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Abstract. We prove here the existence of libration points for the generalized
photogravitational restricted problem of three bodies. We have assumed
the infinitesimal mass to be an oblate spheroid and both the finite masses
to be radiating bodies. The effect of their radiation pressure on the motion
of the infinitesimal mass has also been taken into account. It is seen that
there is a possibility of nine libration points for small values of oblateness,
three collinear, four coplanar, and two triangular.
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1. Introduction

In stellar systems numerous examples are available where a body is moving under
the gravitational field of two radiating bodies. Simmons, McDonald & Brown
(1985) have studied the problem when two finite masses are radiating and the
infinitesimal mass is spherical. We consider here the case when the infinitesimal
mass is an oblate spheroid. We obtain an expression for the radiation pressure,
and also study the existence of libration points.

2. General expression for the solar radiation pressure

If the sun’s mass be unity, then the force exerted by sunlight pressure on any body
is given as A'Pg/4ncmr? in a direction away from the sun along the line joining the
sun’s centre and the body’s centre. Thus the force function is A'Pg/4wcmr, where
A’ = the effective cross-section of the satellite; m = satellite mass; Py = total
radiated solar energy (Deutsch 1963). For an oblate spheroidal satellite with
equation (x% + y¥) a=% + z% ¢~2 = 1, A’ is given by

A = “azc {az(lz + m2) + cznZ}_llz'

where Ix + my + xz = 0 is the equation of the plane.
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Writing ¢ = 12 + m* = 1 — n?and restricting to first order terms in o,

2
2 _l_ cZ’
we find that 4’ = 54x(l + n?c) where 4 = m(a® + ¢?)/5. Thus A'Ps/4men =
54An(1 + n%c) Ps/2m.dnc = SAPy(1 - n%s)/8mc. If U be the force function due to
the gravitational force of the sun on the oblate spheroidal satellite of mass m then

1 Ae
U= k2m1—r—+ T (1 — 3n%).

Hence combining the effect of the solar radiation pressure, the force function U’
may be written as

U = U — A'k*Pgm,jdmcrr = U — S5AP,(1 + nzc) k?m,(8mcr
_D__H&O+ﬁ

o) k*m
Smc ] l’l"kz 123 (1_3n2)

in the notation of Simmons, McDonald & Brown (1985), we have 54 Pg/8mc = @
2 2 2
when ¢ = 0, and so U’ = [1 — B(1 + n’%)] kml + kmlﬁcz(:3 3n%)
over 0 < B oo Sincen?<Cland —1 <o < +1, wegetd < 1+ ne <2
Thus the introduction of 1 4 #n2¢ as a factor produces no change in the range of
B:0< B < oo, Writing 1 — 8 = a, we may write the force function U’ as

, Where Branges

U,k““+ﬁlﬁu—wﬂ e (2.1)
Thus the force function due to light pressure is the same whether the satellite is
spherical or oblate spheroidal.

3. Equations of motion

Let us consider three bodies M;, M, and M with masses m; > mz > m and assume
that M, and M, are homogeneous spheres or bodies with spherical structure or mass
points, and each capable of exerting radiation pressure. Let «,, a; be the effects of
the radiation pressure from the two finite masses. Let M be a dynamically symmet-

rical satellite with an equatorial plane of symmetry and let 4 = B and C denote the
equatorial and polar moments of inertia of the body M. Suppose ri(i = 1, 2) to
be the distance between the centre of mass of the bodies M and n; to be the cosine
of the angle between the radius vector and the axis of the satellite.

As in the classical circular restricted problem we shall assume that the bodies M;
and M, are describing circles with their common centre of mass as the centre. Let
us adopt a right-handed barycentric coordinate system (0, x y z) with the origin
at the centre of mass O of the bodies M; and M,; x and y axes will be assumed to
rotate with the angular velocity about the z-axis orthogonal to the orbital plane of
the finite bodies. The units are so chosen that m, 4 m, = 1, the gravitational
constant = 1 and the distance between the centres of the two bodies = 1. With
this frame of reference, let the position of the centre of mass of the satellite be

v
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Restricted three-body problem 81

specified by the coordinates x, y, z and its orientation by the usual Eulerian angles
0, 4.

In the above coordinate system the equations of motion may be written as
(Choudhry 1977)

iy '_aQ . -_?ﬁ .._E '1

x_zy_ax: y+2x—ay, Z—az .

