission Dates Discovery 

Vela Series 1969-1979 X-ray Bursts 

Uhuru 1970-1973 Confirmation of Binary Nature 

Ariel-5 1974-1980 X-ray transients 

SAS-3 1975-1979 Bursts, Positions 

OSO-8 1975-1978 Fe line emission 

HEAO-l 1977-1979 Partial eclipses 

Tenma 1983-1984 Fe line emission 

EXOSAT 1983-1986 Dippers, QPOs 

Ginga 1987 Spectra 

ASCA 1993 Spectra 

RXTE 1996 kHz QPOs 

Chandra 1999 

Table 1.1: A chronological summary, with a list of major a .. ~tr()phYRkal X~l'a.y satellite 

missions and their principal discovery related to X--ray binaries. 

or early B supergiants) stars and hence arc called the high Ill<l...,S Xray binaries 

(HMXBs). These stars are relatively rare and belong to tlw young Population I 

systems and are found in regions of active star formation. The othm group, called 

low mass X-ray binaries (LMXBs), is associated with objects for which t.he optical 

counterparts have not been identified yet, or those for which the optical counterparts 

are associated with low mass (M or K spectral type) stars. These stars belong to the 

Population II systems and hence are typically much older and more common. Since 

HMXBs represent Population I systems, the neutron stars they contain are expected 

to have high magnetic fields (B '" 1013 G). This would mean that the accretion disk 

in such systems have their inner edge located at the Alfven radius (rA I'V 1000 km). 

On the other hand, LMXBs contain weak magnetic field neutron stars (8 .$109 G) 
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and consequently permit the inner-edge of the disk to reach nearer to their surface. 

Since neutron stars possess a hard surface and because these objects as accretors 

in old Population II systems have weak magnetic fields, LMXBs containing neutron 

stars as the central accretors, are the testing groundB of strong field general relativity. 

With this as one of the reasons, a major aim of this thesis is to make a detailed 

theoretical study of the role of general relativity for various observable properties of 

LMXBs containing neutron star accretors. 

The binary nature of stellar X-ray sources was confirmed from the data from 

Uhuru (Schreier et al. 1972; Tananbaum et al. 1972), the first satellite dedicated to 

observations of astrophysical X-ray sources. 

We provide below some of the major observational properties exhibited by LMXBs. 

It was seen (Grindlay et al. 1976; Belian, Conner & Evans 1976) that some of the 

sources display X-ray bursts. There appeared to be two types of X-ray bursts: 

Type-I burst recurs typically on the time scales of several hours with a distinct 

spectral softening during burst decay (timescales of 10 sec - few minutes). 

These are now understood to be thermonuclear flashes taking place on 

the neutron star surface (Joss 1978) and the cause of spectral softening 

is believed to be the cooling of the neutron star surface, subsequent to 

the burst. During the decay, the blackbody temperature decreases sub

stantially, but tho radius of tho emitting region remains approximately 

constant (Hoffman, Lewin & Doty 1977a,b). 

Type-II bursts, seen in the sources 4U 1730-335 (nicknamed The Rapid Burster), 

Cir X-I, ORO J17440-28, are repetitive (for the unique case of the rapid 

burster, the burst intervals are as short a.'3 f"o.J 7 s). Each burst depends on 

the fluence of the previous one: larger the fluence, longer the time to the 

next burst. This mechanism (similar to that of a relaxation oscillator) is 

now believed to be due to spasmodic accretion (Lewin et al. 1976). 

The Type-J X-ray bur,t;ts are now taken as indicators of the source being LMXBs 

containing old, weakly magnetized, neutron stars 
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The majority among all LMXBs are persistent sources, i.e they are constantly vis

ibile in the sky. On the other hand, some sources are observed to be X -my transients 

i.e. seen to exhibit variability in their flux at periods ranging from days to weeks 

(see Tanaka & Shibazaki 1996 and Campana et al. 1998 for recent reviews). The 

"transience" is believed to be due either to disk instabilities or instabilities in the 

mass accretion rate. Certain X-ray sources d'isplay periodic dipping activity (Walter 

et al. 1982; White and Swank 1982), accompanied by photoelectric absorption lines. 

It is now believed that the dips in the light curve occur due to obscuration by the 

disk (White & Holt 1982). A few X-ray sources have been observed to exhibit partial 

eclipses (some sources exhibit both dipping activity as well as partial eclipses). The 

partial eclipses are believed'to be caused by partial occultation of matter, though 

opinion seems to be divided over the exact region in which this occultation takes 

place. Frank, King & Lasota (1987) suggest that this takes place in the inner regions 

of the disk, and from this assumption provide a unified model for LMXBs (explaining 

the partial eclipses as well as dipping activity), while White & Holt (1982) invoke an 

accretion disk corona (ADC) and a bulge at the rim of the accretion disk to explain 

the phenomenon. 

EXOSAT observations show that some sources exhibit time varia.bility in their 

brightness, namely, Quasi-Periodic Oscillations (QPOs) in the frequeney range of 

(6-60) Hz with amplitudes of a few percent (Van der Klis et al. 1985; Hasinger et al. 

1986; Middleditch and Priedhorsky 1986). The data also show noise components with 

frequencies up to f'V 100 Hz and amplitudes up to 20% (Van der Klis 1995; Van der 

Klis 1997; Van der Klis 1998; Hasinger, Priedhorsky & Middleditch 1989; Hasinger & 

Van der Klis 1989). QPOs are so-called because they possess a Lorentzian profile t.han 

the usual delta function profile of a periodic signal. Hasinger and Van der Klis (1989) 

(see also van der Klis 1995) showed that the bright X-ray sources (LMXBs) that 

exhibit QPO phenomenon can be divided into two classes: the Z and Atoll sources. 

Recently, the RXTE (Rossi X-ray Timing Explorer) satellite discovered qPOs in 

kilo-Hertz frequency range (Van der Klis et al. 1996). In the notation used here, kHz 

QPOs represent these high frequency oscillations and QPOs stand for low frequency 

oscillations as those found by EXOSAT. 
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1.2.1 Z sources 

The Z-sources are LMXBs having luminosities (L "" 1038 ergs S-I) thought to be close 

to the critical Eddington luminosity for plasma of cosmic composition being accreted 

by a 1.4 M0 neutron star. They are brighter (> 100 Idy) than the atoll sources 

and are so called because they trace. a 'Z' shaped path in the hardness-intensity 

diagrams. The three branches of the Z source are called the horizontal branch (HB), 

the normal branch (NB) and the flaring branch (FB). Between sources, there are 

intrinsic differences in the 'Z' pattern traced out. In particular, the slope of HB 

is quite variable from source to source, and so also do the slope and extent of the 

FB differ considerably between sources. Power spectra of the X-ray intensities in . 
Z-sources show several distinct components: very low frequency noice (VLFN), low 

frequency noise (LFN), high frequency noise (HFN) and QPO. VLFN has a power 

law shape Fs ex: f-e and HFN can be described by a function such as Pa ex: f-ee-f/fcut, 

where Ps is the power, f is the frequency of the variation in flux and ~ and fellt are 

some arbitratry parameters to be determined from the observational data. Power 

spectra are obtained for Z--sources in the various branehes and the following are their 

observed properti(lfl 

(i) VLFN and HFN are seen in all Z sources, in all states. They can be 

taken to be the 'ba.ckground continuum' above which other compoIlEmts 

sometime appear. 

(ii) In the horizontal branch, the QPO (HBO) frequency is obRcrvcd to vary 

between 13 and 55 Hz. Also present is LFN as a broad-band noise com

ponent, strongest at frequencies below the HBO peak. HBOs and LFN 

appear and disappear together as t.he source shifts branch. 

(iii) Normal branch QPOs (NBO) have frequencies between 4.5 and 7 Hz. 

They are strongest when the source is in the middle of NB. In all sources 

that exhibit a NB, NBOs have been seen. 

(iv) Flaring branch QPOs (FBO) occur on a small part of the FB nearest 

the NB. Their frequencies increase from"" 6 Hz near the NB-FB jUIlC-



tion to f'V 20 Hz up the FB. With increasing frequency, the width of the 

FBOs increase, until the peak becomes too broad to distinguish ~rom the 

background (HFN) continuum. 

IO 

Recently it has been suggested (Kuulkers et al. 1995, Kuulkers, Van der Klis & 

Vaughan 1996) that the Z-sources can be sqbdivided into the "Cyg-like" Z sources 

(Cyg X-2, GX 5-1, and GX 340+0) and the "Sco-like" Z sources (Sco X-I, GX 

17+2, and GX 349+2). 

1.2.2 Atoll sources 

As in the case of Z-sources', the atoll sources too owe their name to the nature of 

the pattern traced out in the hardness-intensity diagram. They are characterized by 

a clustered branch or island state (IS) and an upwardly curved branch resembling 

a banana, and therefore, figuratively called the banana state (BS). The 'banana' 

pattern is sometimes further subdivided into a 'lower' and an 'upper' banana (LB 

and VB) states. The source can be in IS for weeks or months while in the BS the 

time scale is hours to days. Many of the atoll sources are X-ray burst sources. Unlike 

the Z-sources, the power spectra of atoll sources exhibit only two rapici variability 

components: VLFN and HFN. No QPOs have been detected so far except ill the 

source Cir X-I, which shows a QPO with a frequency that varies with Coulltrate 

from 1 to 12 Hz when it is very bright (Oosterbroek et al. 1995; Shirey et al. 1996). 

The properties of HFN and VLFN in atoll sources correlate strongly with the position 

of the source in the hardness-intensity diagram. In the IS, HFN can be very strong 

and progressively decreases in the LB and VB. VLFN on the other hand has tIl<! 

lowest fractional amplitude in the IS and gradually increases in strength at the left 

end of the LB and further up the BS. 

Among the Z and Atoll sources, the former are brighter than atoll s()urces. It 

is now believed (e.g. Van der Klis 1995) that the neutron stars in Z-sources have 

stronger magnetic field (f'V 109 G) than those in atoll sources (f'V 108 G). 

The QPOs are generally understood (Alpar & Shaham 1985a,b; Lamb et al. 1985) 

to be produced due to a beat between frequencies at the magnetospheric radius and 
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the neutron star rotation frequency. 

1.2.3 Kilo-Hertz Quasi-Periodic Oscillations 

Data from RXTE show that about 20 sources exhibit QPOs in the kilo-Hertz range 

(van der Klis 1998). Out of these, & are Z-sources and the rest Atoll. Periodic 

activities at such short timescales would imply phenomena taking place in regions 

that are very close to the compact objects powering these X-ray sources. The kHz 

QPOs are almost always abserved in pairs - see Van der Klis (1998) for a recent 

review. It is believed that an approximate beat frequency model can again (as in 

the case of low frequ~ncy QPOs) be invoked to explain the twin peaks (Psaltis et 

al. 1998). The twin peaks show slight (microsecond) variation in their separation in 

all the sources observed heretofore (Psaltis et al. 1998). In this model, the higher 

frequency QPO is believed to represent the frequency .of rotation at the inner edge 

of the disk and the lower frequency QPO could be a beat between another frequency 

(close to the upper frequency QPO) and the rotation frequency of the neutron star. 

Alternatively, the frequency that is beating with the upper kHz QPO to produce 

the lower kHz QPO may be nearly but not strictly equal to the neutron star spin 

frequency. In either case, the frequency difference between the two peaks (f'V 200-

500 Hz) provides a measure of the neutron star rotation frequency. Adding credence 

to this theory is the recent observation by Wijnands & van der Klis (1998) of periodic 

variation (frequency f'V 400 Hz) in the source SAXJ1808.4-3658. However, a recent 

work by Psaltis, Belloni & Van der Klis (1998) shows that there exists a correlation 

between all the (even kHz) QPOs/broad band noise produced in neutron star/black 

hole candidates, thus throwing doubt on the validity of the beat frequency models. 

1.3 Accretion onto Neutron Stars: Requirements 

for Theoretical Modeling 

We provide here a brief summary of the requirements that any theoretical model 

of neutron star LMXBs (and hence a theory of accretion onto weakly magnetized 
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neutron stars) must meet. The models must be able to explain 

1. the transient nature of some sources and the persistent emission from 

others. 

2. the X-ray spectrum of LMXBs. 

3. the bursts sources and the reason for their outbursts. 

4. the partial eclipses and dipping activity. 

5. the Z-sources and hence 

(i) the spectral states of the sources: the hardness-intensity dia

grams, the normal branch, the horizontal branch and the flaring 

branch, 

(ii) VLFN and HFN, 

(iii) HBO and LFN, 

(iv) NBO, 

(v) FBO and increase in its peak width. 

(vi) kHz QPOs 

6. the Atoll sources and hence 

(i) the spectral states of the sources: the hardness-intensity dia

grams, the island states (IS) and banana states (BS), 

(ii) VLFN and HFN and their respective behaviour in IS and BS 

(iii) kHz QPOs 

7. why other sources do not show similar peculiarities in the hardness-· 

intensity diagrams, as are seen in the Z and Atoll sources. 

Some of the questions that can be raised in this connection are: 

12 
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I. . Are we seeing phenomena that are a part of the evolution scenario of one 

class of objects - i.e are we seeing the same object at different epochs in 

its evolutionary history? 

II. Are there many possible configurations of the binary systems and conse

quently different phenomena tha.t suggest different physics for each sys

tem? 

III. Are these phenomena due to selective orientation of the systems along our 

line of sight? 

13 

It is hoped that fllture observations, coupled with realistic modeling, will provide 

some answers to these questions. 

1.4 Accretion Disk Theory: The Standard Model 

In this section, we recapitulate the central features of the standard model (non

relativistic) for disk accretion. For details, the reader is referred to: Pringle (1981), 

Shakura & Sunyaev 1973 and Frank, King & Raine (1992). 

1.4.1 Equations 

The equation of motion of a non-relativistic, incompressible fluid around an unmag

netized star is given by the Navier-Stokes equation (e.g. Landau & Lifshitz 1987): 

off .... 1.... .... 2 - + (ff· V)ff= --VP - V<P + vV ~7 ot p 
(1.1) 

here p is the mass density, V, the velocity, P, the pressure, and v, the kinematic 

viscosity of the fluid, and <l> is the gravitational potential of the central star. 

The important ingredients of disk accretion can be understood essentially by the 

following simple Newtonian description of a flat distribution of gas around the star 

in its axially symmetric gravitational potential: 
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Let ~(r, t) and vr(r, t) be the surface density and radial velocity distributioll I'P

spectively of matter in this configuration, r being the radial coordinate and t th€' 

time. The mass of a ring of matter having an inner radius r, and radial ('xt('ut. 

I::::..r, is 27rrl::::..r~(r, t). Its angular momentum is given as 27rrl::::..r·~(r, t)r2nld1'), wh('1'(' 

f2K(r) = voir is the angular velocity of the matter in the ring (0 being the circlllar 

polar cooridinate). 

Conservation of mass implies: 

( 1.2) 

Eq. (1.2) together with the conservation of angular momentum (the azimuthal com

ponent of 1.1') implies: 

( l.a) 

Using Eqs. (1.2) and (1.3) to eliminate Vn we have 

8~ - ! ~ ( 1 8 v~r3 ( df2K) ) 
at - r ar ! (r'nK ) aT [ - dT I (1.4 ) 

Eqs. (1.2) and (1.4) represent the two equations to be solved for the four unknowns: 

Vr , ~, f2K and II, On assuming the gravitational potential to be that due t.o a point. 

mass M, we have 

(1.5) 

This reduces Eq. (1.4) to 

o~ _ ~~ (rl/2~(v~rl/2)) ot ror or ( 1.6) 

In general, 

v = II(:B, r, t) 
(1.7) 

making Eq. (1.4) a nonlinear diffusion equation for~. If we assume II to be a function 

only of r, Eq. (1.4) can be made linear in~. In particular, if II varies as a power of r, 
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then Eq. (1.6) can be solved analytically. For example, if v is taken to be a constant, 

the general solution to Eq. (1.3) is (Pringle 1981): 

~(r, t) = (12)1/4 r-3/4v_3/4 1000 !((,)e-(2t J1/4(r(,/v'3V) (r(/v'3V)1/4d(, (1.8) 

where f(() is an arbitrary function to be determined from the initial conditions and 

J1/ 4 is the ordinary Bessel function of Qrder 1/4. If the initial matter distribution in 

the ring is assumed to have the form: 

E(r, t = 0) -
m8(r - ro) 

2nro 
(1.9) 

where m is the mass of the ring situated at an initial radius ro, then in terms of 

dimensionless radius x = r Iro and time Ts = 12vtro2, the scaled matter distribution 

is given as: 

(1.10) 

where 11/ 4 is the modified Bessel function. 

A plot of Eq. (1.10) (Fig. 1.3) shows that a ring of matter situated initially at ro, 

expands and spreads with time. While most of the mass diffuses inwards, a tail of 

matter moves out to infinity, carrying the angular momentum with it. 

1.4.2 Properties 

1.4.2.1 Steady thin disk approximation 

In steady state (all time derivatives equated to zero), the vertical component of 

Eq. (1.1) reads as: 

where 

lap 
paz 

o<P 
8z 

GM 
<P = - -v'r=r~2 =+=Z=i<'2 

(1.11) 

(1.12) 

is the gravitational potential at the coordinate point (r, z). For a thin disk z «: rand 

the vertical structure equation reduces to 

lap 
paz 

GMz - ---r3 (1.13) 
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Figure 1.3: The viscous evolution of a ring of matter of mass m. The surfa.ce utmsity ~ is 

shown as a function of dimensionless radius x = r Iro, where TO is the initial radius of tlU! 

ring, and ofthe dimensionless time 7"8 = 12lJtlr~, where lJ is the viscosity (Priugltl 1981). 

With P rv p~ where Cs is the speed of sound in the medium, we tall integratE! 

Eq. (1.13) to obtain 

(1.14) 

where 

H = c, (:M)'" (1.15) 

is defined as the scale height of the disk and Pc = p(r,O). 
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Therefore the surface density r: is given as 

r: = foH pdz = foH pce-z2/21i2 dz r-..J PcH 

Thin disk approximation decrees H « r, and therefore 

( GlvI) 1/2 
cs « --

r 
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( 1.16) 

(1.17) 

Condition 1.17 implies that for a thin disk, the local K eplerian velocity should be 

highly supersonic 

The equation of motion 1.1 in the radial direction (conservation of linear momen

tum) is 

We can write 

aVr 
vr~ ur 

loP 

P 8r 

(1.18) 

1 P c2 
s rv --,.......,;-

pr r 
(1.19) 

The existence of friction between adjacent layers and of magnetic stresses (due to 

pinning of the magnetic field, if present, on to the plasma), and also the existence of 

turbulence between layers, lead to dissipation of energy. Matter therefore acquires a 

velocity (1 1,.) in t.lH' radial direction. Since the time scale of the loss of energy due to 

friction, will be much greater than the dynamical time scale (rdyn rv /7"3/G1v1) in the 

disk, Vr will be subsonic and to a first order we can write 

lJ 
Vr r-v - = xcs 

r 

where 0 < X « 1. Using Eqs. (1.19) and (1.20), Eq. (1.18) reduces to 

v~ G}"I c; 2C; 
-;;: = 7 + -;:- - X -;:-

where we have approximated oVr / or r-..J Vr / r. Therefore 

( GlvI) 1/2 ( . 2 c;r) 
Vo = -r- 1 + (1 - X ) Gj}i 

Eq. (1.17) implies 

( GAl) 1/2 
vo::: -r- » Cs 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

i.e for· a thin disk, the circular matter velocity will be K epLer·ian and Buper.sonic 
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1.4.2.2 Luminosities of thin disks in steady state 

In a steady disk, the inward mass flux will be constant. Integrating Eq. (1.2), we 

have 

rVr~ = constant ( 1.24) 

If we identify if with the total mass accretion rate, then, at any point in the disk we 

have, 

rVr~ = 
IV! 
27l" 

(1.25) 

where the negative sign is du~ to the mass flux increasing for decreasing r. 

In steady state, we can also integrate the angular momentum conservation Eq. (1.4) 

to obtain 

( 1.2H) 

where C is a constant of integration. When the shear r d~K = 0, 

( 1.27) 

The angular velocity profile of matter circulating in the disk has a negative gradient. 