6= () + Dsin 6 cos b —ef + sind+ ~ 22 4 .
A4 26 - (3.1)

.._— . Ee 1 @

¢ = 2(4;4—l)ecoteJrsineJrAsinzeaLp J

where the dot denotes the differentiation with respect to t; and

Q= 3>+ ) + Ur + U,

o
Uy=m L -+ 2r1 (1 — 3n2),

Uy = m “2+ ,3(1 3n3),

6 =(C—A)A(—=1< o< 1), md =4, mC=C.
Here A and C are principal moments of inertia for the satellite,
e =[(4 + 1) cos @ + 4] CA-1 = const = Cr/A,
r= () + 1) cosb + 4,
=x—x)+yy+z2Hm=

(x — x1) ay3 + Y853 + 205, (i=1,72)

r
..(3.2)
G = sinysinb, a,; = cos{¢sinb, ag = cosb.
Letting u = my/(my + m;), we may write m =1—yu, my = p,x = —yp,
= 1 — u. Differentiating Q, we get
2
(@) ?3:"‘ Z ’"*{mr—z—x)“fi e ()
. i ri
i=1
3omA ni(x — x1) | ap
+255( - . =)
2
v) y= > Stk (-3 + 20 (024 Sl
i=1 "
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2
oQ zot z 3A4cn n a
@ == zmi{,—ﬁ%Aa;ﬁ—(l = anp) + 20 ( 2y de],
i=1 '
2
Q 34
@ D= D em - alx —x) + ya,
: 4 1
1=
2
e STQ = — z o 31:’” [(x — x;) sin ¢ cos 6
i=1 !
— y cos ¢ cos B — z sin 0]. ...(3.3)
4. Conditions for the existence of collinear libration points
For a libration point, we have
0 _ o _00 00 232 oQ
a;—_o—ay_az =30 = %0 ..(4.1)

Here we find that?;Q = 0 is satisfied by z = 0 if a4, = cos 6 = O or when sin 6

= 0 which gives n; = + z/r;. Thus we find that a plane motion is admissible when
= n/2 as well as when 6 = 0.

From the condition %2 = 0, we find that it is satisfied by y = 0if 8 = =/2,
¢ = =n/2, 3n/2 and also if 6 = 0, ¢ = 0, = because in the latter case

LY —_Z(_2Y\_
n’( ri+023)_’1( r?)_o’

1

which is identically satisfied with z = 0. The case 8 = 0, ¢ = =n/2, 3n/2 gives
y = 0 and it needs no separate treatment. Lastly, let us take up the case 6 = =/2,

¢ = 0, =. In this case n; = y/r, and so g% = 0 is identically satisfied by y = 0 and

n = 0. )
Thus we find that collinear libration points are possible under the following
conditions :

X — Xj
Fi

A 8 ==x/2,0==/2,3x/2,m =+ = +1;

(i) 8 =0,y=0,=nn=0;
(i) 0 =n/2,¢ = 0, %, m =O0;
(lV) 0 = 0, LII = Tt/2, 311:/2, ni = 0.

e (42)

\___.__Y_._—J

Q

It may be seen that under the above conditions 28

— 6= % (Choudhry 1977).
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v

Hence we can conclude that under all the four conditions collinear libration
points will exist provided 9Q/ox = 0 gives real roots. These conditions are classified
to represent the motion of the types ‘spoke’, ‘level’, ‘arrow’ and ‘float’ respectively.

Now it remains to investigate the existence of real roots for 9Q/dx = 0 which will
confirm the existence of collinear libration points in the various cases. According
to the values of #;, we shall have two cases i = +1 or n; = 0. Subsequently we

may write %2- = 0 as

YO i — Xi
D D e

i=1

where k = —3 when#n; = +1;and k = 1.5 whenn; = 0. Or,

() + ko z m, [(—xx_;—)’z‘]m —o, .(4.3)
i=1
2
where f(x) = x — z uim,[(—x%]ﬁz It may be noted that for ¢ = 0
i=1

= -1 and n; = 0 the resulting equation coincides with the equation for collinear
libration points for the classical case (Simmons, McDonald & Brown 1985). Thus
there exist three collinear libration points which are discussed below for different
values of «, and az.

(@) It can be shown that for small values of o, equation (4.3) has distinct real
roots, each of which tends to coincide with the libration points when ¢ = 0
(¢f. Choudhry 1977).

Thus we may represent the collinear libration points as

LY :x =05y =0,2z=0(=1,23s=123,4).

We shall assume that s = 1, 2, 3, 4 correspond to spoke, level, arrow, float,
respectively.

(b) Let us now consider the case when the collinear libration points exist for all
c. For such libration points the conditions can be written as

2
. : : aimy(x — xi)
* ._1/ [((x — X P %
& )
m(x — xi .
_ 0. (44
> o = @

i=1
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Let us call the libration points Ly(j = 1, 2, 3) for all s according as it lies on the
right of My(j = 1) or between M, and M,(j = 2) on the left of M,(j = 3).

If we take up the case of L, then x — x, < 0and x — x; < 0. In this case we
can write equations (4.4) as

S ULH M2 _ o m, + Mz
(x; — x)? " (x2 — x)? (X — x)Pp T (x, — x)
The second equation cannot be satisfied since it is the sum of two positive terms
and so L, will not exist for all o.

Next, let us take up the case of L, the libration point lying between M; and Mo.
In this case x — x; > 0 and x — x» < 0 and equations (4.4) become

X + 3 + = 0. -..(4:5)

¢xl(l _ :u) o =0
GFw TE=ire Y

x_

l—p e

x+u)t (x— 1+ p)t

From the second equation, we have {(x + p)/(x — 1 + p)}* = (I — p)/g. Now

putting (x + w*/(1 — @) = (x — 1 + p)*u = k'2 (say), we get from the first of the
above equations

K1 — p)'? — pt 2 4 (1 — 20) —ag(l — @) + (a2p)'? = 0. ...(4.7)

The equation (4.7) shows that two roots in k’ will always exist and be of opposite

signs. If (x + w)?/(1 — )% = (x — 1 + w?/ul’? = — ve then x will be imaginary

and L, will not exist. Thus L, will exist for all ¢ and it will have only one position.

Lastly, let us consider the case of Li, the libration points lying on the right of M,.
In this case x — x; > 0 and x - x, > 0, so we may write equations (4.4) as

= 0. ...(4.6)

“1(1_'"")__ o d =0 1 —p + [ =0
G+ =1+ 7 G+ =1+ p

..(4.8)
By virtue of the second equation it follows that L, does not exist. However for
small ¢, L, does exist (Simmons, McDonald & Brown 1985)

5. Condition for the existence of coplanar libration points
For a libration point, we have
0 _ Q0 Q@

92 0= = = = ...(5.1
ox oy 0z oy 00 (5-1)
We find that
2

0Q @iy | a4 YV 2
== mi{r—i,+ Bo 2 (1 = 3)

i=1

34em ny @)

oo (e

where ny = [(x — x;) sin ¢ sin® — y cos ¢ sin 8 + z cos 6]/r:.
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It follows that 3Q/ay = 0 is satisfied by y — O either when n; = 0 or 8 = 0.
Corresponding to the latter case we have for the case § = 0, n; = z/r; = 0,

BQ 3on
an 2 my r?l [—as(x — x1) + yayg]
Thus% = 0 is satisfied in either case, i.e., when #; = 0 or when § = 0. Simi-
2
larly, —aa% = — 2 m 3Acn1 [(x — x1) sin¢ cos§ — y cos ¢ cos® — z sin 6]
rt

i=1
can be satisfied for m = 0 as well as for 8 = 0 if in the latter case = O or =. We
find that

2
® z AT 4 pae T (- 3
ox . ri 1
=1
3Acn1 m(x — Xx1) _3
— "
2
and it = z {aqz 3Ac 5 (1 —3n?) + 3‘40"‘ (";z 1 a_za)}
oz r ri
i=1
Case A : Whenny = 0
= ) =) |
oQ af(x — Xxi 3 X — X1
E 2 m R B
1=
) e ..(5.2)
2Q JHZ 3.2
and E‘ = — 2 mj {ri; =+ 2A°- ris }'
i=1 J
Case B: When 6§ = 0
c ( ) 322
0Q X — Xj 34 X —Xi 3z°
a—x=x— z mi{d.l r13 + 24 7 ( 72 )

34o(x — x;) z*
- r? ’
1

2
20 G | g, Z 3z% 3Acz(—i l)}
= 2 { A“r?(l_rf)“Lr;‘ 7 h
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0, %—? — Swmifr} =0ifz £ 0. When o
and a2 are of the same sign, there is no solution. When «; and a, are of opposite
signs, for definiteness, let ¢; = 83 << 0 and a2 = 8} > 0. Simmons, McDonald &
Brown (1985) find that when p < £ there is one solution if g(8;, §,) < O0and k < 1,
otherwise there is no solution. When p > 1

(i) there are two solutions iff 1 < k < it g’; and g(3,, 3;) <0and A(31, 3;) <O

In all the cases we find that when ¢ =

(if) there is one solution iff either £ < 1 and g(81, 3;) <0 or k£ > 1and g(51,8;) > 0
or

1+3
1<k<4_3‘;andg(sl,82)=o
or
1+3
1<k<74—_—3::andh(81, 82)=0,

and otherwise there is no solution. When §, = 0 = 3, an infinite number of

solutions exist along the z-axis with z taking any value. When §; £0,8, = O,
there is no solution.