However, the matterfallingonto to a non-rotating star, has to eventually pass through 

a region of positive gradient of OK. Therefore, in general the shear vanislws at a 

distance 'b' exterior to the star, where b ~ R, R being the radius of the star. This 

implies, 

. 2 ( GM )1/2 
C = -M(R+ b) (R + b)3 

(GM) 1/2 

.- -(3MR2 R3 {3>1 (1.28) 

where,8 = (1 + bjR)1/2. Substituting the expression for C into into Eq. (1.26), we 

have 

if ( (R)1/2) - 1-(3 -
37l" r r> R ( 1.29) 



cllapterl 

The rate of loss of energy per unit area per unit time is given as 

€ = !vE (rdnK)2 
2 dr 

- ~ (1- iJ (~() (Td~:)' 
3GMM. (1- {3 (R)1/2) 

81T"r3 r 
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(1.30) 

The total luminosity of the disk (taking into consideration the two faces of the 

disk) is given as 

roo . 3G M!VI ( 2) 
LD - 2 J R € 27rrdr = 2R 1 - "3 {3 (1.31) 

1.4.2.3 Disk boundary layers 

As mentioned before, the angular velocity gradient (in the radial direction) through 

the disk is negative. As the accreted matter falls onto the star from the inner edge, 

the gradient changes sign. General relativity predicts the existence of marginally 

stable orbits around compact objects, In such a case, since the region between the 

surface of the compact object (r = R) and the marginally stable orbit (r = rorb) 

is devoid of stahle orbits, the inner edge of the disk will be located at rorb' The 

relevance of marginally stable orbits is elaborated in Chapter 3. For the discussion 

in this section, it would suHice to assume that at '" = R + b, matter rotates a.t a 

rate OK = JGM/(R + b)3, Within the boundary layer, matter has to eventually 

slow down to the rotation rate n of the star. For an infalling mass At! of matter, the 

change in kinetic energy will be 

_ !(Oi«R + b)2 - n2R2) 
2 

_ G M M ({34 _ n2) 
R{36 nk (1.32) 

Not all of this energy will be released as radiation; a part of it will go into spinning 

up the star. The actual amount of energy used up in spinning up the star crucially 

depends on the effect the additional matter has on the structure of the star, and, is in 

principle difficult to calculate. However, as described below, we attempt to estimate 

this energy by making some simplifying assumptions. 
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The angular momentum carried by the accreting matter at the inner edge of the 

accretion disk is 

(1.33) 

We assume that the change in the rotation rate due to the addition of matter is 

negligibly small, and that, this additional matter does not change the radius of the 

star. The angular· momentum added to the star is then 

. . 2 
~J* = MOR (1.34) 

The remaining angular momentum goes, therefore, as the torque applied to the star 

The consequent change in the star's rotation energy is 

~E* = ~M02R2 
2 

(1.35) 

(1.36) 

and the energy gone into applying the torque by the accreting matter onto the star is 

The total energy used up in spinning up the star is therefore 

'22('n 4 02) ~ER. = MOKR -(3 --
OK 20k 

and the boundary layer luminosity is thus given as 

LBL _ GMM -6.E 
2R R 

GMM (6 0 4 (2) 
- 2R(36 (3 - 20K ,B, + Ok 

(1.37) 

(1.38) 

(1.39) 

For accretion onto a non-rotating star, the boundary layer luminosity is just one-half 

the total gravitational energy. 

The boundary layer to disk lumiosity ratio {from Eqs. 1.31 and 

LBL 

LD 

[ 6 n 4 0 2 ] 
(3 - 2n;,B + ~ 

31'6 (1- ~I') 

1.39) is therefore 

(1.40) 

For a non-rotating star, with zero boundary layer extent (I' = 1), this ratio is unity. 
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1.4.2.4 Structure of thin disks 

To recapitulate, the hydrodynamic equations governing the struct.ure of a stationary 

thin disk are (1.15), (1.16), (1.29), (1.30). The sound speed in the disk is: 

_ (Pc) 1/2 
Cs -

Pc 
(1.41) 

where Pc is the pressure at the center of the disk (z = 0). In order to obtain the 

disk structure, these equations have to be solved to obtain the unknowns H, Ca, !V! 
(or equivalently, vr), E, ZI, €, Pc, Pc and (3. Since there are nine unknowns and only 

five equations, an additional set of three equations and an appropriate estimate of /3 

is required. 

The three equations that we Ileed are: 

(a) The equation of state of matter in the disk 

Since the disk consists of matter supported by thermal pressure and radiation pres

sure, we can write the equation of state as 

(1.42) 

where (T is the St('fall-Boltzmann constant, Tc is the temperature at the center of the 

disk, jtm is the mean molecular weight and rnp is the mass of a proton. 

(b) Cooling Law: 

The radiative flux in the vertical direction may be written as 

F(r, z) = (1.43 ) 

where r;, is the Rosseland mean opacity. 

The total radiative flux is therefore 

lo B 40' 4 • 
F(r, z = H) = F(r, z)dz = 3 HTc = € 

o K,Pc 
(1.44) 

giving us the central temperature as 

(1.45 ) 
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[lJ E =Hpc definition of surface densi t.:v' 

[2J H -..fL 
-:;: - rnK vertical hydrostatic equilihriulIl 

[3J c2 = Er.. s pc sound velocity 

[4J if = - 21fr L;vr mass conservation 

[5J ( dfl t I' 3GMM[ 2 € = ~vE r? M = 41rr3 viscous heat production rat,(' 

[6J vE = 3~MI angular mometum balance 

[7] v = (XCsH viscosity law 

[8J p = _k_PcTc + ~~Tc4 
JLmmp equation of state 

[9) (R) 1/2 1=1-(3 -;: , radial function 

[1O} OK = J~lj angular velocity 

[11} V(} = rOK azimuthal velocity 

[12J ri = rl .. ) = 6~!1 inner edge 
[13] Ve = V(}( ... ) = VK azimuthal velocity 
[14J (X = a( ... ) viscosity la.w 

[15J /'i, = /'i,( ... ) opacity 
[16] ( GMr/2 

VK = -r- Keplerian velocity 

Table 1.2: List of accretion disk structure equations. 

( c) Viscosity: 

In a differentially rotating disk, dissipation of energy can be caused by rnagrwtic! field, 

turbulence, molecular and radiative viscosity. In the conditions of interf'st, to liS, 

molecular viscosity is negligibly small and cannot provide sufficient dissipation. Sim

ilar is the case with radiative viscosity. Since we are here considering non-magnetic 

systems, it is reasonable to assume that the only candidate for viscosity is turbulence 

in the disk. For turbulent flows, the kinematic viscosity may be written a..c;: 

1) = Vturb lturb 
(1.46) 
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where Vturb is the turn-over velocity due to turbulence and lturb is the length scale of 

the eddies due to turbulence. For a thin disk, lturb rv H and we expect Vturb to be 

subsonic. We may therefore write, 

(1.47) 

where a.$l is the non dimensional parameter representing the strength of viscous 

stresses in the system. 

In view of Eqs. (1.42), (1.45), (1.47), the assumptions on the contribution to opac

ity and, in addition, some simplifying assumptions about whether the gas pressure 

or the radiation pressure dominates the equation of state, the structure equations 

become algebraic and are hence straightforward to solve. In general, there are sixteen 

equations (Table 1.2) to be solved for twenty unknowns (see also Treves, Maraschi 

& Abramowicz 1988). For relating the structure parameters to astrophysical observ

ables, we set the four unknown quantities as M,M, R and a. 

For an accretion disk around a neutron star, there are three main regions of 

interest. Some of the important standard disk model solutions are as provided below 

(see Shakura & Sunyaev 1973 for details). 

(i) Region I: Inner disk 

For the purpose of illustration, we scale the radial distance in the following struc

ture equations, by 7' orb. This region is radiation pressure dominated 

(1.48) 

and the opacity contributions are largely from Thomson scattering on free electrons 

i.e. 

(1.49) 

In such a case, some of the relevant disk solutions are: 

~ = 4.6a-1 (~) -1 (~)3/2 J- 1 gcm-2 
Me 7'orb 

(1.50) 

( 
M )-1/4 3/4 

Tc _ 2.3 X 107a-1/ 4 _ (_7'_)-
M0 7'orb 

K (1.51) 
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. -2 ( M ) -1 ( ) -3/2 
10-7 -1 ( M ) _ ~ 1-2 

Pc = 7.194 x a Mer M0 rorb 

( M) r )-1 711 -.- (-
. Mer forb 

H 
r (l.f):!) 

= 7.7 X IOWa (~)2 (~)-5/2 1 
Vr Mer rorb 

( 1.5,t) 

where Mer = 3 X 108M /yr the critical accretion rate corresponding to tIl(' Eddingt.ol1 

luminosity limit and f = (1 - f3 (~) 1/2) 
(ii) Region II: Middle region 

On the assumption that in this region gas pressure dominates i.e 

PckTc (UW) Pc f'V --

Pmmp 

and that the opacity contributions are again due to Thomson scattering, we haV(' t.lH' 

corresponding solutions to the standard disk model: 

( M ) 3/5 ( M ) 1/5 ( ) -3/5 ~ = 1.7 X lo5a -4/5 -.- -- rr f3/5 
Mer M0 orb 

(if) 2/5 ( M ) -1/5 ( r ) -9/10 2 5 Tc - 3.1 X 1Q8a-l/5 -.- -- -- f / 
Mer M0 rorb I< ( 1.57) 

Pc = 7.027a-7/ lO ( A:r ) 2/5 ( M ) -7/10 (~) -33/20 12/5 

Mer M0 rorb grlU -3 (1.58) 

H == O.03a-l / lO ( A:r ) 1/5 ( M ') -1/10 (~) 1/10 P/5 
r Mer M0 rorb (J.5!» 

( 
. ) 2/5 ( M ) -1/5 2/5 

Vr == 2 X I06a 4/5 ~ - (~) - 1-3/ 5 

Mer M0 rorb ( 1.60) 

(iii) Region III: Outer disk 

In assuming that gas pressure dominates in this region and that the contribut,ions 

to opacity are due to free-free transitions, for which the Rosseland mean opacity is 
given by Kramer's formula as 

we obtain the solutions to the standard disk model for this region as: 
(1.61) 

( M)7/10(M)1/5 3/4 ~ == 6.1 X 105a - 4/5 ~ _ (-.!.-.) - f7/10 
Mer M0 rorb gcm-2 (1.62) 
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Tc -

Pc 

H 
r 

Vr -

( to ( M f/' 3/4 8.6 X 107 a- 1/5 ~ _ ( ~ ) - f3 / 10 
Mer M0 rorb 

( j) 11/20 ( 1) -7/10 -15/8 
50.19a-7/10 ~ ~ ( ~ ) f11/20 

]lyler A10 r orb 

0.014", -1/10 ( At ) 3/20 ( M ) -1/10 (_1_' ) 1/8 ]3/20 
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K (1.63) 

gcm-3(1.64) 

(1.65 ) 

(1.66) 

Figure 1.4: Model of LMXB incorporating the standard accretioIl disk model (Shakura & 

Sunyaev 1973). 

From Eqs. (1.53), (1.59) and (1.65), we see that in the inner disk H is constant, 

in the middle region this quantity increases slowly with T and in the outer disk the 

variation of H is faster with r. This implies a "concave" structure for the disk 

(Fig. 1.4). 

1.5 Concluding Remarks 

The observational properties of LMXBs containing neutron stars are discussed in this 

chapter. We have also reviewed the standard (Newtonian) accretion disk model. For 
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compact objects, general relativity plays an important role: it decides the structure 

of these objects, as well as the external space-time around them. For realistic calcu

lations, therefore, it is imperative to go beyond Newtonian considerations and take 

into account the the general relativistic effects. The main theme of this thesis is the 

study of the energetics of disk accretion onto neutron stars. These crucially depend 

on the structure of such objects. Neutron star structure is not only decided by gen

eral relativity, but also by the equation of state of high density matter describing 

their interiors. In the next chapter, we discuss the composition and structure of non

rotating neutron stars. This will be a prelude to the calculations of luminosities of 

disk-accreting non-magnetic neutron stars. 



Chapter 2 

Structure of Neutron Stars 

2 .1 Introduction 

The spectral characteristics of LMXBs, in principle, should contain information on 

the type of the central accretor. For example, in the case of black hole accretors, 

the kinetic energy of ma.tter arriving at the event-horizon will get absorbed thereon. 

The spectl'l1111 from such sources are therefore expected to be devoid of a black body 

component in the X-ray spectrum: the tell-tale ultrasoft component observed in the 

spectra of certain LMXBs (Tanaka & Shibazaki 1996) is therefore believed to be a 

manifestation of this effect. Neutron star accretors on the contrary, possess a hard 

surface and hence will radiate away the energy. X-ray bursts are believed to be 

produced by matter hitting the neutron star surface. Also, the presence of a black 

body component in the spectra can be taken as a clear indicator of the presence of 

a surface (see Tanaka & Shibazaki 1996). It is evident that the energetics related to 

accretion flow around non-magnetic compact objects as in LMXBs, crucially depend 

on the structural properties of the central accretor. In this thesis, we will concentrate 

only on neutron star accretors. A description of the structural aspects of neutron stars 

is, therefore, appropriate here. This chapter gives the the structural characteristics 

of neutron stars. 

27 
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Neutron stars are rather exotic objects by terrestrial standards. The average 

density in neutron star interiors is believed to be of the order of Po, where Po = 
2.4 X 1014 g cm-3 is the equilibrium nuclear matter density inferred on the basis of 

the semi-empirical mass formula. Central densities of neutron stars can be an order 

of magnitude larger than the above value. Obviously, matter at such high densities 

cannot be expected to be in its usual, atomic or molecular form. Due to pressure 

ionization and inverse beta-decay, the composition of matter in neutron star interiors 

win be mostly (continuum state) neutrons, akin to a baryonic liquid, with possible 

small admixtures of electrons and protons and other elementary particles like pions, 

kaons and hyperons (Baym & Pethick 1975). Whether or not neutron star cores 

actually contain such exotic ~lementary particles is not clear at the present time, and 

the subject of nucleon matter at densities ~lOpo remains a topic of intense research. 

The equation of state (EOS) namely, pressure as a function of total matter energy

density, is an important physical input in the calculation of neutron star structure. 

Since the bulk of the neutron star is made up of neutrons in beta-equilibrium, the 

neutrinos act as effective sinks of energy, and the thermal effects are unimportant -

the pressure is a function only of the energy density. While there is a consensus now on 

the EOS for densities upto (3-4 times Po), the lack of adequate many body techniques 

and imprecise knowledge of the very short range interaction between nucleons at high 

densities (p > Po), remain formidable barriers in the formulation of a realistic model 

of the EOS. The literature on the EOS is, therefore, made up of various different 

approaches at the microscopic nuclear physics level, and among these various models 

there exist considerable scatter. 

The parameters relevant for describing neutron star structure are its mass, radius 

and moment of inertia. For any specified EOS model, the general relativistic equations 

for neutron stars in hydrostatic equilibrium, known as the Tolman-Oppenheimer

Volkoff (TOV) equations, can be integrated (numerically) to obtain the structure 

parameters as a function of the central density. Like the Chandrasekhar mass limit 

for white dwarfs, there exists a maximum stable mass for neutron stars, beyond which 

the configurations will be unstable to gravitational collapse. Due to the different 

techniques used in the micophysics relevant to describe matter at high densities, the 
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30 or so currently existing EOS models exhibit a substantial spread in the values of 

the mass of the maximum stable configuration (Datta 1988). The maximum mass is 

an indicator of the softness/stiffness of the EOS - the higher the value of maximum 

mass, the stiffer is the EOS. 

Typical values for the mass and radius of neutron stars obtained theoretically, are 

respectively 1 M0 and 10 km. The escape velocity of material particles from such 

objects is a substantial fraction of the speed of light (v~sc/ c2 f'V 0.1) clearly suggesting 

the importance of general relativity in describing neutron stars. 

In section 2.2, we provide a brief description of the general relativistic equations 

that have to be solved to obtain the neutron star structure parameters. In section 2.3, 

we discuss the composition of neutron stars upto densities of nuclear matter densities. 

Section 2.4 provides a brief description of EOS at densities above Po and also a brief 

summary of the EOS models that we use for our computations in this thesis. In sec

tion 2.5 we summarize the results of non-rotating neutron star structure parameters 

computed by us. Section 2.6 concludes the ch.apter. 

2.2 The Structure Equations 

For a spherically symmetric configuration, the space-time geometry is described by 

Schwarzschild metric (e.g Misner, Thorne & Wheeler 1973) : 

ds2 _ gCtl./3dxQ dx/3, (a, (3 = 0, 1,2,3) 

_ _e2~ dt2 + e2A dr2 + e2r d(P + e21/J d<.p2 

_ _ (1 _ 2~~) dt2 + (1 _ 2~~) -1 dr2 + r2(d82 + sin2()dcp2) (2.1) 

where we have made use of the (- + + +) convention. In the above metric, r is the 

radial coordinate while () and cp are the polar and azimuthal coordinates respectively. 

The quantity m is the mass contained within a sphere of radius rand <l> is the 

gravitational potential function. The interior metric r < R (R being the radius of the 

configuration) is matched with the exterior (r > R) one by the condition m(R) = M, 

where !vI is the gravitational mass of t.he system. 
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For a perfect fluid configuration, the energy-momentum tensor is given as: 

(2.2) 

where P and pc2 are respectively the pressure and mass energy density of the system. 

uJ-L is the four velocity, satisfying the condition uJ-LuJ-L = -1. Substitution of the metric 

coefficients and the energy-momentum tensor into Einstein field equation: 

(2.3) 

yield the non-rotating neutron star structure equations 

(2.4) 

(2.5) 

Eq. (2.4) is the Tolman-Oppenheimer-Volkoff equation (Oppenheimer & Volkoff 

1939). 

The key input, as mentioned earlier, needed to solve Eqs. (2.4) and (2.5) is 

P(p) (the equation of state). The general practice in solving the above equations 

is to choose a density (Pc) representing the central density of the star and integrate 

numerically outward. 

2.3 Composition of a Neutron Star 

The problem of determination of the composition of matter in neutron stars amounts 

to determining the ground state energy of matter at a given baryon number density 

(n). This requires minimising the energy density per nucleon (€/A) as a function of 

the mass number (A) and the atomic number (Z) that characterises the nucleus, for 

a fixed n. 

The matter at or close to the surface of a neutron star is expected to be mainly 

Fe56 , which is the end product of thermo-nuclear combustion. The surface will there

fore be composed mainly of Fe56 atoms at a density of 7.86 g cm-3 The mass 

density of the neutron star increases with depth. When the density crosses about 
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104 g cm-3 , these atoms become completely pressure ionised (Feynman, Metropolis 

& Teller 1949). From this region to about 106 g cm-3 , when the electrons become 

ultrarelativistic, the outwardly directed pressure will be mainly due to the degenerate 

electrons (Baym & Pethick 1975). 

The Coulomb repulsion between nuclei start becoming important from densities 

of the order of 106 g cm-3 • At about 3 x 106 g cm-3 , E/A is minimised when the 

nuclei are placed in a regular BCC lattice. Beyond 5 x 106 g cm-3 , minimising E/ A 

is equilvalent to minimising the chemical potential Mn of neutrons in the nucleus, at 

a fixed p and n. Mn can be shown to be given as: 

J-tn = 
J.tN + ZMe 

A 
(2.6) 

where MN and J.te are the chemical potentials of the nucleus and electron respectively. 

J.1.N depends only on A and Z (via the semi-empirical mass formula for the nucleus) 

and Me = hc(37r2 Zn/A)1/3 depends on the number density (ne) of electrons. Thus for 

a chosen (A, Z) combination and a fixed n, Mn is a linear function of /-Le. For a fixed 

n, the minimum value of (A, Z) can be read off from a graph of /-Ln versus Me for all 

possible values (A, Z). Column 1 of Table 3.1 provides the sequence of equilibrium 

nuclides at various densities, as found by Baym, Pethick & Sutherland (1971). KrllS 

nuclide (the last entry 'in column 1 of Table 2.1) is so neutron rich, that the last 

neutron is barely bound. This density Pdrip = 4.3 X 1011 g em -3 is therefore called 

the neutron drip density. Beyond Pdrip, the neutrons begin to leak out of the nuclei 

and start permeating the lattice space between nuclei. 

For densities greater than Pdrip, it will be incorrect to use the semi-empirical mass 

formula for determining the ground state energy of matter. A microscopic approach 

(Negele & Vautherin 1973) constitutes (a) determining the effective interaction be

tween Ilucleons that depend upon energy and density, and (b) using this to extract 

the potential energy and Hamiltonian of the system, so as to yield the ground state 

energy is, by far, the most satisfactory approach. Such a calculation provides a list of 

the equilibrium nuclides as shown in Column 2 of Table 2.1. The last nucleus Ge950 , 

has a density distribution that overlaps with the next cell. Therefore, the overall 

conclusion from such an exercise is that beyond a density of 2.0 x 1014 g cm-3 , the 
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Before Neutron Drip After Neutron Drip 

P < 4.3 X 1011 (g cm-3 ) p> 4.3 X 1011 (g em-3 ) 

Nucleus Pmax (g em -3 ) Nucleus Pmax (g em -3 ) 

56Fe 26 (8.1-8.5) x 106 118Kr 
36 4.3 x 1011 

62N' 28 1 (2.7-1.3)x108 140Zr 40 5.0 x 1011 

64N' 28 1 (1.2-1.1) x 109 160Zr 40 6.7 x 1011 

84Se 34 (8.2-6.2) x 109 210Zr 40 1.0 x 1011 

82Ge 
32 (2.2-1.7) x 1010 320Zr 40 1.5 x 1012 

80Zn 30 (4.8-3.8) x 1010 460Zr 40 2.5 x 1012 

78N' 28 1 (1.6-1.3) X 1011 9oo8n 50 6.3 x 1012 

76Fe 26 (1.8-2.2) x 1011 l1oo8n 50 9.7 x 1012 
124Mo 
42 (1.9- ) X 1011 1300Sn 50 1.5 x 1013 

122Zr (2.7- ) X 1011 18Oo8n 3.0 x 1013 40 50 
120Sr (3.7- ) X 1011 1500Zr 8.0 x 1013 38 40 
118Kr (4.3- )X1011 950Ge 1.3 x 1014 36 32 

Table 2.1: The most abundant nuclear species (1) before neutron drip density (Ba.ym, 

Pethick & Sutherland 1971) and (2) after neutron drip density and up to nuclear ma.tter 
density (Negele & Vautherin 1973) 

nuclei dissolve to forma nearly homogeneous sea of neutrons. 

2.4 Equation of State of High Density Matter 

As described above, the composition of matter upto equilibrium nuclear density 

p :::;: Po :::;: 2.4 X 1014 g cm-3 is fairly well understood. For densities P > Po, we 

have to rely on extrapolation from known nuclear properties under terrestrial con

ditions. How good this extrapolation is, is checked by how well it reproduces the 

values of parameters like compression modulus of equilibrium nuclear matter, the 
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nuclear saturation density, symmetry energy, etc. (for which there are experimental 

estimates) . 

In general, there are two methods for deriving EOS of matter at high densities: 

(i) Nonrelativistic Phenomenological Methods: 

This is one of the earliest methods used to formulate EOS for high density 

matter (see Pandharipande & Wiringa 1979; Bombaci 1999 for reviews). 

In this method, a two nucleon interaction potential is inferred from em

pirical fits to the nucleon-nucleon scattering data and from the properties 

of deuteron. Using this potential, and a non-relativistic many body ap

proach, the ground state energy is calculated. In general, it is seen that 

this method fails to reproduce the correct value of nuclear saturation 

density and the value of nuclear symmetry energy. To circumvent this 

problem, an additional three body interaction term may be taken into ac

count. The three body force has the general effect of stiffening the EOS. 

The EOS models calculated by nonrelativistic phenomenological methods 

violate the causality condition i.e. the speed of sound (J dP / dp) > c, 

uSllally asymptotically. 

(ii) Relativistic methods: 

This method consists of writing down a Lagrangian for the effective inter

action at the microscopic level, and obtaining the energy density, pressure 

and baryon number density in a parametric form (see Glendenning 1996 

for a recent review). While such methods serve to provide the correct 

values for the symmetry energy and saturation density, they do not repro

duce the nucleon-nucleon scattering data very well. Being a relativistic 

formalism, the EOS models do not violate the causality condition. 

The various formalisms used in deriving the EOS give rise to a substantial spread 

III their qualit.ative features. Therefore, there arises the natural question: which 

among these EOS models correctly represent the properties of high density matter? 

A theoretical eomputation of quantities of astrophysical interests using representative 
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EOS models and subsequent comparison with observations, it is hoped, will pr()vid~ 

h· t' Th' thereCore provides one of the main motivatioIls for an answer to t IS ques IOn. IS, 1', 

the work presented in this thesis. 

For detailed expositions on neutron star EOS models, see Canuto (1974), Canut.o 

(1975), Baym & Pethick (1975), Shapiro & Teukolsky (1983) etc .. Our aim in t.hiH 

thesis is to study luminosities from disk accreting neutron stars for certain repre

sentative EOS models. An important quantity that characterises EOS models is the 

stiffness parameter, defined as S = dlogP!dlogp. Higher the value of S, thE~ lllnre 

stiff is the EOS model. Stiffer the EOS, higher is the value of the maximum stable 

mass. For our calculations, we choose three EOS models that span the entire range 

of stiffness; the results presented using these are therefore expected to be general and 

representative. We describe below, the salient features of these models: 

(A) Wiringa, Fiks & Fabrocini (1988). These authors gave a model of EOS 

for dense nuclear and neutron matter which includes three-nucleon in

teractions. This is a non-relativistic approach based on the variational 

method. The three-body potential considered by the authors includes 

long-range repulsive parts that are adjusted to give light nuclei binding 

energies and nuclear matter saturation properties. This work represents 

an improvement over the calculation of Friedman & Pandharipande (1981) 

regarding the long-range attraction term in the Hamiltonian. One diffi

culty with these calculations, the authors say, is the violation of causality 

for p~2.0 x 1015 g cm-3 The results therefore above this density are 

suspect, and unfortunately this includes the prediction of the maximum 

suPPortable neutron star mass. The authors have given three models. We 

COnsider here, their model for beta-stable case: UV14+UVII (neutrons, 

protons, electrons and muons). In the text of this theSis, we denote this 
EOS model by UU. 

(B) Bahu, Easu & Datta (1993) gave a field theoretical EOS for neutron-rich 

matter in beta equilibrium based on the chiral sigma model. The model 

Utcludes an isoscalar vector field generated dynamically and reproduces 
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the empirical values of the nuclear matter saturation density and binding 

energy and also the isospin symmetry coefficient for asymmetric nuclear 

matter. The energy per nucleon of nuclear matter according to Sahu, Basu 

& Datta (1993) is in very good agreement, up to about four times the 

equilibrium nuclear matter density, with estimates inferred from heavy

ion collision experimental data. This EOS model is denoted as SBD in 

the text. 

(C) Bombaci (1995) developed several EOS models based on Skyrme interac

tions (Skyrme 1956) using a density dependent effective nucleon-nucleon 

interaction. In this phenomenological approach to derivation of the EOS, 

parameters appearing in the interaction are adjusted to reproduce various 

properties of nuclei and saturation properties of nuclear matter. The EOS 

is then deduced from the effective interaction using statistical thermody

namics in a mean field scheme. We use the model: BPAL12, derived using 

this formalism. For BPAL12, the EOS is characterised by a compression 

modulus value of 120 MeV and symmetry energy value of 30 Mev. The 

value 120 MeV for the incompressibility is unrealistically small when com

pared with the value 220±30 MeV extracted from nuclear phenomenology. 
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The EOS models listed above are those at ultra-high densities (p > 2.4x 1014 g cm-3 ). 

As mentioned in the previous chapter, the densities in the interior of neutron stars 

range from 7.86 g cm-3 , at the surface, to typically ten times the eqUilibrium nuclear 

density at the core. Therefore the EOS for the high density region has to be joined 

smoothly to the EOS for the low density region, in order to construct the composite 

EOS. We construct the composite EOS for the entire span of neutron star densities 

by joining the relevant high density EOS (listed above) to that of Negele & Vautherin 

(1973) for the density range (1014-5 x 1010) g cm-3 , Baym, Pethick & Sutherland 

(1971) for densities down to f'oJ 103 g cm-3 and Feynman,.Metropolis & Teller (1949) 

for densities less than 103 g cm-3 

In Fig. 2.1{a) we display the functional dependence of P/c2 with respect to p in 

a log-log plot. The higher density region (represented by dotted line) is that of EOS 
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Figure 2.1: (a) functional dependence of P/c2 with respect to p in a log-log plot. The 

higher density region (represented by dotted line) is that of UU. (b) A close-up view of the 

high density region to illustrate the qualitative difference between the three EOS models: 

the solid line corresponds to EOS model BPAL12, the dotted and dashed curves to UU and 

SBD respectively. 

model DU. In addition, in Fig. 2.1(b), we give a close-up view of the high density 

region to illustrate the qualitative difference between the three EOS models. 

2.5 Neutron Star Structure 

The mass density of the neutron star increases with depth. Each layer of the neutron 

star will be composed of such elements or nuclei, as are in thermodynamic and nuclear 

equilibrium at the densities attained in such layers. The neutron star may be divided 

into four main regions of interest: 
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1. Surface: The surface of the neutron star, characterized by a density of 

7.86 g cm-3 , is expected to be a solid made up of Fe56 atoms arranged 

in a lattice. At increasing densities, the atoms get ionized until at about 

104 g cm-3 , complete ionization is achieved. For further increase in 

density, the free electrons become degenerate. This region is of much 

astrophysical relevance, as processes like accretion, magnetic field effects, 

etc. directly influence the equilibrium of the neutron star. A complete un

derstanding of the composition of matter in this region therefore leads to 

a better modeling of the observational processes associated with neutron 

stars. 
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2. Outer crust: For densities greater than 106 g cm-3 , inverse-beta decay 

(electron capture on nuclei) can occur and therefore for increasing den

sities and depths of the neutron star, matter will be composed of nuclei 

that are increasingly neutron-rich. At 4.3 x lOll g cm-3 the ,most favoured 

nucleus will be so neutron-rich, that any additional neutron will 'drip' off. 

This marks the boundary layer of the outer crust. 

3. Inner" crust: The 'drip' neutrons permeate the lattice space at higher den

sHips. Tlwl'efore, a lattice of neutron-rich nuclei coexist with free neutrons 

and small admixtures of electrons and protons. The electrons will be de

generate, and their function will be to introduce a phase-space barrier to 

beta-decay, hence ensuring that the free neutrons are in equilibrium. 

4. Core: The core of the neutron star will be at densities in excess of 

2.4 x 1014 g cm-3 for which, as remarked earlier in this chapter, the compo

sition of matter is not knowIl. This is largely due to the lack of knowledge 

of the dominant interactions between nucleons at such ultrahigh densi

ties. To add to this inadequacy, is the lack of an adequate many-body 

technique to take care of the correlation effects in calculating the ground 

state energy. Depending on the interactions chosen, one can have pions, 

kaons, hyperoIls, quarks or ot.her exotie particles constitnting the (;ore of 

the neutron star. 
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STIFF EOS 

SOFT EOS 

1.4 Me 

Figure 2.2: Schematic cross-sections of 1.4 M0 neutron star using two equa.tions of state 

models: one stiff (SBD) and the other soft (BPAL12). 

The EOS is the key input in solving the structure equations for neut.ron stars. 

Having in hand the composite EOS as described above, we integrate the TOV equa

tions numerically to obtain the mass and radius values for non-rotating neutron stars. 

A schematic cross-section of neutron star calculated by us in this way is presented in 

Fig.2.2. The cross-sections are for one value of the gravitational mass (M = 1.4 M (1) ) I 

obtained using a stiff EOS model (SBD) and a soft one (BPAL 12). The spread in the 

structural properties due to the qualitative spread in the EOS models is very clear. 

It can also be seen that the crustal extent depends crucially on the stiffness of the 

EOS model - this property will have direct bearing on the energy release from the 

surfaces of accreting neutron stars. 

We also present the results of our computa.tions for non-rotating neutron stars in 

Table ~.21 where we give the values of the structure parameters for three configura

tioost namely, M = 1.33, M = 1.4 and the maximum mass configurationj all of them, 
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EOS Pc (X1015) M R 

(g cm-3 ) (M0 ) (km) 

UU 0.999 1.330 11.135 

SBn 

BPAL12 

1.042 1.400 11.128 

2.800 2.189 9.822 

0.395 

0.406 

1.300 

1.809 

1.331 14.670 

1.400 14.745 

2.595 14.158 

1.331 10.788 

2.252 1.400 10.300 

3.900 1.467 9.124 

39 

Table 2.2: Values of central density (Pc) a.nd equatorial radius (R) for three configurations: 

M = 1.33 M0 . 1.4 M0 and the maximum stable mass, for the BOS models considered by 

us. Higher the value of the maximum mass, stiffer is the EOS model. 

for the three equations of state that we use. It is clear from the values of the masses 

of the maximum stable configurations of these EOS, that models SBD is very stiff 

while BPAL12 is very soft. EOS model UU is intermediate in stiffness. An extensive 

study of the dependence of the structure parameters on the EOS may be found in 

Arnett & Bowers (1977) and Datta (1988). 

In Fig. 2.3, we display plots of the gravitational mass (M) and equatorial radius 

(R) of neutron stars, as functions of the central density. Although in the text we 

denote central density as Pc, in the figures throughout this thesis, we designate the 

central density as p, since the variation of the corresponding parameter is in reality 
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Figure 2.3: Plots of the gravitational mass (M) as a function of the central density and 

mass radius (R) relationship for neutron stars. Also shown is the density profile (p(r)) for 

M = 1.4 M0 configurations, obtained using the three EOS models. The curves have the 

same significance as in Fig. 2.1(b). 

with respect to the density p as given by the EOS. In Fig. 2.3, we also display the 

density profile (p(r)) for M = 1.4 M0 configurations, obtained using the three EOS 

models (for convenience of illustration, we plot the logarithm of p). In all of these 

figures, the curves have the same significance as in Fig. 2.1 (b). From the M versus 

log(p) graph it is seen that Mmax is lowest for the soft EOS model (BPAL12) and 

highest for the stiffEOS model (SBD). Since these are degenerate systems, the radius 

R decreases with increasing mass. For stiff EOS models, however, the low mass region 

is characterized by a positive variation of M with R. Neutron star density profiles, 

as is seen from the log(p)-log(r) plot, are remarkably flat up to the crust. Values 
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of Mmax are useful, observationally, in determining whether the central object in a 

LMXB is a black hole: if from the binary light curves, the mass of the central object 

is determined to be greater than 3 M0 , one can infer the object to be a stellar mass 

black hole. 

2.6 Concluding Remarks 

The accretion flow onto neutron stars in LMXBs crucially depend on the structure 

of neutron stars. In this chapter we have provided a brief overview of non-rotating 

neutron star structure. In addition to the structure of the central accretors, the 

accretion flow will also depend on the general relativistic space-time geometry around 

these objects. An essential prediction of general relativity is the presence of marginally 

stable orbits around compact objects. This property will substantially modify the 

energetics of accretion as compared to the Newtonian formalism. In Chapter 3, we 

calculate the disk and boundary layer luminosity in a general relativistic space-time 

geometry around a nono-rotating neutron star, described by the Schwarzschild metric, 

and further, explore the dependence of these on the neutron star EOS. 



Chapter 3 

Accretion Luminosities of 

N on-magnetic and Non-rotating 

Neutron Stars: Schwarzschild 

Space-Time 

3.1 Introduction 

X-ray bursters (see Chapter 1) are believed to contain weak magnetic field neutron 

stars accreting from a binary companion via an accretion disk. In such systems, the 

disk can in principle reach very close to the surface of the neutron star (for cases 

of low radiation pressure). Any instability like the pinning of the magnetic field 

onto matter in the accretion disk near the surface of the neutron star, can lead to 

accumulation of matter there, giving rise to variations in brightness (like kHz QPOs). 

If the magnetic field is weak enough so as to enable the disk to touch the surface of the 

(non-rotating) neutron star, then from purely Newtonian considerations (Eqs. 1.31 

and 1.39) we have LD = LBL (since [3 = 1). The essential prediction made by 

Newtonian theory, therefore, is that the ratio of the boundary layer luminosity to the 

42 
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disk luminosity is equal to 1 (i.e LBL/LD = 1). In this chapter, we show how general 

relativistic effects modify this ratio. In section 3.2, we derive the boundary layer to 

disk luminosity ratio in a Newtonian framework. A novel feature of general relativity 

is to predict the existence of an innermost marginally stable orbit around a relativistic 

star - this is explained in section 3.3. In section 3.4, we derive expressions for the 

boundary layer and disk luminosities, and also provide the expression for angular 

velocity profiles. We provide the results of our computations for boundary layer and 

.disk luminosities in section 3.5 and show that the ratio between these quantities 

deviate substantially from unity. The presence of a boundary layer having a finite 

extent due to general relativistic considerations, make a discussion of boundary layers 

imperative. In section 3.6, we outline the importance of boundary layers in accretion 

disks around neutron stars and make some concluding remarks in section 3.7. 

3.2 Accretion Luminosities: Newtonian Teatment 

Revisited 

Although in the last chapter we presented a brief derivation of the accretion luminosi

ties using Newtonian formalism, it would be instructive to derive the same through 

another view-point. 

For a particle (with rest mass mo) being accreted by a stellar object, the La

grangian is given as: 

(3.1) 

where rand cp are the radial and polar coordinates respectively, mo the mass of the 

accreted particle and VN(r) = -GMmo/r is the gravitational potential, M being the 

mass of the central accreting star. Since 'P is a cyclic coordinate, we can define the 

associated constant of motion (angular momentum) as a(= mor2cp. The equation of 

motion in the radial direction is therefore given by 

(3.2) 
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where c is the velocity of light, E the total (specific) energy of the particle in units 

of moc2 and 

21/ _ (l2 2GM) 
- r2-~ (3.3) 

is the effective Newtonian gravitational potential in which the particle moves with 
-

the specific angular momentum l = (a/mac). The conditions for circular orbits, 

extremum of energy and minimum of energy are respectively: 

E - V 

~r 0 

\~rr > 0 

(3.4) 

(3.5) 

(3.6) 

In our notation, a comma followed by one 'r' represents a first order partial derivative 

with respect to r and so on, and a tilde over a variable represents the corresponding 

dimensionless quantity. Substitution of the expression for V into Eqs. (3.4) and (3.5) 

and subsequent simplification yields 

E 
GlI,! 

- - 2c2r 

l2 GAIT - c2 

Since r ~ 0, Eq. (3.6) is automatically satisfied. 

(3.7) 

(3.8) 

The spedfic energy released in the disk and the boundary layer would then amount 

to 

ED - - GlI! (3.9) - [E(r = 00) - E(r = R)] = 2c2r 

EBI" - GAl _ ED = GA1 
r 2c2r 

(3.10) 

and 

~BL = 1 
ED 

(3.11) 

where R is t.he radius of the star and it is assumed (as in Chapter 1) that all the 

kinetic energy that the particle possesses just before impinging the star, is radiated 

away. 
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2 1 Keplerian Angular Velocity Profiles 3 .. 
M' 'iVPll 'IS' 

The angular velocity of a material particle around a star of mass IS g , ( .. 

)GM (:3.l2) 
OK::::: -;:3 

, f h t tar The mHximllm 
where r is the radius of orbit from the centre 9 t e neu ron s . 

velocity that the star can have is when the inward pull of gravitation equals tlw 

centrifugal force acting outward i.e., at the mass shed limit: 

Oms::::: )G: 
Note that this value of the rotation rate of the neutron star is equal to the Kel)lc7'iatt 

velocity of a particle at its equator. 

In subsequent sections, we carry out the above analysis in the general relativist.i<' 

field of a non-rotating neutron star, in order to see the effect of general relativity on 

the boundary layer and disk luminosities. 

3.3 Innermost Marginally Stable Circular Orbits 

The spherically symmetric space-time around a non-rotating neutron star may be 

described by the Schwarzschild (Eq. 2.1) metric. In such a space-time, the energy and 

angular momentum are constants of motion. Therefore, the specific energy E and tilt>. 

specific angular momentum l can be identified as -Po and P3 respectively, where ])p 

(Ii ::::: 0,1,2,3) stands for the four-momentum of the particle, The equations of mot.ion 

of a particle confined to the equatorial plane (using the condition for corotation, 

p"Y' = -1) are given as: 

dt - ( r) -1 t = - =pO = E 1- J (3.14) dr r 

<P 
dcp 

= _ == p3 == ljr2 (3.15) dr 

i'2 = (dry -, -, - =E-V dr (3.16) 

where we have used geometric units c == 1 = G. In the above equations, rg is the 

Scbwarzschild radius (rg = 2M), r represents the proper time and if is the effective 
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potential given by 

(3.17) 

It is clear from Eqs. (3.16) and (3.17) (compare these to Eqs. 3.2 and 3.3) that a 

general relativistic treatment introduces non-linearity (hitherto absent in the New

tonian formalism) into the equations of motions. The expression for V2 may now be 

substituted in Eqs. (3.4) and (3.5) to yield the specific energy and specific angular 

momentum of a particle in orbit around the neutron star. The (general relativistic) 

coupling of the terms rg/r and l2/r2 in Eq. (3.17) allow Eq. (3.6) to be only marginally 

satisfied i.e: 

V;rr = 0 (3.18) 

Eq. (3.18) together with the conditions (3.4) and (3.5) therefore implies the exis

tence of an innermost marginally stable orbit. The specific energy, specific angular 

momentum and the radius of the innermost marginally stable orbit are calculated by 

solving Eqs. (3.4), (3.5) and (3.18), using the expression for V. For the external 

metric (r > R), these reduce to: 

rorb - 3rg (3.19) 

lorb - J3rg (3.20) 

Borb - fg (3.21) 

The form of the effective potential in the Schwarzschild space-time gives rise to a 

qualitative difference in the phenomena (from that in the Newtonian framework) 

associated with particles in orbit around a relativistic star. The most important 

effect is the absence of stable orbits for r < forb' A particle accreted from infinity 

reaches rorb, all the while revolving in stable circular orbits, and from rorb the particle 

will follow an essentially free fall trajectory (spiral in) and come to rest at the stellar 

surface. 
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3.4 Boundary Layer jDisk Luminosity Ratio in Schwa 

rzschild Geometry 

Eqs. (3.19), (3.20) and (3.21) have been derived for the external Schwarzschild metric 

(Le. for r > R). For black holes, such a tr~atment is valid because the internal 

metric is causally disconnected from the external one. Neutron stars, on the other 

hand, can have radii either greater than or less than 3rg. For r < R (Le. the internal 

metric), extra terms (like dm(r)/dr and cf2m(r)/dr2) enter the equations and relocate 

r orb within the star. Since the phenomenon of accretion takes place external to the 

star, the actual location of rorb (for R > 3rg) within the star is irrelevant and the 
I 

innermost stable orbit can be taken to be located at the surface of the neutron star. 

The simultaneous solution of Eqs. (3.4) and (3.5) assuming an external metric yield 

the specific energy and specific angular momentum of a particle in Keplerian (circular) 

orbits around the neutron star as: 

(3.22) 

(3.23) 

As mentioned earlier, neutron stars can have radii greater than or less than the 

radius of the marginally stable orbit. The X-ray emission will differ in the two 

scenarios influencing the value of the boundary layer to disk luminosity substantially. 

The boundary layer and disk luminosity for these cases may be calculated as follows: 

3.4.1 Case(a): Radius of the star greater than the marginally 

stable orbit radius (R > rorb) 

In this case, the innermost stable orbit will be located at R. Therefore, the ingress 

of particle (with mass mo) from infinity to the inner-edge of the disk (located at R) 

would release an amount of energy given by 

ED = (1 - E(r = R)) 
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where E(r = R) denotes the specific energy of a particle in circular orbit at r = R. 

Therefore, 

(3.24) 

The energy released in the boundary layer would be 

EBL = (E(r = R) - E",) 

where E* is the specific energy of the particle at rest on the stellar surface and hence 

- [( rg)~R Ag EBL = 1 - - - 1 - -
R 2R- 3rg R 

(3.25) 

3.4.2 Case (b): Radius of the star lesser than the marginally 

stable orbit radius (R < Torb) 

In this case, the inner-edge of the disk will be located at r = 3rg where Eorb = J8/9. 
Hence the disk luminosity is given as 

(3.26) 

The boundary layer luminosity is given as 

(3.27) 

3.4.3 Keplerian Angular Velocity Profiles 

The angular velocity (with respect to an observer at infinity) of material particles in 

orbit around the neutron star is given by dcp/dt. From Eqs. (3.14) and (3.15), we 

therefore have 

(3.28) 
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Figure 3.1: The variation of rorb and R with Pc for the EOS models BPAL12, UU and 

SBD. In these figures, the solid curve is that of R and the dot-dashed curve represents rorb. 

For configurations having rorb < R, the value of rorb is set equal to R. 

3.5 Results for Non-rotating Neutron Stars 

In Fig. 3.1 we display a plot of the equatorial radius (R) of non-rotating neutron 

stars against the central density. For a comparison we also plot, in the same graph, 

the variation of radius (rorb) of the marginally stable orbitj for those configurations 

for which rorb < R, we have set rorb = R. 

Fig. 3.2 illustrates the variation of the disk luminosity (ED), the boundary layer 

luminosity (EBL)' the boundary layer to disk luminosity ratio (EBL/ ED), and the 

total luminosity (ED + EBL) with Pc- The solid curve is for EOS model BPAL12, 

the dotted curve for UU and the dashed curve for SBD. Due to the decreasing values 

of stellar radii, the boundary layer extension increases with increasing values of Pc. 

Consequently EBL/ ED ratio inci:eases with increasing central density. For a given 
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Figure 3.2: Varia.tion of disk luminosity (ED), the boundary layer luminosity (EBL)' the 

boundary layer to disk luminosity ratio (EBL/Eo) and the total luminosity (ED + EBL) 

with Pc for nOll-rotating neutron star models. The solid curve is for EOS model BPAL12 , 
the dotted eurve for UU and the dashed curve for SBD. 

EOS, there exiRts a knee in the curve for ED, representing the point where R becomes 

less than 1·orb. It is seen from this figure that for increasing stiffness of EOS models 

the knee shifts towards lower central densities. 

The Keplerian angular velocity profile for a 1.4 M0 star is displayed in Fig. 3.3. 

The ordinate represents OK and for the sake of uniformity in representation (with 

other such figures), we have used the scaled radial coordinate r / r g as the abscissa. 

The functional dependence of OK on r in the Newtonian framework and that in the 

general relativistic framework is the same. However, there is an essential difference 

between the two in their physical effects: in the Newtonian case, the Keplerian angular 

velocity will increase all the way (from r = (0) up to the surface of the neutron 

star; in the general relativistic case, however, the increase from r = 00 for OK gets 
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Figure 3.3: Keplerian angular velocity profile for a 1.4 M0 non-rotating neutron star. OK is 

plotted as a function of the scaled radial coordinate T lTg, Tg being the Schwarzschild radius 

of the neutron star. The solid curve represents the profile. In the general relativistic case, 

this profile gets terminated at Torb while the Newtonian profile (dotted curve) continues to 

the surface of the star. The dashed lines represents a schematic continuation of the profile 

on to the neutron star surface which is at zero rotation rate. 

terminated at the inner-edge of the accretion disk (r = rorb). In order for the profile 

to join smoothly to the rotation rate of the star (which is zero in this case), the slope 

drt.K / dr (which is proportional to the viscous shear) has to change sign - from the 

figure it is evident that the value of this gradient will have a lower magnitude in the 

Schwarzschild case than in the Newtonian case. The positive gradient of OJ:((r) in the 

region R < r < rorb (also termed as the boundary layer), has important implications 

in governing accretion flows in the vicinity of the neutron star (see next section). 

In Fig. 3.4 is shown the variation of V2 as a function of the scaled radial coor

dinate (r/R). Fig. 3.4(a) compares the Newtonian effective potential with that in 
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(a) Comparison of tho Newtonian effective potentials with that in the Schwarzschild geom

etry fOl" two values of l, namely, l = (3)1/2 rg (the solid curves) and l = 1.5(3)1/2rg (the 

da."3hed eurves). In eac:h of t.he set of curves, the lower one represents V in Schwarzschild 

geometry. The Newt.onia.n effective pot.ential has been obtained by adding the rest mass 

energy of t.ll(~ part.ido t.o Eq. (refeq:effpn) 

(b) TIw effective pot,ent,ial ill Sehwa.rzschild geollletry for l = 1, 1.1, 1.15, and 1.2 times 

(3)1/21.p; rcspcdivdy from bottom to top. The dashed curve represents V in stable orbits 

at each r·/t·.". 

Schwarzschild geomet.ry for two values of l, namely, l = y'3M and l = 1.5V3M (as 

indicated in the figure). Close to the star, the effective potential in Schwarzschild 

case is substant.ially less than the Newtonian one, indicating that the particle is more 

bound to the celltral star when general relativity is taken into account. In Fig. 3.4(b) , 

the effective potential in Schwarzschild geometry is plotted for various values of l as 

indicated in the figure. We have considered here, only the external field of the star 

and therefore, the funct.ional dependences are valid only up to the surface of the star 

(froUl r/rg = 00), represented by the joining of the dotted line with the bold one. 

The dotted line represents V of a 1.4 1vI0 black hole and the dashed curve represents 

V for Keplerian orhits located at each r Irg. 
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3.6 Boundary Layers in Accretion Flows 

The presence of a boundary layer around accreting neutron stars is inevitable .- it may 

form (in the brighter sources) due to radiation pressure or as a result of the presence 

of an innermost marginally stable orbit or due to both these effects. The physical 

processes in this layer and its thermal structure have important bearings on X-Tay 

emission scenarios of accreting neutron stars. A boundary layer of an accretion disk 

is also defined as that region wherein the radial gradient of the circulation velocity is 

positive. Matter at the base must co-rotate with the stellar surface. At the top of the 

boundary layer, it must co-rotate with the Keplerian motion of the disk as a whole. 

If the material is to settle onto the surface of the neutron star, somewhere in the disk 

the sign of the radial component of the shear ( which is proportional to the circular 

velocity gradient) must reverse sign. This gradient (depending on the boundary layer 

extent) may be quite large leading to a strongly dissipative zone and hence plays an 

important role in the modeling of accretion disks. 

A boundary layer formed around a rotating neutron star comes to rest with the 

moving surface and thus needs to lose less angular momentum. The general effect 

of rotation is to increase the equatorial radius of the star and (as we shall see in 

the next chapter) decrease the radius of the innermost marginally stable orbit. III 

the conventional picture, this means that the boundary layer becomes thinner for 

increasing rotation rates of the neutron star and disappears altogether for stellar 

rotation rates equal to the mass shed limit. 

The observatiollal signatures of a boundary layer are: (i) a departure from the 

Keplerian motion in the circumstellar material and (ii) the optical thinness/thickness 

oflayer. However, these effects will be hard to detect. An interesting question to ask in 

regard to point (i) is - do kHz QPOs in low-mass X-ray binaries represent a departure 

from Keplerian motion? If so, the possible mechanisms for such phenomena have to 

be re-examined. As regards point (ii), an optically thin layer should be quite hot, and 

theory predicts that the accretion zone should he of the order of the virial temperature 

("-! 107 K). This is not seen in compact binaries; so the alternative of the boundary 

layer being optically thick has to be investigated; In compact binary systems, it is 
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clear that the effect of rapid rotation of the accretor will be indistinguishable from 

that of an opt.ically t.hick boundary layer, with relatively low temperature. 

Models for boundary layers have relied heretofore extensively on the Newtonian 

theory. At sueh close ranges to the neutron star, the effect of general relativity is 

important and is expected to change the accretion flow substantially. 

3.7 Concluding Remarks 

It is expected that the presence of marginally stable orbits around neutron stars will 

modify the accretion flow substantially from that in the Newtonian case. Marginally . 
stable orbit.s, a.bseut in the Newtonian formalism, demonstrates the essential non-

linea.rity of t.he general relativistic Elquations of motion. Accreted matter leaving such 

an orbit. (:arries wit.h it. substantial amount of angular momentum, spinning up the 

neutron st.ar t.o Hhort rota.t.ion periods (tV milliseconds) over the dynamical timescales 

of accf(\t.iou. In Chapter 4, we investigate the general relativistic effect of rotation 

using a.pm'turh(\(l (from spherical symmetry) space-time on the neutron star structure 

and accret.ion 1I1IlliIlosit.i!'H. 



Chapter 4 

Accretion Luminosities of 

Non-magnetic Neutron Stars: 

General Relativistic Effects of 

Rotation Using Hartle-Thorne 

Approximation 

4.1 Introduction 

Disk accretion occurs whenever the matter being accreted possesses intrinsic angular 

momentum. The matter dissipates its energy (due to friction between adjacent layers) 

and consequently loses angular momentum as it spirals inward. For neutron stars with 

weak magnetic fields (field strength B.s 108 G), the inner-edge of the accretion disk can 

be located very near the star's equator. The accreted matter, therefore, can transfer 

substantial angular momentum to the neutron star. This can spin it up to rapid 

rotation rates (Bhattacharya & van den Heuvel 1991). Such weak-field neutron stars 
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are believed to be the sources of X-ray bursters and also the progenitors of millisecond 

pulsars (Radhakrishnan & Srinivasan 1982; Alpar et al. 1982; Wijnands & van cler 

Klis 1998). The equation of state of neutron star matter as well as general relativity 

will play essential roles in such a scenario. This is in contrast to the strongly magnetic 

(B ~1012 G) accreting neutron stars, where plasma processes dominate (e.g., Ghosh 

& Lamb 1991). For the weak-field case, the radius of the innermost stable circular 

OJ;bit (Torb) plays a central role, deciding quantities of observational interest such as 

the disk luminosity. The relevance of this parameter was emphasized by Kluzniak 

& Wagoner (1985) (hereafter KW), who pointed out that for weak-field accreting 

neutron stars it is incorrect to always make the usual assumption that the accretion 

disk extends very close to the'surface of the star, and is separated from it by a thin 

boundary layer. Using Schwarzschild geometry, to describe the space-time around 

accreting old neutron stars, Sunyaev & Shakura (1986) (see also Chapter 3) concluded 

that the boundary layer brushing the neutron star surface will be substantially more 

X-ray luminous than the extended accretion disk. These authors illustrated this for a 

parametric set of values of the neutron star radius. If the star's radius (R) is less than 

Torb, the boundary layer is likely to be characterized by poorly collimated tangential 

motion of the infalling matter and a comparatively soft emission spectrum. Whether 

or not R exceeds r orb (and consequently the detailed features of the accretion scenario) 

depends on the geometry of the spacetime and also the equation of state of neutron 

star matter (which determine the gravitational mass and radius of the neutron star). 

As already mentioned, an important aspect of disk accretion onto weak-field neu

tron star is the possibility that the neutron star will get spun up to very short rotation 

periods ($millisecond) over a time of the order of hundreds of millions of years. For 

such rapid rates of rotation, the relativistic effect of dragging of inertial frames in the 

vicinity of the neutron star will be important. This effect will alter the trajectories of 

infalIing particles as compared to the non-rotational case. Therefore, for a quantita

tive description of the accretion features, one must take into account the relativistic 

effects of rotation on the accretion flow. Although the possible importance of such 

effects was stressed b:y KW and Syunyaev & Shakura (1986), no details were worked 

out by them. 
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In this chapter, we address this question. As a first step, we calculate the equi

librium sequences for rotating neutron stars using an approximate formalism for the 

rotational metric, but in a fully general relativistic manner. This formalism is due 

to Hartle & Thorne (1968; hereafter HT), and it describes a rotationally perturbed 

Schwarzschild space-time. The HT formalism is valid for strong gravitational fields 

but only in the limit of uniform rotation with a rate that is small (neglects terms 

higher than 0(Q2 /O~s)) compared to the critical speed for centrifugal break-up 

(Oms). Therefore, it is often referred to as the "slow" rotation approximation. For 

rotating neutron stars, it is possible for some configurations to exist solely due to the 

property of rotation. In other words, for rotating configurations having gravitational 

mass greater than that of the maxium stable non-rotating configuration, the pres

sure due to centrifugal forces together with the pressure due to microscopic forces 

balance the inward gravitational force. Such configurations are termed as the supra

massive models. The other models having gravitational mass below the maximum 

stable non-rotating mass are termed as normal. We construct normal and supra

massive evolutionary sequences of constant rest mass. We also build ~quilibrium 

sequences for two constant values of rotation rates: one corresponding to a period 

of P = 1.558 ms of the millisecond pulsar PSR 1937+21 (Backer et al. 1982) and 

the other to P :::: 2.49 ms observed in the X-ray source SAX J1808.4-3658 (Wijnands 

& Van der Klis 1998). We calculate the disk and surface layer luminosities within 

the HT formalism as a second step. We also provide a comparison of our numerically 

computed values with those obtained from approximate analytical expressions derived 

by neglecting the O(Q2 /O~8)) terms. Cook, Shapiro & Teukolsky (1994) calculated 

marginally stable orbit radii for rotating neutron stars, incorporating higher order 

(> 0(02 /O~s))) rotational terms that go beyond the HT approximation. In this 

chapter, we present a calculation of the disk and boundary layer accretion luminosity 

in the HT framework. Although the HT prescription assumes rotationally perturbed 

geometry, the use of this formalism provides a first estimate, of the effect of rotation 

on the luminosities. Our calculations are done for a range of stable neutron star 

configurations computed using the three representative sample of equations of state 

of neutron star matter, BPAL12, UU and SBD. 
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In section 4.2, we discuss the equations to be solved for obtaining the structure 

parameters in the HT formalism and section 4.3 discusses the numerical procedure for 

solving these. The procedure for computing the disk and boundary layer luminosities 

is given in Section 4.4; in this section we also provide the analytical expressions for 

these. The angular velocity profile is discussed in section 4.5. We provide the results 

of our computation for "slowly" rotating neutron stars in section 4.6. In section 4.7 

we make a few remarks by way of conclusion. 

4.2 "Slowly" Rotating Neutron Stars in General 

Relativity 

We describe below, the spacetime around a rotating neutron star corresponding to the 

HT metric. This metric describes a rotationally perturbed Schwarzschild geometry 

to order 0 2 , where 0(= d<p / dt) is the angular velocity of the star as seen by a distant 

observer. The general form of the metric is (signature: - + ++) 

ds2 - 9c.(3dxCldxfJ , (01, f3 = 0, 1,2,3) 

- _e2~~t2 + e21/J(d<p - wdt)2 + e2r dfP + e2Adr2 + 0(03 jO~s}' (4.1) 

Here w is the angular velocity of the cumulative dragging of inertial frames and 

Oms = (G M' I R!3) 1/2, the critical angular velocity for equatorial mass shedding, where 

M' and R' are the gravitational mass and radius of the non-rotating neutron star. 

For simplicity, we use the geometric units: c = 1 = G. The metric components 

correspond to an interior with the identification: 

e2~ - e2~1 {I + 2(ho + h2P2)}, (4.2) 

e21/J - r2 sin2 9{1 + 2(V2 - h2)P2}, (4.3) 

e2r - r2{1 + 2(V2 - h2)P2}, (4.4) 

e2A 1 + 2(mo + m2P2}/(r - 2m) (4.5) - 1- 2mjr 

(where 2~' is the gravitational potential function for the non-rotating star and m is 

the gravitational mass contained within a volume of radius r) and to an exterior with 
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the identification: 

_ e-2A = 1 _ 2M + 2J2 
r r 4 ' 

59 

( 4.6) 

(4.7) 

(4.8) 

Here M and J are respectively the gravitational mass and angular momentum of 

the rotating configuration of the star. The quantity P2 is the Legendre polynomial 

of order 2, and ho, h2' mo, m2, V2 are all functions of r that are proportional 

to 0 2 (see HT). Terms with 0 correspond to the l = 0 mode of the perturbation 

expansion, representing the spherical part of the deformation and those with the 

subscript 2 correspond'to the l = 2 mode, representing the quadrupole part of the 

deformation. The metric has the desirable property that the internal and external 

forms match at the surface of the star. For our purpose here, we shall retain only 

the spherical deformation terms and neglect the quadrupole deformation terms. The 

latter are necessary for computing stellar quadrupole deformation, but average out 

in calculating the rotation induced changes to M' and R'. The applicability of the 

metric (4.1) is valid for n small in comparison to Oms. Therefore, the HT formalism 

is sometimes referred to as the "slow" rotation approximation. But even so, this 

formalism iH fully 1J;(~Ileral relativistic to 0(02 /n~s)' To go beyond this approximation, 

one requires a treatment that would incorporate all the higher order terms in 0 (see 

Stergioulas 1998 for a review). 

A relativistic effect of rotation, important for the astrophysical scenario that we 

consider here, is the dragging of inertial frames, which implies 

w(r) 'I- 0 ( 4.9) 

where w(r) is the angular velocity of the stellar fluid relative to the local inertial 

frame, and is given by (HT) 

d ( 4-:dW) - rJ-
dr dr 

(4.10) 

where 

(4.11) 
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with the boundary conditions 

(dW) 
d - 0; 

r r=O 
w(r = (0) - n (4.12) 

For r > R (Le., outside the star), 

w(r) = n - ~Jjr3 ( 4.13) 

where J, the angular momentum of the star is given by: 

J - - -_ R'4 (dW) 
6 dr r=R! 

(4.14) 

and the moment of inertia (I) of the neutron star is: 

I = Jln (4.15) 

The spherical part of the rotational deformation corresponds to perturbation factors 

for the mass and pressure, denoted by mo and Po given by 

dmo 2() 1 1-:24(dW)2 13 d (-:2)_2 
dr - 4npor p + P dP I dp + 12J r dr - Sr dr J W 

dpo mo(l + 81Tr2 P) 4nrpo(p + P) 1 r3p (dW)2 
dr - - r2(1 - 2mjr)2 - (1 - 2m/r) + 12 (1 - 2m/r) dr + 

1 d ( r 2J2w2 ) 

3 dr (1 - 2m/r) 

with the boundary conditions: 

mo(r = 0) - 0 

po(r = 0) - 0 

( 4.16) 

(4.17) 

( 4.18) 

( 4.19) 

The non-rotating mass and radius are obtained by numerically integrating the rel

ativistic equations for hydrostatic equilibrium as described in Chapter 3 (or see e.g. 

Arnett & Bowers 1977). The changes due to rotation, in the values of gravitational 

mass (AM') and the radius (AR') of the neutron star are given by (RT; Datta & 

Ray 1983; Datta 1988) 

AM' = mo(R') + J 2/R,3 
f::lR' = _ Po(p + P) I 

dPjdr r=R' 

(4.20) 

(4.21) 
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where p(r) and p(r) are the pressure and the total mass-energy density at the radial 

distance r from the center of the star. 

The rotation induced change in the baryonic mass (denoted by fj.M~) is conve

niently written as 

fj.M~ = L1E~ + fj.M' (4.22) 

where flEb is the rotation induced change in the binding energy of the star (HT): 

( 4.23) 

where 

(4.24) 

1 [1"2 4 (dW) 2 1 dJ2 3-2] 
- 4?rr2 12) r dr' - '3 dr r w , 

and € = P - mon is the density of internal energy, with n(r) and mo denoting 

respectively, the baryonic density and rest mass. 

The equations presented above are only for the spherical deformations. See HT 

for quadrupole deformations effects. 

We take the spun up neutron star to be rotating at a particular value, namely, the 

secular instability limit so as to illustrate the maximal reasonable effects of rotation. 

Neutron star models rotating at the secular instability limit (assuming the star to be 

homogeneous), relevant in the context of accretion induced spun up neutron stars, are 

within this limit (Datta & Ray 1983), so this approximation will usually be adequate. 

Density profiles of neutron stars are remarkably fiat out to r = (0.8 - 0.85)R 

(Arnett & Bowers 1977). Therefore, the concept of rotational secular instability in 

the context of Maclaurin spheroids (Chandrasekhar 1969) is a relevant approximation 

when considering the rotational stability of neutron stars. For a uniformly rotating 

homogeneous spheroid, this instability corresponds to an angular velocity 0 = Os, 
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given by 

2~~P = 0.18 ( 4.25) 

where p is the average density of the star. The quantity Os sets a rough limit upto 

which the neutron star can be spun up, before the onset of rotational instabilities. 

4.3 Equilibrium Sequences of Rotating Neutron 

Stars in the Hartle-Thorne Approximation 

Eqs. (4.10), (4.16), (4.17) along with the boundary conditions (4.12), (4.13), (4.14), 

(4.18), (4.19), (4.20), (4.21) provide the structure equations for neutron stars in 

the "slow" rotation approximation. Since this approximation is a perturbation on 

the spherically symmetric Schwarzschild metric (Eq. 2.1), these differential equations 

have to be solved simultaneously with Eqs. (2.4) and (2.5) for the corresponding 

non-rotating models. 

Since the ordinary differential equations given above are coupled, they have to be 

solved numerically to obtain the structure parameters. As in the non-rotating case, 

here too, the key input to solving these equations is the equation of state (P(p)). 

The structure equations given above are solved to yield a value of n specified by 

Eq. (4.25). 

4.4 Boundary Layer /Disk Luminosity Ratio for Ro

tating Neutron Stars in Hartle-Thorne For

malism 

We identify the specific energy E and the specific angular momentum 1 as -Po and 

P3 respectively. Together with this identification, and the condition for co-rotation 

(see Chapter 3) we obtain the equations of motion of a material particle confined to 
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the equatorial plane as: 

where h is the metric coefficient given as 

h = (1- 2M + 2]2)1/2 
r r4 

and V is the effective potential, given by 

It is also convenient to express E and l in terms of the physical velocity ii 
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(4.26) 

(4.27) 

( 4.28) 

( 4.29) 

( 4.30) 

(4.31) 

of the stellar matter with respect to a locally non-rotating observer (Bardeen 1972), 

The condition for turning point (Eq. 3.4) gives the following expressions: 

(E - wl) 
h 

( 4.32) 
J1- ii2 

iir 
( 4.33) - J1- ii2 

Using the conditions for the turning point of motion, the extremum of energy and 

that for marginally stable orbits (detailed in Chapter 3, Eqs. 3.4, 3.5 and 3.18), we 

have three equations: 

(4.34) 

(4.35) 

-2 
.7: - ( 4.36) 

in terms of the specific energy E, the specific angular momentum a = ll2M and 

the specific radial coordinate i; = r /211.f; ] = J I M2 represents the dimensionless 
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angular momentum of the "slowly" rotating neutron star. For a low magnet.it field 

accreting neutron star possessing a substantial rotation rate, the luminosity from the 

disk accretion can be calculated using Eqs. (4.34)-(4.36). Solving Eqs. (4.34)--(4.36) 

simultaneously, gives the values for the specific energy (Eorb) and the speeifie angular 

momentum (aorb) of the accreted particle in the marginally stable orbit having a 

specific radius (Xorb). As the equations are coupled (and also non-linear in ]), t.h(~y 

have to be solved numerically. 

In the approximate analytical treatment by KW, the above equatiolls a.re lin

earized (neglecting terms containing 3 with orders greater than 1) and solved simul

taneously. This yields the following analytical formulae respectively for Borb , Q.orb and 

Xorb for material particles co-rotating with the neutron star: 

-KW ~[l-l~G(]l Barb - (4.37) 

-KW 
[ 1 Cr-] aorb - +V3 1- 2" 3 j (4.38) 

-KW [ Cr-] Xorb = 3 1- 3 j (4.39) 

= -m [ Cr-] Xorb 1- 3 j 

where the superscripts KW emphasize that the values have been obtained by using 

the recipe of KW and x~;b represents the radius of the marginally stable orbit for a 

non-rotating neutron star. By the same prescription, the values of E and ii. in any 

stable orbit having specific radius (x > xKW) are ai b. 
- orb t).ven y. 

EKW(X) =/2(x-1) I_ 
V ~ y2x - 3 - 2x(2x - 3)3/2j (4.40) 

aKW(x) _ X _ 3(x-l) "': 
y2x - 3 V2i(2x _ 3)3/2J (4.41) 

As in the case of non-rotating neutron stars, the calculation of the accretion disk 

and boundary layer luminOSities for "slowly" rotating neutron stars also have the 
following distinct cases possible : 
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4.4.1 Case (a): Radius of the star greater than the marginally 

stable orbit radius (x. > Xorb) 

If an accretion disk were to form around a relatively large neutron star (Le., x. > 

XOrb ), the ingress of a particle from rest at infinity to the inner disk boundary will 

release an amount of energy given by 

(4.42) 

where Ek(x.) stands for the specific energy of the particle in a stable orbit just above 

the surface, obtained by solving Eqs. (4.34) and (4.35) numerically for x = x •. The 

energy loss in the bou:r;ldary layer will be 

( 4.43) 

where E. is the energy of th~ particle at rest on the surface of the neutron star. The 

value of E. is calculated by solving Eqs. (4.31) (4.32) and (4.33) for x = x •. 
Using the KW prescription, we obtain the following analytical formulae for the 

disk and boundary layer luminosities respectively for this case as: 

(4.44) 

(4.45) 

4.4.2 Case (b): Radius of the star lesser than the marginally 

stable orbit radius (x. < Xorb) 

In this case, the accretion disk will extend inward to a specific radius corresponding 

to Xorb. The energy released in the disk as the particle comes in from infinity to the 

innermost stahle orbit will be 

(4.46) 

and the energy released in the boundary layer will be 

EBL = {Eorb - E.} (4.47) 
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The analytical formulae for the disk and boundary layer luminosities for this ca..'le are: 

-KW 72 1 (2) 3(2 -: (4 48) ED = 0.05 + 16:3 J . 

E~i" ~ [~- JI- :.J -116 Gt'] (4.49) 

4.5 Keplerian Angular Velocity Profiles 

The Keplerian angular velocity (OK = drp/dt) is obtained from Eqs. (4.26) and (4.27) 
as: 

(4.50) 

In terms of the dimensionless variables, this reduces to 

1 { J h2ajX2} 
flK ~ T, 2£' + (i;- !x~) (4.51 ) 

Using the KW approximation, the formula for the Keplerian angular velocity profile 
of co-rotating test particles is: 

K - Tg (2£)3/2 1 + (2XP/2 j ( 4.52) 
nKW _ 1 2 { 1_} 

For the marginally stable orbit, with the radius given by Eq. (4.40), the Keplerian 
angular velOcity reduces to 

(4.53) 
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Figure 4.1: The functional dependence of the gravitational mass with central density for 

EOS model BPAL12. See text for the deta.ils. 

4.6 Results 

4.6.1 Equilibrium sequences of neutron stars in "slow" rota

tion approximation 

The equilibrium sequences of rotating neutron stars depend on two parameters: the 

central density (Pc) and the rotation ra.te (H). For purpose of illustration, we choose 

two limits of 0 in this parameter space. These are: (i) the static or non-rotating 

limit (0 = 0), (ii) the secular instability limit (0 = Os). 

In Figs. 4.1 to 4.9, we display tihe results for equilibrium sequences of "slowly" 

rotating neutron stars. In these figures, where present, the dotted lines represent the 

corresponding quantity for a configuration rotating at the secular instability limit, 

while the bold eurve represents those at the static limit. The thin continuous lines 

stand for the constant baryonic mass sequences. The dashed line stands for constant 
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Figure 4.2: Gravitational mass (M) in solar units versus equatorial radius (R) in kIll for 

EOS model BPAL12 

o sequence having 0 = 1.56 ms and the dot-dashed for the same, having n = 
2.49 ms. We have displayed seven baryonic mass sequences: four normal haryonic 

mass sequences corresponding to gravitational mass M = 1.33M0 and M = 1.4M0 at 

the non-rotating and the secular limit of rotation respectively and three snpramassive 

sequences (one at the maximum non-rotating mass value and two others having rest 

masses intermediate to the maxiumum non-rotating value and the maximum secular 

instability limit value). For the EOS model UU, since there is a causality violation 

for P'" 2.0 X 1015 g cm-3 , the sequences for central densities greater than this value 

are not physically valid. 

In Figs. 4.1, 4.4, and 4.7 we display the dependence of gravita.tional mass (!II) 

on the central density (Pc) for BPAL12, UU and SBD, which are respectively soft, 

intermediate and stiff EOS models. The maximum % increase in mass for a maximum 

rotation rate (0 = Os), is least for the soft EOS models (being 5.4 % for BPAL12) 

and increases for increasingly stiff EOS models (6.8% for SED). For EOS model 
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Figure 4.3: Neutron star rotation rate (0:) in units of 104 rad S-1 versus its specific angular 

momentum J for EOS model BPAL12. 

BPAL12, the norma.l sequences have Mo < 1.652 M0 and for EOS models UU and 

SBD, the normal sequences have respectively Mo < 2.679 M0 and Mo < 3.066 M0 

For the supramassive sequences, the rest mass range for the three EOS models are 

respectively, 1.652 < Mo/M0 < 1.699, 2.679 < Mo/M0 < 2.725, 3.066 < Mo/M0 < 

3.130. 

Figs. 4.2, 4.5 and 4.8 display the variation of the neutron star equatorial radius 

(R) with the gravitational mass (M) for the same set of EOS models discussed above. 

The increase in equatorial radius, corresponding to the maximum mass models, are re

spectively 3.2 % and 1.5 % for soft and stiff EOS models. If we assume that the fastest 

pulsar known to date, PSR 1937+21, has the canonical mass value of 1.4 M0 , then 

EOS models BPAL12, UU and SBD would each put its radius values respectively as 

10.7 km, 11.3 km and 15.3 km. It may me noted that for a 1.4 fl.10 gravitational mass 

configuration described by EOS model SBD, 0 = 4.03 X 103 rad 8-1 (corresponding 

to a period of 1.56 ms) is almost equal to Os. 
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Figure 4.4: M -p relationship for EOS model UU. 

Displayed in Figs. 4.3, 4.6 and 4.9 is the variation of the rotation rate (D) of the 

neutron star with its specific angular momentum (J). 

Table 4.1 (page 75) lists the structure parameters for "slowly" rotating neutron 

star configurations corresponding to maximum mass models in the static limit. The 

first three columns contain from left to right, the EOS model, the central density 

(Pc), the rotation rate (0 = Os), the gravitational mass (M), the radius (R) and the 

baryonic mass (Mo), all for two values of the rotation rate, respectively, n = 0 and 

o = ns. The last two columns in Table 4.1 are respectively, the moment of inertia 

(1) and the angular momentum (J). 

Table 4.2 (page 76) contains the structure parameters for the maximum mass 

rotating models. The listed quantities are the same as those for Table 4.1. 



c1wptC1'4 

2.5 

2.0 

1.0 

0.5 

uu 

,I: 
!!i 
ill 
id 
ill 

~ ~\l . 
! Ii 

" \ ~ 

\\ "'..., .... < ... 
. ~.,,:, ........................................... . 

B 10 12 14 16 
R (km) 

Figure 4.5: M-R variation for UU. 

4.6.2 Accretion Luminosities 

71 

In Fig. 4.10 we' display the variation of the neutron star gravitational mass (M), 

baryonic mass (Mo) and ra.dius (R) and the radius (Torb) of the innermost stable 

orbit with the spcdfic angular momentum G) for the three EOS models mentioned 

above. The plots m'l' for a constant. central density, corresponding to that of the 

maximum rotating model. The solid line represents EOS model BPAL12, the dotted 

and the dashed lines correspond to EOS models UU and SBD respectively. The 

graphs for Rand rorb, when viewed in tandem shows the variation of the boundary 

layer extent with increasing rotation. 

In Fig. 4.11 we display the variation of Torb and R with Pc for EOS models BPAL12, 

UU and SBD. In this figure, the solid curve is that of R for non-rotating configurations 

while the dotted enrve is t.he samf!, but for configurationR rotating at a rate 0 = OR' 

The dot-dashed curve represents r orb for non-rotating configurations, and the dashed 

curve is that for thr Rccular limit. The figures show that for a given EOS, the change 
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in R is less pronounced for high Pc values while that for r orb is most pronounced. 

Shown in Fig. 4.12 are the plots of (a) disk luminosity (ED)' (b) the boundary 

layer luminosity (EBL ), (c) the disk to boundary layer luminosity ratio (Eo/ EsL) and 

(d) the total luminosity (ED +EBd against Pc. Figs. 4.13 and 4.14, also present plots 

of the same quantities, but in these cases, against the specific angular momentum (]), 

respectively, for constant Pc (corresponding to a configuration having M = 1.4 M0 at 

the non-rotating limit) and for a constant M = 1.4 M0 sequence. In order to illustrate 

typical qualitative features, we present the plots only for EOS model UU. In all of 

these figures, the solid line corresponds to the non-rotating limit (for Figs. 4.13 and 

4.14, this line should be only taken as an indicator of the value at 3 = 0), the dotted 

line corresponds to the secular limit and the dashed line corresponds to the analytical 

values for the respective quantities. As is clearly seen from Eqs. (4.44), (4.45), (4.48) 

and 4.49, the totallumiosity CEo + EBd using the analytical expression equals that 

for the non-rotating configuration. Hence the absence of the dashed lines in the 

(ED + EBL ) plots of Figs. 4.12, 4.13 and 4.14. 

It is evident from these figures that ED always increases whereas EBL always 
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Figure 4.7: M-p relationship for SBD. 

decreases for increasing specific angular momentum (and hence increasing rotation 

rate) of the star. Since EBL is about a factor of 10 larger than ED, the total luminosity 

always decreases for increasing rotation rate. The analytical expressions for EBL 

and ED while displaying the qualitative variation of these quantities, however, do 

not provide a satisfactory quantitative estimate. The dicontinuities in these curves 

represent the switching over from R 2:: Torb case to R < forb' 

Fig. 4.15 displays the angular velocity profiles of configurations having M -

1.4 M0 and stellar rotation rate n = ns for (a) EOS models BPAL12 (solid), UU 

(dotted) and SBD (dashed) (b) for EOS model UU, along with the corresponding 

analytical profile obta.ined using Eq. (4.52). The nearly vert.ica.l line in these plots 

represents the schematic joining of the value of nK at f == fbrb and that at r == R 

(these configurations have 7'orb = R). 
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4.7 Concluding Remarks 

74 

In order to go beyond the HT framework for describing rapidly rotating neutron stars, 

one needs to take into account all the higher order terms in n entering the metric. In 

this chapter, we have described the general relativistic effect of a "slowly" rotating 

space-time on the disk and boundary layer luminosities for disk-accreting neutron 

stars. We now move on to investigate the changes in neutron star stucture due to the 

general relativistic effects of rapid rotation. 
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EOS fir 12. M R Mo I J 
(xl015 g C a) (x 1114 md 9- 1) (Me) (kill) (M~~ ) (xl04G egs) (x1049 ega) 

(U = 0) (!l = l2,) (u=()) (rl = 11.) (11=0) (fl = fl.) 
BPAL12 0.36 (l.BO!) 1.466 1.547 9.290 0.478 1.650 1.608 0.004 0.732 
UU 2.80" 0.910 2.189 2.305 9.822 9.859 2.679 2.725 2.160 1.966 
SBD l.30 0.572 2.595 2.773 14.158 14.374 3.066 3.130 4.626 2.649 

Table 4.1: Structure parameters for neutron stars in the "slow" rotation approximation, 

for configuratioIls corresponding to maximum mass models in the static limit. The asterisk 

against the central density corresponding to EOS model UU indicates that the EOS violates 

causality in this density regime and the corresponding configuration may not be physically 

valid. 
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Figure 4.10: Neutron star gravitational mass (M), baryonic mass (Mo), radius (R) and the 

radius (rorb) of the innermost stable orbit as functions of the specific angular momentum 

of the neutron star, for three EOS models. In order to illustrate the maximal effects of 

rotation, we have chosen the maximum rotating mass for each of the EOS models. The 

solid curve corresponds to EOS model BPAL12, the dotted one to UU and the dashed 

curve to SBO. 

EOS Pc 11. M R Mo I J 
(xl016 gc-3) (x104 rad a-I) (M0) (kin) (M(~ ) (xl045 cgs) (x1049 cgs) 

(0 =0) (11 = n,) ([I =0) ({1 = (1.) (11 =0) (11 = 11,) 
BPAL12 0.39 0.832 1.467 1.547 0.124 9.303 1.652 1.609 0.879 0.732 

UU 2.70' 0.902 2.188 2.306 9.880 9.921 2.677 2.725 2.175 1.962 
SBD 1.30 0.572 2.595 2.773 14.158 14.374 3.066 3.130 4.626 2.649 

Table 4.2: Structure parameters for the maximum ma.'3S rotating models. The asterisk 

against the central density for EOS model UU has the same significance as for Table 4.1. 
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Figure 4.11: The variation of rorb and R with Pc for two values of rotation rates: n = 0 

and n = Os, for the EOS models BPAL12, UU and SBD. In these figures, the solid curve 

is that of R for non-rotating configurations and the dotted curve is the same, but for 

configurations rotating at a rate 0 = Os. The dot-dashed curve represents rorb for non

rotating configurations, and the dashed curve is that for the secular limit. 
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Figure 4.12: The variation of disk luminosity (ED), the boundary layer luminosity (.EeL), 

the boundary layer to disk luminosity ratio (EBLI En) and the total luminosity (ED + 
EBd with Pc. These plots are for EOS model UU. In all of these figures, the solid line 

corresponds to the non-rotating limit, the dotted line to the secular limit and the dashed line 

to the analytical values for the respective quantities. The total luminosity from analytical 

expression equals that for the non-rotating configuration. 
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Figure 4.13: The variation of the same quantities as in Fig. 4.12 with 3. These plots are 

for a constant Pc (corresponding to a configuration having M = 1.4 M0 at the non-rotating 

limit) for EOS model UU The various curves have the same significance as in Fig. 4.12. 
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Figure 4.14: The same plot as in Fig. 4.12 for a M = 1.4 M0 sequence for EOS model UU. 
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(the curves have the same significance as for Fig. 4.1O) and (b) for EOS model UU - the 

dotted curve is that obtained using the analytical expression Eq. 4.52. All these curves are 

for M = 1.4 M0 . 



Chapter 5 

Rapidly Rotating Neutron Stars in 

General Relativity 

5.1 Introduction 

The effect of rotation ill the HT geometry is incorporated perturbatively. Therefore, 

this formalism is accurate only up to second order in the rotation rate (Q) of the 

neutron star. In a formalism for eonstruc:ting models of rapidly rotating neutron, 

exact in its treatment of n, the perturbation treatment is inadequate and OIle needs 

to incorporate the higher order terms of n. Unlike in the case of "slowly" rotating 

models, where the metrie coefficients have analytic expressions, for rapidly rotating 

neutron stars in general relativity, this is not possible and the metric coefficients have 

to be computed numerically: Early work on this have been based on incompressible 

fluids and polytropie models (Bonazzola & Schneider 1974; Butterworth 1976). In 

1986 Friedman, Ipser & Parker (1986) reported calculations of rapidly rotating neu~ 

tron stars in general relativity using a set of realistic equations of state (EOS) for 

neutron star matter. A similar work based on a formalism due to Komatsu, Eriguchi 

& Hachisu (1989) (KEll forma.lism) was done by Cook, Shapiro & Teukolsky (1994) 

for purpose of studying quasi- st.ationary evolution of isolated neutron stars. An alter~ 
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native approach based on spectral methods was developed by Bonazzola et at. (1993). 

Extensive calculations using the spectral method for a broad set of realistic EOS of 

neutron star matter were presented in Salgado et at. (1994a; 1994b). For R recent 

review on rapidly rotating neutron stars in general relativity, see Stergioulas (1998). 

In this chapter, we calculate equilibrium sequences of rapidly rotating neutron 

stars in general relativity for the EOS models chosen by us (Chapter 2). As in 

Chapter 4, we construct normal and supramassive evolutionary sequences of constant 

rest mass and n-sequences for rotation rates corresponding to periods: P = 1.558 ms 

and P = 2.49 ms. 

We describe the metric representing the space-time geometry around rapidly ro

tating relativistic stars, and the corresponding general relativistic structure equations 

to be solved in section 5.2; the numerical procedure for this is elaborated in section 5.3. 

The results for equilibrium sequences of rapidly rotating stars are provided in sec

tion 5.4, wherein we also provide the salient differences between the HT and rapidly 

rotating neutron star formalisms. In section 5.5 we provide some concluding remarks. 

5.2 Relativistic Stars in Rigid and Rapid Rotation 

The space-time around a rotating neutron star can be described in quasi-isotropic 

coordinates, as a generalization of Bardeen's metric (Bardeen 1970): 

ds2 - gMvdx~dxV(M,~= 0,1,2,3) 

-e'Y+>"'de + e2Ot.(1'2d02 + d1'2) + e'Y-Ar2sin20 

(5.1) 

where g~v is the metric tensor. The metric potentials " A, Q, and the angular 

velocity of the stellar fluid relative to the local inertial frame (w) are all functions 

of the quasi-isotropic radial coordinate (f) and the polar angle (0). The bar over 

the radial coordinate is to distinguish it from the Schwarzschild radial coordinate r, 

related to l' through the equation r = 1'e("(->...)/2 (see Misner, Thorne & Wheeler 1974). 

We use here geometric units: c:"- 1 = G. We assume a perfect fluid description, for 
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which the energy momentum tensor is given by: 

(5.2) 

where p is the total energy density, P the pressure and up. the unit time-like four 

velocity vector that satisfies 

(5.3) 

The proper velocity ij of the matter, relative to the local Zero Angular Momentum 

Observer (ZAMO), is given in terms of the the angular velocity n = u3 juO of the 

fluid element (measured by a distant observer in an asymptotically flat space-time), 

by the following equation (see Bardeen 1970): 

ij = (S1 -w)rsinf)e->' (5.4) 

where, as in the previous chapters, the tilde over a variable represents the correspond

ing dimensionless quantitiy. The four velocity (uM) of the matter can be written as 
e-h+>')/2 

'U IL = (1 _ ij2)1/2 (1, 0,0, Q) (5.5) 

We make a change of variables (for numerical convenience; see Appendix): 

(5.6) 

where K,1/2 represents a fundamental unit of length (throughout the rest of this thesis, 

and should not to be confused with the variable for optical depth in Chapter 1) and 

f e is the coordinate equatorial radius of the neutrOl1 star in units of r;,1/2 (explained 

in Appendix). Note that at the equator f; = 0,,5 

In these variables, the Einstein field equations projected on to the frame of refer

ence of a ZAMO yield three elliptic equations for the metric potentials -X, "'I and w, 

and two linear ordinary differential equations for the metric potential a (Komatsu, 

Eriguchi & Hachisu 1989; Butterworth & Ipser 1976; Bardeen & Wagoner 1971). The 

equations for -X, "'I and w have the form: 

(5.7) 

(5.8) 

(5.9) 
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where the elliptic differential operator Li is given as: 

Li = (1- S)4~ _ 2(1- S)3 (~)2 + 2(1 - S)3 (~) 
as2 as s as 

+ (1 - s)2(1 - p,2) ( 82 ) 

S2 ap,2 

(1 - S)2p, ( 8 ) (1 - S)2 (82 ) 

- S2 • op, + s2(1 - p,2) Ocp2 

where 

85 

(5.10) 

(5.14) 

(5.15) 

and P and p are the scaled (with respect to K}/2: see Appendix) values of the pressure 

and density respectively, in the neutron star interiors. 

The gravitational field equation satisfied by the 4th metric potential a are two 

ordinary differential equations - one in JL and the other in s. Here, we make use of 
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the differential equation for O! in J.I, (differential equation for O! in 8 does not provide 

any new information - see Butterworth & Ipser 1976): 

1 
O!,~ = -2(A,/-L + I,~) - {(1- J.l,2)[1 + 8(1- 8),,8]2 + [-/-L + (1 - /-L2),,~]2}-1 

x [~{8(1 - 8)[8(1 - 8h,sLs + 82(1 - 8)2,~ 
-[(1 - li)r,~),J' - I,/4[-J.I, + (1 - /-L2)r,~]) x [-/-L + (1 - /-L2),,/4] 

1 
+"4[82(1 - 8)2(A, 8 + 1,8)2 - (1 - ,..t?)(>., J.1. + I,/4)2][-J.1. + (1- J.l,2)r,~1 

-s(l - s)(l - J.1.2) [~(A' 8 + I,8)(A, J.I, + ',~) + I,SP. +,),,81,/4] [1 + s(l- S),,8] 

+s(l - s)I-£I,8[1 + 8(1 - 8),,8] + ~(1 - JJ,2)e-2>. { 21 = s (1 - J.l,2)W,sW,s 

[1 + 8(1 - ;)-y"J - [S4w~ - (1 ~2 s)' (1 - 1'2)W~.] [-I' + (1- I")-Y," } ] (5.16) 

with the initial condition that O! = (r - >')/2 at J.I, = 1. 

In the KEH formalism, the elliptic differential equations are converted to integral 

equations (so as to easily handle the boundary conditions) using Green's function 

approach. We therefore have the following relations for A, 1 and w 

00 [( 1 - ") 2n+1 r d8' S,2n [1 -
_e-7 / 2 ~ P2n(J.I,) -8-' 10 (1 _ ~')2n+2 10 dJ.l,'P2n(I-£')S>.(s', JJ/) 

( 
S ) 2n 11 d8'(1 - S,)2n-l 101 -] + -" - '2 +1 dp.lP2n(Jt')S>.(.S',p.') 

1-8 s 8" 0 
(5.17) 

_ _ 2e-7/ 2 x f: sin[(2n - 1)8] 
. 7r n=l (211. - 1) sin fJ 

[ ( 1 ~ 8) 2n fo8 (:~ ~~~~2:~1 fol dJ.l,' sin[(2n - 1)8']87(8', J.1.') 

( 
8 )2n-211d8'(1-s')2n-3101 -] + -- 2 1 dJ.l,ISin[(2n - 1)8']87 (s', p.') (5.18) 

1 - S 8 8'71- 0 

_ _e(2)'-7)/2 x f: Pin-l (1-£). 
n=1 211.(211. - 1) sm8 

[( 1- 8)2n+1 r d8'S,2n [1 1 - , 
-8- 10 (1-.s')2n+21o dp.'sinfJ'P2n_l(/J')Sw(s',/J) 

( 8 ) 2n-2 [1 ds' (1 - 8,)2n-3 [1 -] 
+ 1- s 1., s,2n-1 10 dJ.t!sin(}'pin_l(P.')8w(s', p.') (5.19) 

where Pn(J.I,) are the Legendre polynomials, P;:(/-t) are the associated Legendre poly

nomials, and sill(n8) is a. f\Indion of p, through 8 = arccos It. 
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From the relativistic equations of motion, the equation of hydrostatic equilibrium 

for a barytropic fluid may be obtained as: 

- ~p dP ttl - -h{P) - hp == _ _ _ = lnut - lnu~ - _ F(n)dn 
Pp (p+ P) nc 

(5.20) 

where h(P) is termed as the specific enthalpy. Pp , u~ and hp are respecively, the 

scaled value of pressure, t-component of the four velocity and the specific enthalpy 

at the pole; F(O) = utu<p is the integrability condition imposed on the equation of 

hydrostatic equilibrium, and it can be physically interpreted as the rotation law for 

the matter constituting the neutron star. An appropriately chosen value of hp defines 

the surface of the star. Eq. (5.20) shows that the hydrostatic equilibrium equation is 

integrable if the EOS (.P{p)) .and utu<p are specified. As shown by Bardeen 1970 (see 

also Butterworth & Tpser 1976), the quantity uturp is a function of Q only. Komatsu, 

Eriguchi & Hachisu (1989) have suggested the following specific form for F(Q): 

(5.21) 

where A is a rotation constant such that when A -t 00, the configuration approaches 

rigid rotation (that is, D = Qc) so as to keep F(Q) finite. Furthermore, when A -t 0, 

the configuration should approach that of rotation with constant specific angular 

momentum. 

On substituting Eqs. (5.5) and (5.21) into Eq. (5.20), we have the hydrostatic 

equilibrium equation as 

h(P) - hp - ~ [')'p + Ap - ')' - A -In(l - v2) + 

A2(D - Dc)2] (5.22) 

where "Ip and Ap are the values of the metric potentials at the pole. Therefore, the 

hydrostatic equilibrium equations at the centre and equator for a rigidly rotating 

neutron star become respectively 

- 1 
h{Pc ) - hp - "2 bp + Ap- "Ie - Ad = 0 

("IP + Ap - "Ie - Ae) - In[l - (De - we)2r;e-2Ae ] = 0 

(5.23) 

(5.24) 

where the subscripts p, e and c 011 the variables stand respectively for their corre

sponding values at the pole, equator and center. 
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For computing an equilibrium configuration of rapidly rotating neutron star, we 

solve (numerically, as explained in the next section) the integral Eqs. (5.17), (5.18) 

and (5.19) the ordinary differential Eq. (5.16), together with Egs. (5.22), (5.23) 

and (5.24), iteratively to obtain A, " a, W, the equatorial coordinate radius (fe) , 

angular velocity (0), and the density (,0) and pressure (P) profiles. 

5.3 Numerical Procedure for Solution 

The numerical procedure followed by us is the KEH formalism. This is based on 

an earlier work by Hachisu (1986) which has a pre-condition for self-consistency, re

quiring that the maximum (central) energy density: Pc and the ratio of the polar to 

equatorial radial coordinates: fp/fe be fixed for each iterative cycle. For a configura

tion that is axisymmetric and symmetric about the equatorial plane, the computation 

domain in spherical polar coordinates extends across 0 ::; f :::; 00 and 0 :::; () :::; 7r/2. 

This translates to a region for which 0 ::; s ::; 1 and 0 ::; J.l ::; 1. If Ai, ,i , a i and f! 

are the values of the corresponding parameters during the ith iterative cycle, then: 

1. these values are first scaled (divided) by (f!)2 to obtain ~i, 1i and &i 

respecti vely. 

2. a new value of fe is cakulated using Eq. (5.23) for 15 = Pc i.e. v = a so 

that 

(5.25) 

3. the value of nc is computed from Eq. (5.24) as 

(5.26) 

4. the values of the three scaled metric potentials ~ i, -yi and &i are rescaled 

(multiplied) by (f!+l)2 
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5. using these values off!+\ n~+1, )..i, "Ii, ai, Wi, Eq. (5.23) is solved to obtain 

the matter energy distribution namely pi+!, pi+l, iii+l etc. 

6. the integral equations for the metric potentials (Eqs. 5.17, 5.18 and 5.18) 

and the ordinary differential equation (Eq. 5.16) are solved to obtain )..i+l, 

')'i+l, wi+l and ai+l. 

7. steps (1) to (6) are repeated until fe converges to within a tolerance of 

10-5• 
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Once Te converges, the metric potentials ).., "I, w and Q together with the density 

(p) and pressure (P) profiles,can be used to compute the structure parameters (see 

Appendix). 
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Figure 5.1: The functional dependence of the gravitational mass with central density for 

EOS model BPAL12. See text for the details. 
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5.4 Results for the Equilibrium Sequences of Rapidly 

and Rigidly Rotating Neutron Stars 

As remarked in section 4.6, the equilibrium sequences of rotating neutron stars depend 

on two parameters: the central density -(Pc) and the rotation rate (0). The maximum 

rotation rate that a configuration can attain, is that, when the outwardly directed 

centrifugal forces balance the inward gravitational force. This limit of rotation (0 = 
Oms), we term as the mass shed limit. For rigid rotation, this occurs when at the 

equator (i.e. J1. = 1), 
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(5.27) 

Figure 5.2: Gravitationallllass (M) ill solar units versus equatorial radius (R) in kro for 

EOS model BPAL12 
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Figure 5.3: Neutron star rotation rate (0) in units of 104 rad s-1 versus its specific angular 

momentum 3 for EOS model BPAL12. 

For purpose of illustration, we choose two limits in the (PcJ2) parameter space. 

These are: (i) the static limit (0 = 0), (ii) the centrifugal mass shed limit (0 = Oms). 

We calculated the equilibrium sequences for rapidly rotating neutron stars, using a 

numerical code, based on the formalism described above. In Figs. 5.1 to 5.9, we display 

the results for equilibrium sequences of rapidly rotating neutron stars. In each of 

these figures, the dotted lines represent the corresponding quantity for a configuration 

rotating at the centrifugal mass shed limit, while the bold curve represents those at the 

static limit. The thin continuous lines stand for the constant baryonic mass sequences. 

The short dashed line stands for constant n sequence for ncorresponding to a period 

of 1.56 rns and the dot-dashed for the same corresponding to a period of 2.49 ms. 

We have displayed seven rest mass sequences: Four normal sequences corresponding 

to gravitational mass M = 1.33 M0 and M = 1.4 M0 at the non-rotating and the 

mass shed limit of rotatioIl respectively and three supramassive sequences (one at the 

maximum non-rotating mass value and two others having mass intermediate to the 
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Figure 5.4: M-p relationship for EOS model UU. 
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maximum non-rot.ating value and the maximum mass shed limit value). In addition to 

all these curves, we have a long da.shed curve standing for the secular instability limit 

obtained in Chapter 4 and the triple·-dot-dashed curve standing for the same limit 

using the new formalism for rapidly rotating neutron stars. From these figures, it will 

be noticed that the supramassive sequences (as well as the mass shed limit) for EOS 

model UU get terminated prematurely. This is a consequence of causality violation 

by the EOS model at (p I"V 2.0 X 1015 g cm-3 ). When the sound speed jPjp exceeds 

the speed of light, the EOS becomes stiffer than the maximum stiffness physically 

allowed. In this density region, therefore, when the centrifugal forces tend to distend 

the neutron star, its rigidity forces it to break-up than making it attain hydrostatic 

equilibrium. In any case, even if there existed stable configurations in this domain, 

they would not be physically valid for the same reason of causality violation. 

Figs. 5.1, 5.4 and 5.7 show the functional dependence of gravitational mass (M) 

on the central density (Pc), respectively for BPAL12, UU and SBD EOS models. For 

BPAL12, the normal rest mass sequences have Mo < 1.646M0 . For EOS models UU 
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Figure 5.5: M-R variation for UU. 

and SBD, Mo < 2.673M0 and Mo < 3.050M0 respectively. Compared to the values 

quoted for the same in Ohapter 4, this corresponds to a lowering of the mass values by 

less than 0.4%. For the supramassive sequences, the rest mass range for the three EOS 

models increase in comparison to the HT formalism. For BPAL12 and SBD, they are 

respectively: 1.646 < Mo/M0 < 1.886, for BPAL12, and 3.050 < Mo/M0 < 3.779, 

for SBD. Lacking the maximum mass value at the maSs shed limit for EOS model 

UU, we can only say that the supramassive rest mass sequences for this model belongs 

to the range: Mo/M0 > 2.673. The maximum % increase in mass for the mass shed 

limit is least for the soft EOS models (being N 15% for BPAL12) and increases for 

increasingly stiff,EOS models ("" 25% for SBD). The differences in the curves for 

secular instability limit obtained using the two formalisms show very little difference 

« 2%). 

In Figs. 5.2, 5.5 and 5.8 we display the variation of gravitational mass (M) with 

the equatorial radius (R). The % increase hi the value of the radius of the maximum 

mass models at mass shed limit from those at the static limit are respectively (r'V 38%) 
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and (rv 36%) for BPAL12 and SBD. For a 1.4 ~M(~) gravitational mass star rotating at 

a period of 1.56 ms, the radii given by configurations made of matter described by 

EOS models BPAL12, UU and SBD are respectively: 10.9 km, 11.6 km and 17 km 

respectively. The radius values for the secular instability limit obtained using the 

t'slow" rotation approximation is substantially lesser than those obtained using the 

formalism for rapidly rotating neutron stars. The differences are the least for the soft 

model (BPAL12) and largest for the stiff model (SBD). 

The n--] (where .7 = c.l IG M2 as earlier mentioned) variation is displayed in 

Figs. 5.3, 5.6 and 5.9. Apparent from these graphs, is the property that the soft 

EOS models can be spun up to larger rotation rates. The qualitative features of the 

variation of n with] for the constant rest mass sequences are the same. However, 

for the mass shed limit, the variation appears different for each EOS model. The 

most striking differellec is the positive slope at high n (the causality violating region) 

for EOS model UU, when there is a negative trend for the same in this density 

regime for models BPAL12 a.nd SBD. It is also seen that the differences for the 
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secular instability limit using the two formalisms are again substantially more for the 

quantities displayed in these graphs. 

Tables 5.1 and 5.2 contain the structure parameters for the maximum mass models 

in the static limit and those rotating at the mass shed limit. The quantities listed 

have the usual designation. The causality violation of EOS model UU (as explained 

earlier) disallows stable equilibrium rotating configurations in the density region of 

p > 2 X 1015 g cm -3 Therefore, there are no entries corresponding to this EOS 

model in the tables. 

The results of our code agree with the published results of Friedman, Ipser & 

Parker (1986), and those using the code of Stergioulas & Friedman (1995) to less than 

1%. Also, wherever a comparison was possible, our results agreed with those reported 

in Cook, Shapiro & Teukolsky (1994) to a similar degree of accuracy. For non--rotating 

equilibrium models, we found our results to be within 0.3% of the published results 

of Arnett & Bowers (1977). 
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5.5 Concluding Remarks 

96 

Rapid rotation introduces several interesting features into the calculation of neutron 

star strucut.re. This underlines t.he importallce that a rapid rotation can have 011 

describing the accretion flow around neutron stars. To recall, the standard (Newto~ 

nian) theory, as detailed in Chapter 1, predicts that the boundary layer luminosity 

should vanish for stars rotating at the break-up limit. Whether or not this is the 

case, on incorporating general relativist.ic effects of rotation, forms the subject matter 

of Chapter 6. 
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Figure 5.9: 0-3 variation for SED. 

EOS P. n. M R Mo I J 
(xl016 g c-3) (xl(J4 rad 9- 1) (MCi)) (km) (M0 ) (xl046 ega) (xl048 ega) 

(0=0) (Sl = Sl.) (fl == 0) (0=0,) (Sl .. 0) (0 = fl.) 
BPAL12 0.39 1.098 1.465 1.676 9.093 12.104 1.646 1.881 1.286 1.412 
UU 2.80· 2.188 9.816 2.673 
SBD 1.30 0.790 2.588 3.205 14.151 18.731 3.050 3.761 8.083 6.382 

Table 5.1: Structure parameters for rapidly rotating neutron stars, for configurations cor

responding to maximum mass models in the static limit. The asterisk against the central 

density corresponding to EOS model UU indicates that the EOS violates causality in this 

density regime and the corresponding configuration may not be physically valid. In addi

tion, the entries corresponding to the rotating configurations are unavailable due to causality 

violation of this EOS beyond p = 2 X 1015 g cm-3 
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EOS Pc n. M R Mo I J 
(xlOl5 g e-3 ) (x 104 rad 8-1) (Me) (kill) (M(l)) (x1045 ega) (xl049 ega) 

(11 =0) (n = n.) (11 = 0) (Sl = n,) (fl = 0) (fl = fl,) 
BPAL12 3.40 1.046 1.461 1.681 9.376 12.537 1.641 1.886 1.368 1.430 
SBD 1.10 0.762 2.571 3.221 14.446 19.253 3.026 3.779 8.552 6.516 

Table 5.2: Structure parameters for the maximum mass rotating models at the mass shed 

limit. The structure parameters for EOS model UU at mass shed limit are unavailable for 

the same reason as in Table. 5.1. 



Chapter 6 

Accretion Luminosities of 

Non-magnetic and Rapidly 

Rotating Neutron Stars: Fully 

General Relativistic Formalism 

6.1 Introduction 

For accreting neutron stars in LMXBs, a narrow boundary layer girdling the neutron 

star will form next to the neutron star surface. The importance ofthe boundary layer 

derives from the possibility that this could be the site for the emission of a variable 

isothermal blackbody radiation component observed in the spectra of LMXBR charac

terized by very high X--ray lurniuosit.y (Mitsuda et al. 1984). For weak magnetic field 

neutron stars, the boundary layer is expected to be substantially more X-ray lumi

nous tllan the entire extended accretion disk on general theoretical grounds (Chapter 

5; Chapter 6 and references therein). All important feature of disk accretion outo 

a weakly magnetized neutron star is that the neutron star will get spun up to its 

equilibrium period (r..J milliseconds), over a timescale of hundreds of millions of years 

99 
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(Bhattacharya & van den Reuvel 1991). A rapid spin of the neutron star will enhance 

its equatorial radius and also relocate the inner boundary of the accretion disk closer 

to the neutron star surface. In effect, this would imply a narrowing down of the 

boundary layer separation. Consequently, the boundary layer luminosity is expected 

to be much smaller in comparison to the static or slowly rotating neutron star case, 

and this will alter the X-ray emission spectra of LMXBs. 

In Chapter 4, we have seen using the 'slow' rotation (but general relativistic) 

formalism due to RT, that rotation always increases the disk luminosity and decreases 

the boundary layer luminosity. We have also provided quantitative estimates of the 

same, corresponding to realistic neutron star models. As mentioned in preceding 

chapters, an important parameter in this connection is the radius of the marginally 

stable orbit (T'orb). This quantity plays a central role in deciding the magnitude ofthe 

gravitational energy release, and hence the accretion luminosities. The boundary layer 

separation will depend on whether the equation of state (EOS) of neutron star matter 

is stiff or soft. For rapidly rotating neutron stars, Cook, Shapiro & Teukolsky (1994) 

calculated the marginally stable circular orbits for application to angular momentum 

evolution of isolated neutron stars. 

Accretion onto a rapidly rotating neutron star can bring in several interesting 

features. LMXBs are likely to accrete material whose total mass can be a substantial 

fraction of the neutron star mass (~O.l M0 ). This can severely reduce the magnitude 

of the boundary layer luminosity (King 1995). Another important question is whether 

or not the accreting neutron star will be disrupted once it reaches equilibrium rotation 

rate with further arrival of the accreted plasma. Recently, Bisnovatyi-Kogan (1993) 

has given a self-consistent analytical solution for an accretion disk structure around 

a rapidly rotating non-magnetized neutron star, using rigidly rotating polytropic 

model. This work also gives a simple recipe for estimating the accretion luminosities 

based on accreting black-hole analogy. 

In this chapter, we examine how a rapid rotation rate of the neutron star will affect 

the boundary layer separation and reorder the contribution to the total accretion 

luminosity due to the disk and the boundary layer. The structure of rotating neutron 
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stars in general relativity are calculated using a code incorporating the formalism 

described in Chapter 7. This formalism is fully general relativistic and is amenable to 

a self-consistent numerical trea.tment, employing a N cwtOIl-Raphsoll type iterative 

scheme. 

The format of this chapter is arranged as follows. Section 6.2 gives the basic 

equations to be solved. The Keplerian angular velocity profiles are described in 

section 6.3 and the results presented in section 6.4. Section 6.5 concludes this chapter. 

6.2 Accretion Luminosities for a Rotating Space

Time 

The space-time around a rotating neutron star can be described by the metric (5.1). 

Since the metric is stationary and axisymmetric, the energy and angular momentum 

are constants of motion. Therefore, the specific energy E (in units of the rest energy 

moc2 , where rno is the rest mass of the accreted particle) and the specific angular 

momentum 1 (in unit.s of moe) can be identified as -Po and P3 respectively, where, 

1Jlt (II. = 0, 1,2, :3), H(,(tll<iH for t.he {'OIU' IIl011tellt.Ulll of (,lin part.id(~. From Uw eOl1(lit;ioll 

Pp.pP = -1, we have the equations of motion of the particle (confined to the equatorial 

plane) in this gravita.tional field as 

dt () -("Y+.\) (E~ l) t - -=p =e -w 
fiT 

(6.1) 

In dcp = p3 = Opo = e-("Y+>')w(E _ wl) + l 
Y - d'T f 2e(-Y-'x) 

(6.2) 

f,2 e2a:+"Y+>' (dr) 2 = E2 _ "y~2. 
- dr 

(6.3) 

where f is the quasi-isotropic radial coordinate and the Schwarzschild type radial 

coordinate (1") is related to if through the equation 

r = fe(r-.\)/2 (6.4) 

In the above eqnations, n is the angular velocity of the star as seen by a distant 

observer, dT is the proper time and 'r is the efi'eetive potential given by 

i" = e,H [1 + ~;'::l + 2wEI- w'l', (6.5) 
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From the expression for the effective potential and the conditions for circular orbits, 

extremum of energy and minimum of energy (Eqs. 3.4, 3.5 and 3.18), one obtains 

three equations in three unknowns, namely, f, E, and l. In principle, if analytical 

expressions for e"Y+A, e2a , e"Y-A and w are known, it would be a straightforward exercise 

to solve these equations to obtain f, E, and l. In practice, however, this is not so, and 

the solutions for the metric coefficients e"YH, 'e2a , e"Y-)." and w have to be obtained 

as arrays of numbers for various values of f and () using a numerical treatment. 

Furthermore, the condition (3.18) will introduce second order derivatives of I, )" and 

w, which means that care has to be exercised in ensuring the numerical accuracies 

of the quantities calculated. For this purpose, it is convenient to express E and l in 

terms of the physical velocity ii 

(6.6) 

of the stellar matter with respect to a locally nonrotating observer (Chapter 4; 

Bardeen 1972). This gives the following expressions: 

E-wl -

1 = 

ebH)/2 

J1- ii2 

vfe(-y-).,)/2 

J1-v2 

(6.7) 

(6.8) 

Eqs. (6.7) and (6.8) can be recognized as the condition for circular orbits. Condi

tions (3.5) and (3.18) yield respectively, 

e-Af 2w _ ± [e- 2>"r4w2_ + 2f(-v _ + ), _) + r2(-v2 __ ),2_)]1/2 V = ,r ,T I ,r ,r I ,r ,T 

2 + fh,r - >',7') 
(6.9) 

(6.10) 

where we have made use of Eq. (6.9) and its derivative with respect to f in order to 

eliminate the second order derivatives in Eq. (6.10). The zero of V;f7' and Eq. (6.4) 

will give the marginally stable circular orbit radius (rorb) and the corresponding v will 

yield E and 1. In Eq. (6.9), the positive sign refers to the co-rotating particles and 
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the negative sign to the counter-rotating particles. In this study, we have considered 

only the co-rotation case. 

Depending on the EOS and the central density, neutron stars can have radii greater 

than or less than rorb (Chapter 4; Datta, Thampan & Wiita 1995). As demonstrated 

in Chapter 4, the accretion luminosities will, of course, be different for these two cases 

These quantities can be calculated as follows: 

6.2.1 Case (a): Radius of the star greater than the marginally 

stable orbit (R> rorb) 

As described in Chapter 4, for an accretion disk around a relatively large neutron 

star, the innermost stable orbit (and hence the disk inner edge) will be located at 

the stellar surface. The ingress of a particle of rest mass mo from infinity to the disk 

boundary (which will be at the stellar surface) will release an amount of energy given 

by: 

(6.11) 

where EK (r = R) is, as usual, the specific energy of the particle in Keplerian orbit 

at the surface. This is obtained by solving Eq. (6.9) to obtain VK = ii and solving 

Eqs. (6.7) and (6.8) with r = Rand ii = UK to obtain lK and EK(r = R). Similarly, the 

energy loss in the boundary layer (a very narrow gap near the neutron star surface) 

will be 

(6.12) 

where E., as in Chapters 3 and 4, is the energy of the particle "at rest" on the 

stellar surface (the particle will be moving with the velocity iJ = Viii of the stellar fluid 

at the surface, where Vol< iR obtained by substituting into Eq. (6.6) all the relevant 

parameters for r = R) and is ealculated by solving Eqs. (6.7) and (6.8) for E at 

r = Rand ii = v •. 
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6.2.2 Case (b): Radius of the star lesser than the marginally 

stable orbit radius (R < rorb) 

As mentioned in Chapters 3 and 4, the. innermost stable orbit, in this case, will be 

the marginally stable one. Thus the accretion disk will extend inward to a radius 

corresponding to r = rorb. The energy released in the disk and the boundary layer 

will be as given as: 

ED - {I - Eorb } 

EBL - {Eorb - E*} 

(6.13) 

(6.14) 

where, as usual, Eorb is the energy of the particle in marginally stable circular orbit. 

This is calculated by finding the value of r = rorb at which Eq. (6.10) is satisfied and 

then solvin~ Eqs. (6.7), (6.8) and (6.9) for this r to yield Eorb . The energy E* of the 

particle on the stellar surface is calculated as described in the previous case. 

6.3 Angular Velocity Profiles 

For slowly rotating, accreting neutron stars, the angular velocity (OK(r)) of the ma

terial in Keplerian orbit around it, will have a profile that has a maximum located 

outside the stellar surface (Chapter 4). For rapid rotation rates of the star (corre

sponding to angular velocity close to the Keplerian value at the surface), a second 

type of profile for OK(r) is also possible, in which there exists no maximum but OK(r) 

increases monotonically all the way to the surface of the neutron star. In such a sit

uation, the accretion torque on the neutron star will not be purely advective. It will 

become possible for the viscous torque to transport angular momentum outwards at 

all radii. This can lead to interesting accretion sc~narios. 

The Keplerian angular velocity flK of a particle in an orbit around the rotating 

neutron star is defined as: 

(6.15) 
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where ii is as given in Eq. (6.9). The Keplerian angular velocity of the particle in an 

orbit at the surface of the neutron star puts a firm upper bound on the angular velocity 

the star can attain (Friedman, IpseI' and Parker 1986) and hence the boundary layer 

luminosity, when the star attains this maximum D, is expected to be zero (Sunyaev 

and Shakura 1986). 
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Figure 6.1: Neutron st.ar gnwitat.ional mass (M), baryonic mass (Mo), radius (R) and 

the radius (rorh) of t.he iunermost stabln orbit M a function of the stellar rotation rate for 

three EOS models. In order t.o illustrat.o the maximal effects of rotation, we have chosen 

the maximum rotat.ing UlaSH for elLch of the EOS models (for EOS model UU, we choose 

this central density t~() be the maximum central density for which structure parameters were 

a.vaila.ble Le. p = 2.2 x lOlr. g (:l1l-3 ). The solid curve corresponds to EOS model BPAL12, 

the dotted one to UU ami t,he <ia,shed eurV{l to SBD. 
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6.4 Results for Rapidly Rotating Neutron Stars 

As emphasised in Chapters 4 and 5, all the calculated parameters depend on the 

central density (Pc) and rotation rate (Q) of the neutron star. In order to illustrate 

this dependence, we choose two limits of [2, namely, the non-rotating or static limit 

([2 = 0) and the centrifugal mass shed limit (Q = [2ms), which are the two natural 

ends of a constant density sequence. In general, T orb exhibits three characteristics: 

(a) Torb is non-existent, (b) Torb < R, and (c) Torb > R. For the first two cases, 

r orb is taken to be the Keplerian orbit radius at the surface of the star. It may 

be noted that the first case (a), was not considered in the discussions for the non

rotating neutron stars and th.e slowly rotating ones. This is because the analytical 

nature of the metric therein, provided the external space-time automatically. This 

facilitated obtaining the equations of motion specifically for the external space-time. 

In the present formalism, the metric is a numerical one and the equations of motion 

for external and internal spacetimes cannot be decoupled. This is the cause for the 

non-existence of r orb for certain configurations. 

The variation of the gravitational mass M, baryonic mass Mo, stellar radius R, and 

the radius rorb of the marginally stable circular orbit with respect to 3 for a constant 

density corresponding to the maximum mass rotating configuration is illustrated in 

Fig. 6.1 (for EOS model UU, we choose this central density to be the maximum central 

density for which the structure parameters were available i.e. p = 2.2 X 1015 g cm-3 ). 

The solid curve corresponds to EOS model BPAL12, the dotted curve to EOS model 

UU and the dashed curve to SBD. From the graphs for Rand Torb, it is seen that 

r orb approaches R for increasing J and for maximum 3 nearly touches the surface 

of the neutron star; for EOS models UU and SBD, there exists a finite boundary 

layer extent at the centrifugal mass shed limit. We also provide a comparison, in 

Fig. 6.2, of the present formalism for rapidly rotating neutron stars (dashed curve) 

with the formalims of Hartle & Thorne (1968) (dotted curve). In this figure, we plot 

the same quantities as in Fig. 6.1, for EOS model UU, for a configuration that has a 

gravitational mass M = 1.4 M0 , in the non-rotating limit. 

To illustrate how the boundary layer separation varies with Pc, [2 and also with the 
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Figure 6.2: Same quantities as in Fig. 6.1 but for a configuration ha.ving M = 1.4 M0 at 

the static limit for EOS model UU. The dashed curve is obtained using the forma.lism for 

rapidly rotating neutron stars while the dotted curve is for the HT formalism. 

EOS, we give in Fig. 6.3, plots of Torb and R versus Pc for two ca.ses of O. The three 

graphs corresponding to the different EOS models, display R(O = 0) (solid curve), 

R(O = Oms) (dotted curve), Torb(!! = 0) (dot-dashed curve) and Torb(O = Oms) 

(dashed curve). It is apparent from the plots that as n increases from 0 to Oms 

for a fixed Pc, R increases and Torb decreases. Furthermore, at the centrifugal mass 

shed limit, rorb is greater than R for high densities (corresponding to supramassive 

configurations of rotating neutron stars at mass shed limit) for EOS models UU and 

SBD. This is in contrast to the standard notion that the boundary layer extent goes 

to zero at centrifugal mass shed limit. 

In Fig. 6.4 we plot the disk luminosity (En), the boundary la.yer luminosity (EsL), 

the ratio of EBI, to ED and the total luminosit.y (ED + EsL) as functions of Pc for 
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Figure 6.3: The variation of rorb and R with Pc for two values 'of rotation rates: n = 0 and 

n = Oms, for the EOS models BPAL12, UU and SBD. The curves is this figure have the 

same representation as in Fig. 4.11, except for Os being replaced by Oms in these cases. 

EOS model UU. The solid curve represents the plot of corresponding quantity at the 

static limit, the dot-dashed curve is obtained using the HT formalism at the secular 

instability limit, the dashed line represents the secular instability obtained using the 

formalism for rapidly rotating neutron star, and the dotted curve is at the mass shed 

limit. We see that ED increases with rotation rate, EBL decreases and becomes zero 

at the mass shed limit - the totalluminosty at the mass shed limit, therefore, is just 

that due to the extended disk. The ratio of the boundary layer to disk luminosity 

decreases to zero near the mass shed limit as expected in the Newtonian formalism. 

Figs. 6.5 and 6.6 are plots of the same quantities as in Fig. 6.4, but in these cases, 

with respect to the specific angular momentum]: the former being for a constant 

Pc sequence corresponding to configuration having M = 1.4 M0 at the static limit, 
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Figure 6.4: The varia.t.ion of disk luminosit.y (ED), the boundary layer luminosity (Esd, 
the boundary layer to disk luminosity ratio (EarJ ED) and the total luminosity (ED +EBL) 

with Pc. These plots arc for EOS model DU. In all of these figures, the solid line corresponds 

to the non-rotating limit, the dot-dashed line to the secular instability limit as obtained by 

HT formalism, the dashed line t.o the secular instability limit as obtained by the formalism 

for rapidly rotating neutron stars and the dotted lillE.~s to the centrifugal mass shed limit. 

and the latter for a constant gravitational mass sequence with M = 1.4 Me . The 

curves have the same significance as in Fig. 6.2, namely, the dashed curves represents 

quantities obtained using the formalism for rapidly rotating neutron stars, while the 

dotted curve represents those for the HT formalism. From Fig. 6.5, we see that ED 

(EBL/En) increase (decrease) with J at a lesser rate than for the HT formalism. 

EBL and EBL + ED on the other hand decrease at a similar rate compared to the HT 

formalism. These diffE~rences may be ascribed to the following effect: for HT formalism 

,.orb decreases with J (Fig 6.2), while for the rapidly rotating case, (rorb < R and 

innermost stable orbit in sueh a eaH!', t.aken to b(~ located at, R - Fig 6.2) increases 
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Figure 6.5: The variation of the same quantities as in Fig. 6.4 with J. These plots are for 

a constant Pc (corresponding to a configuration having M = 1.4 M8 at the non-rotating 

limit) for EOS model UU. The various curves have the same significance as in Fig. 6.2. 

with]. Variation of ED depends only on the variation of T orb, while that of EEL 

depends on the variation of both Torb and R. For Fig. 6.6 too, the variation of the 

corresponding quantities depart significantly for the two formalisms. The reason for 

this departure is also the difference in the variation of Rand Torb (see Fig. 6.7) with 

respect to J for the two formalisms. Fig. 6.7 gives the plot of Torb as a function of 3, 
for a constant gravitational mass sequence corresponding to M = 1.4 M0 for EOS 

model UU - the curves have the same significance as for Fig. 6.2. The discontinuity 

in the curves arise due to the change over from the T orb > R case to T orb = R case. 

In Fig. 6.8, we give plots of the angular velocity profiles for the 1\1 = 1.4 M0 configurati< 

rotating at the mass shed limit (a) for EOS models BPAL12 (solid), UU(dotted) and 

SBD (dashed) (b) EOS model UU (solid curve) along with the corresponding nK pro-
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Figure 6.6: The same plot as in Fig. 6.5 for a M = 1.4 M0 sequence for EOS model UU. 

file for the secular instability limit obtained using the HT formalism (dashed curve

same as the solid curve in Fig. 4.15). Unlike Figs. 3.3 and 4.15 there exist no vertical 

lines as these configurations an) rotating at mass shed limit and Torb = R (therefore 

for these configurations, n = Oms = Old and the profiles join smoothly with the value 

of n at the surface. 

6.5 Concluding Remarks 

This chapter concludes our investigation of luminosities of disk accreting non-magnetic 

neutron stars. In Chapter 7, we summarize the main conclusions of this investigation 

and also outline the direction for future explorations in continuation of this work. 
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Conclusions and Future Prospects 

Stellar X-ray sources are binary systems comprising a central compact object and 

an ordinary star in close orbit around eadl other, with mass transfer from the latter 

to the former. The compact object accretes matter from the companion star via an 

accretion disk. There are two classes of X-ray binary systems - HMXBs and LMXBs. 

HMXBs represent Population I systems and LMXBs represent old Population II sys

tems. Of particular importance are LMXBs containing neutron stars as the central 

accretors, as these possess a hard surface and radiate away most of the energy from 

matter striking it. In addition, these have weak magnetic fields, and therefore provide 

a testing ground for strong field gravity. LMXBs exhibit a plethora of phenomena 

that are very restrictive of models and is at the same time, suggestive of interpre

tation. A first step towards understanding these systems is to study the features 

of the simplest models using Newtonian approach. The (nono-relativistic) standard 

accretion disk model based on this approach demonstrates the important feature that 

accretion through a disk entails mass transport inward and angular momentum out

wards. Matter circulates in such a thin disk at supersonic speeds while the radial 

infall velocity of matter is highly subsonic. For sub-Eddington accretion rates, the 

disk is expected to have a concave structure. In such a system, the standard accre

tion disk model predicts that the luminosity of the extended disk will be one-half 

114 
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the total gravitational energy. There will form a narrow boundary layer girdling the 

star, where the gradient of angular velocity changes sign. Assuming that all of the 

kinetic energy of matter striking the surface gets radiated away, the luminosity from 

this boundary layer will also equal one-half the total gravitational energy the star. 

The luminosities of LMXBs crucially depend on the structural properties of the 

accretor. For neutron stars, the structure parameters are calculated by solving the 

TOV equation. An essential ingredient for solving this equation is the EOS describ

ing the interiors of neutron stars. The composition of matter upto nuclear matter 

densities is reasonably well understood. Neutron star cores can have densities of the 

order of ten times nuclear matter density. At such densities, the EOS calculations 

rely on extrapolation from the known nuclear matter densities. Depending on these 

extrapolations and the relevant microphysics, the 30 or so EOS models for ultra-high 

densities exhibit a substantial scatter. in their qualitative properties. This scatter is 

reHected in the values of the structure parameters (such as M and R). An important 

quantity that characterises EOS models is the stiffness parameter - stiffer the EOS 

model, higher is the value of the maximum stable mass. In Chapter 3, we calculated 

the structure parameters of non-rotating neutron stars using three EOS models that 

span the entire range of stiffness and have thus demonstrated the effect of stiffness 

on the structure of non-rotating neutron stars. 

Neutron stars are compact objects. General relativity plays an important role 

in not only deciding the structure parameters, but also in describing the space-time 

geometry around these objects and, consequently, the accretion How near the neu

tron star surface. Therefore, it is imperative to have a realistic description that goes 

beyond the Newtonian approach. The non-linearity in the equations of motion (due 

to the incorporation of general relativity) of test particles around neutron stars sub

stantially modify the energetics as compared to the classical Newtonian formalism. 

General relativity predicts the existence of an innermost marginally stable circular 

orbit. The location of this orbit is crucial in deciding the geometry around the bound

ary layer, and the X-ray emission from the boundary layer depends on the nature 

of the accretion How in this region. Depending on the EOS model, neutron stars 

can have radii greater than or lesser than the marginally stable orbit. The accre-



c11apter7 116 

tion disk around a neutron star will extend inwards upto the innermost stable orbit, 

which depending on the EOS and the central density, will be located either at the 

surface of the star or at the radius of the marginally stable orbit. In Chapter 3, with 

the incorporation of general relativity, we have re-calculated the boundary layer and 

disk luminosities for neutron stars described by the three EOS models. We demon

strated that for non-rotating neutron stars described by Schwarzschild space-time, 

the boundary layer can be as much as six times more luminous than the disk. 

Matter leaving the innermost stable orbit carries with it substantial angular mo

mentum. This angular momentum will be transferred to the neutron star over dy

namical timescales, spinning it up to very short periods ("" milliseconds). The general 

relativistic effects of rotation will, therefore, play an important role in deciding the 

accretion flow around rotating neutron stars. In Chapter 4 we obtain equilibrium 

sequences of neutron stars in the "slow" rotation approximation due to HT. This 

approximation considers rotation to be a perturbation on the spherically symmetric 

Schwarzschild space-time and is valid upto order 0(02 /n~s), where n is the rota

tion rate of the star as seen by an observer at infinity and nms is the (Newtonian) 

centrifugal break-up rotation rate for the corresponding non-rotating configuration. 

We obtained the normal and supramassive sequences in the parameter space (Pc, 0) 

(where Pc is the central density of the neutron star), bounded below in n by the 

static limit and bounded above (in n) by the secular instability limit. We show that 

inclusion of rotation into the structure calculations increase the value of maximum 

allowed mass by at least 5 % (which is EOS model dependent), assuming a maximum 

allowed rotation rate of n = Os at the secular instability limit. The corresponding 

maximum values of radius and rest mass also proportionally increase with increasing 

rotation rate. For the "slowly" rotating neutron stars, we see that that the disk lu

minosity always monotonically increases with rotation rate while the boundary layer 

luminOSity decreases. This feature may be attributed to the frame dragging effect 

of a rotating neutron star, wherein an additional angular momentum is transferred 

to the particle so that it releases less energy (than in the non-rotating case) when 

coming to rest OIl the neutron star surface. The ratio of the boundary layer to disk 

luminosity decreases as compared to the non·--rotating case, but is still significantly 
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higher than in the Newtonian treatment. 

For the full effects of rapid rotation, we need to go beyond the perturbation treat

ment and take into account the higher (than two) order effects of O. In Chapter 5, we 

have computed the equilibrium sequences for rapidly rotating neutron stars in general 

relativity for the three EOS models. We obtain the normal and supramassive evo

lutionary sequences using the KEH formalism, modified to incorporate realistic EOS 

models. The parameter space (Pc,O) in this case is bounded below (as before) by the 

static limit (0 = 0) and above (unlike before) by the general relativistic centrifugal 

mass shed limit. We show that for mass shed limit, the structure parameter values 

change drastically in comparison to the secular instability limit. When compared with 

the "slow" rotation approximation, the present formalism shows substantial modifi

cation in structure parameter" values for a given central density and gravitational 

mass. With this formalism, we re-calculate the disk and boundary layer luminosities 

in Chapter 6. As in the case of "slowly" rotating neutron stars, we find that the 

disk luminosity increases, and more importantly from the point of observations, the 

boundary layer luminosity decreases. These effects are small in magnitude for small 

values of 0 but increase substantially for rapid rotation rates of the neutron star. 

The boundary layer luminosity becomes inconsequential for rotation rates near the 

centrifugal mass shed limit. For the normal configurations, the vanishing of boundary 

layer luminosity for rapid rotation rates as found in this study is not apparent in the 

calculation using the "slow" rotation approximation based on the HT metric. The 

total luminosity remains fairly constant upto rotation rate of about 0.6 Oms (Oms 

being the rotation rate at the mass shed limit), but declines rapidly to the value of 

the disk luminosity for higher rotation rates. An interesting conclusion of the present 

study, incorporating rapid rotation, is that the supramassive neutron star configura

tions have their innermost stable circular orbit located exterior to the star. For such 

configurations that are rotating at the centrifugal mass shed limit, particles in the 

innermost stable circular orbit are more bound than particles at the surface of the 

·star. This could lead to the formation of an inner disk torus. The idea of an inner 

disk torus has been invoked as a possible explanation of flaring branch phenomena 

observed in certain Quasi Periodic Oscillators (Kuulkers & van der Klis 1995), with 



chapter7 118 

radiation pressure playing a key dynamical role. Our study seems to suggest that 

an inner disk torus can be formed even in the absence of radiation pressure, purely 

as a consequence of general relativistic rotational space-time, in situations where the 

rotation rate of the accreting neutron star is close to the centrifugal mass shed limit. 

In this thesis, we have investigated in a general relativistic manner, the effect of 

rapid rotation on the boundary layer and disk luminosities of accreting, old neutron 

stars. One of the assumptions made is that the magnetic field of the neutron star is 

too small to affect the accretion flow. It is relevant to ask if a quantitative estimate is 

possible of how low the magnetic field should be, for the validity of our calculations. 

The Alfven radius (r A), is defined by the relationship (see Lamb, Pethick & Pines 

1973) 

(7.1) 

where p and v are respectively the density and radial velocity in the accretion disk. 

The Alfven radius determines the location at which magnetic pressure channels the 

flow from a disk into an accretion column structure above the magnetic poles. Lamb, 

Pethick & Pines (1973) show that 

[
J.L4/7 (M/M )1/7] 

rA oS 2.6 x 108 30 2/7 2~7 cm 
L37 R6 

(7.2) 

where J.i.30 = BoR3/103o G cm3, L37 is the total luminosity in units of 1037 ergs S-l, 

R6 = R/106 cm and Bo is the magnetic field on the surface of the neutron star in 

gauss. The condition that rA < R implies that (for the reasonable choice: M = 1.4 

M0 and R6 = 1): 

7Ll/2 Bo < 5.5 x 10 37 (7.3) 

and is necessary for the scenario we have considered to be fully self-consistent. In 

our notation, L = (ED + EBdM c2 , with M the mass accretion rate. According to 



c11aptcr7 119 

our calculations (Figs. 6.4 and 6.5), (ED + EBL), range between (0.01, 0.4). The 

luminosity L37 = 1 would then correspond to accretion rate M16 (= M X 1016 g S-I) 

in the range (111.1, 2.8). Such accretion rates are close to the ones estimated in 

X-ray binaries (Ghosh & Lamb 1991). The higher limit is high by an order of mag

nitude, but then, the systems for which this happens are ones in which the neutron 

star rotates at the centrifugal mass shed limit '(for which L37 would be significantly 

lower than unity; see e.g. White, Stella & Parmar 1988), implying that the value of 

M16 = 111.1 is an overestimate. Therefore, our computations are relevant for systems 

with significant accretion onto old neutron stars whose surface magnetic fields have 

undergone substantial decay (to about 108 G). 

7.1 Future Prospects 

In addition to neglecting the role of magnetic field, we have also assumed that all 

of the energy acquired by the particle before it strikes the neutron star surface, is 

radiated away. Therefore, although Eqs. (3.25), (3.27), (4.43), (4.47), (6.12), (6.14) 

give plausible estimates for the boundary layer luminosity, strictly speaking, these are 

overestimates, as they do not take into account the subtraction of the energy that goes 

into spinning up of the neutron star. The need for such a correction was pointed out by 

Kluzniak (1987) and quantitative estimates for this were suggested by Ghosh, Lamb 

& Pethick (1977), Papaloizou & Stanley (1986), and Kley (1991). A fairly simple and 

general way to estimate the same was given recently by Popham & Narayan (1995) 

who considered the accretion disk boundary layer problem in cataclysmic variables. 

The effect of spinning up is important when one considers a substantially massive 

packet of matter striking the surface. In this work, we have considered the energy 

radiated by a test particle, as it strikes the neutron star surface and as such, this 

represents only an instantaneous snap-shot of the accretion process. There remains, 

therefore, the important task of calculating the boundary layer luminosity evolution 

as well as the structure evolution over the range of angular momentum accretion from 

the initial stage of slow rotation rate to limiting break up rotation rates. 

For the cases where the boundary layer luminosity becomes inconsequential (for· 
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rotation rates near the centrifugal mass shed limit), the role of radiation pressure on 

the accretion flow (see Miller & Lamb 1996) must be re-examined. Also for such 

cases, accretion induced changes in the surface properties of the neutron star is an 

important question to investigate. 

As mentioned earlier, one of the interesting results of our calculation is the possi

bility of an inner disk torus. For neutron stars recycled in binary systems, this would 

mean that well before the torus is formed, the process of angular momentum accretion 

stops. The corresponding angular velocity therefore introduces a hard upper-bound 

for rotation rates of neutron stars processed in a binary system. An investingation of 

this is in progress. 

Putting constraints on the EOS models is one of the aims of studying high energy 

processes associated with neutron stars. Constraining the EOS implies having an 

estimate, observationally, of the three independent parameters: M, Rand 0 that 

decide the neutron star configuration. Theoretical computations of these quantities 

using various EOS models and subsequent comparison with the observational esti

mates should, in principle, constrain the model. Previous attempts (van Paradijs 

1979; Goldman 1979) have shown that it is difficult to observationally estimate the 

radius R of the neutron star. Therefore the need for an alternate parameter. Datta 

& Alpar (1993) modeled the postglitch timing data from the Vela pulsar with the aim 

of constraining EOS models. These authors estimated the value of the fractional mo

ment of inertia (Icrust! J) residing in the crust of rotating neutron stars, compared this 

with observations, and showed that the physical validity of soft EOS models can be 

ruled out. Recently, it has been suggested that the kHz QPOs (Chapter 1) in LMXBs 

may represent Keplerian frequencies in the innermost stable orbits of neutron stars. 

Estimating the value of OK at Torb for various rotation rates of the neutron stars, 

for various EOS models, and making no model dependent restricitive assumptions, 

shows (Thampan, Bhattacharya & Datta 1999) that the physical validity of none of 

the EOS models can be ruled out. 

Another interesting problem is the dependence of the accretion luminosity as well 

as the Keplerian angular velocities for a more compact object with a hard surface. 
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The obvious choice is quark stars. The possible existence of a new sequence of degen

erate compact stellar objects, made up of light u, d and s quarks, has been suggested 

for quite sometime now. These are based on ideas from particle physics which in

dicate that a more fundamental description of nucleonic degrees of freedom at high 

matter densities must be in terms of quark constituents. Preliminary results on these 

(Thampan, Bombaci & Datta, in preparation)' prove to be promising. 

Finally, the introduction of magnetic field into a system as described by a back

ground geometry of Eq. (5.1) will not only provide a model for pulsars, but also will be 

important in the study of instabilities in the accretion disk and therefore for modeling 

of QPOs. For slowly rotating neutron stars Prasanna & Gupta (1997) analyse the 

effect of magnetic field on the'internal structure of neutron stars in the HT formalism, 

for a variety of EOS models including those having quark matter cores. Externally, 

this will also influence the structure of the accretion disk. For accreting, magnetized 

neutron stars, the inner-edge of the accretion disk will located at the Alfven radius 

where the magnetic pressure equals the ram pressure of free falling matter, and is 

as given by Eq. (7.2). For rotating neutron stars, the modified values of free fall 

velocities will serve to relocate this inner-edge. 

In the standard accretion disk model (Shakura & Sunyaev 1973), the disk is as

sumed to be radiation pressure dominated near the neutron star. For low luminosity 

sources (typically for rapidly rotating neutron stars), the inner regions of the disk 

may be gas pressure dominated. In the non-relativistic regime, it is generally be

lieved that radiation pressure dominated disks, are unstable to viscous and thermal 

modes, while gas pressure dominated ones are not so (Lightman & Eardley 1974). 

Recently, Ghosh (1998) showed that in a general relativistic framework (described by 

Kerr geometry), gas pressure dominated disks are unstable to viscous stresses, in re

gions very near the marginally stable orbit. Such instabilities in the disk are expected 

to modulate the flux from accreting neutron stars and may, therefore, be the source 

of kHz QPOs in the flux of LMXBs. For magnetized, accreting neutron stars, there 

will be a build-up of matter at the Alfven radius (defined as the inner-edge of the 

accretion disk), also leading to magneto-hydrdynamic instabilities in the accretion 

disk. Tripathy et al. (1993a;1993b) studied the instabilities at the inner boundary of 
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the accretion disk, within a Newtonian frame-work. A realistic treatment of these in

stabilities require the construction of an accretion disk model incorporating the effect 

of general relativity. The work by Bhaskaran, Tripathy & Prasanna (1990), wherein 

the authors construct an equilibrium configuration of a plasma disk around a slowly 

rotating compact object in a linearized Kerr background, represents a first step in 

this direction. 

The work described in this thesis will be important towards the understanding of 

QPOs, kHz QPOs and other high energetic phenomena taking place around accreting 

neutron stars. A model for the accretion disk, within a general relativistic framework, 

around rapidly rotating neutron stars is the expected future outcome of this work. 

This concludes our study of Luminosities of Disk-accreting Non-magnetic Neutron 

Stars. 



Appendix 

Change of Variables and Structure 

Parameters for Rapidly Rotating 

Relativistic Stars 

For the sake of numerical convenience in solving the field equations, we choose a 

fundamental length scale given by ",1/2 = (c2jGpO)I/2, where Po is taken to be 

1015 g cm-3 and rescale the variables r, t, W, 0, p, P, J and M as given below 

(in order to relate the variables to those with real units, we do not suppress c and G 

in the following equations). 

f -1/2- (A.I) - '" r, 

l - ",-1/2ct , (A.2) 
1 

(A.3) w - ",1/2_w 

C ' 

n ",1/2~n 
c ' 

(AA) 

jJ 
G 

(A.5) - "'2P, c 

P G 
(A.6) - "'4P, c 

J -1 G (A.7) - '" a J, c 

123 
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(A.8) 

When a self-consistent solution of the matter and field equations is obtained, 

using the numerical procedure elaborated in Chapter 7, the structure parameters 

characterizing the configuration can be computed using the formulae (in the auxiliary 

variables 8 and J.L) as listed below. 

The gravitational mass M is given as: 

M 

(A.9) 

the quantity on the left side of the equation, listed here and in subsequent equations 

are in proper units. 

The rest (baryonic) mass of the system, Mo, is given by 

. Mo = 7T'K. mBC re 8 8 dfJe2a+('Y->.)/2 n 4 1/2 2-3 101 2d 11 -
G 0 (1- 8)4 0 (1 - V2)1/2' 

(A.10) 

where n is the baryonic number density and rna the mass per baryon. 

The total angular momentum of the system, ) is given by 

) = 7T'K,C Te 8 8 r dfJ(1 _ fJ2)1/2 e2a+'Y->"('fJ + P) v . (A.ll) 4 3 -4101 3d 1 

G 0 (1 - 8)5 10 (1 - v2) 

the moment of inertia is obtained by the prescription 

I == )/0 (A.12) 

The circumferential radius at the equator is defined by 

(A.13) 

where the subscript e denotes evaluation at the equator. 
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