Since the system (m,, m,, 8;, 8,) is identical with (m,, m,, &2, 8;), we shall have
symmetrically double solution in the corresponding cases. That is, either we shall
have two solutions or four solutions or no solution, the conditions being the same
when 1 — pu is substituted for x and 3§, is substituted for 8,. Here

g(31, 89 = Bu(l — p)® + Boudt — {8l — P + S,
h(81,| 3) = 83(1 — w)?® — JuB — (2u — 1)57%(a/2)?73,

rjre =k,a= &P2 — (})>2

If r, and r, be given in terms of m,, ms, §;, S2forc =0 and r, =r and r, =r,
be the solution for ¢ = 0, then the expression
2
oQ z (oci 6Ac)
oz mi\;z — 75
0z < r; r
can be expanded in powers of r, — r; and ry — r; and ¢ (when o is small). By

implicit function theorem for ¢ % 0 and for small values of ¢ also solutions will be
available for r, and r, in terms of m,, ms, 81, 8,. In other words for small values
of ¢ we shall have solutions in both the cases A and B, provided the conditions
stated above for ¢ = 0 are satisfied for the existence of roots.

So in general we shall have two libration points, but for the case 1 < k <
(A + 3p)/(4 — 3u), g(81, 35) < 0, A(81, 8;) < O we shall have four solutions.
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For general values for ¢ we shall have in Case A ‘

2
e _ fo s de)
= 2 M rit=o
i=1
2
2Q ai(x — xi) (x — xi)
_x_=xz mx{—’_f—-—l-%AG—rf—}:O.
i=1
So we shall have four equations given as
2 2
oMy my
2 s =0 s =0
i=1 i=1
2 2
X — z aimi(xa— x) _ 0, Z ml(xs— X;i) —0
ri. P
i=1 i i=1 !

to determine two unknowns x and z. It is easily seen that the second equation has
no solution, since it is a sum of two positive terms; and so a general solution for all
¢ is not possible. However as we have seen above that for small ¢ the solution
will exist as an analytic continuation of the solution corresponding to ¢ == 0.

Similarly in Case B the solution for the general values of ¢ in general will not
exist, but for small o, the solution will be available.

6. Triangular libration points

We know that the libration points are given by the equations (4.1). From the last
three equations of (4.1) it is seen that triangular libration points exist under the
following cases :

@ n=n=0 z=0 yx#0.

From the first two of the equations (4.1) we see that x-coordinates of the libration
points are given by

2
x — z m {ﬂ;—x‘) + 24o (xr—sxi)} -0, (6.1)
i=1 ’ !
2
i A
- > mi(—:f—a— + %75‘5) —o, . (62)
5 i i |
whence we get
oy &‘ 3 _1_ L _ ‘ B .
Bt 2A°(ri — 5 ) — 0. .(6.3)
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By putting «; = 3}, «; = 8% and letting r,/r; = k, equation (6.3) reduces to
k5(rid3 + 24o) — rik%3 — 34c = 0.

Ife=0
rik*(3ik® — 31) =0,

and equation

k=3t =21, .(6.4)

which by virtue of equation (6.4) gives r; = §; and r; = §,. In order that for all ¢
a solution may exist, we should have 8}/rf = 33/r and 1/r} = 1/r;. Hence

n\ (Y =
(rz) _(32) =1=5

r]_ - r2, 81 - 82.

Thus solutions will exist for all ¢, if £ = 1. In this case we shall get r; = r, and
8, = §;. Putting these values in equation (6.2), we have

re —rid — 3240 =0. ‘ ...(6.5)

Thus a positive real root always exists for r,.
By virtue of equation (6.4) we shall assume that for small ¢, the solutions are
given by

ry =8, + Ay(s), r; = 8 + Ai(0), .+(6.6)
where A4,(s) and 4,(c) are some continuous functions of ¢ such that

lim Ags) = lim Ay(c) = O.
oc—>0

a—>0
Let us restrict to first order terms alone in ¢ and write
ry =81 +Aoa, rz = 82+A16.

Since equation (6.5) and a similar equation for 2 and 8, hold for all ¢, putting
rn = 8 + Ao in equation (6.5) and restricting to first order terms in ¢ we get
Ao = A[23% and A, = A/233. Now, we can write the solutions (6.6) as

A A
l'1=81 +2—§?,r2=82 +‘2Tf. (67)
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It may be noted that triangular libration point will exist only when &, > 0 and
3 > 0.

(b) Next let us consider the problem of the existence of the triangular points of
libration for the case when n, = n, 7% 0.

In order that z = 0 may be a solution of 3Q/5z = 0, 8§ = =n/2. Hereit follows that
n=mnwhenrn=rn=r¢=0r

n=mn = n, = -4+ yr.

Then from 9Q/a¢ = O we have

— 3A4on cos ¢ frm(x — x) r—: myx — x2)] _ 0

whence we find that

_ X, + max, -0 3
——m1 Tm, . ...(6.8)

From5Q/ox =0wegetx =0 for m=n=n n=r,=r, 6 =a/2, {=0,x
whence (83 — 83) u(l — ) = 0 and so 3§, = 8. The equation 9Q /8= 0 is
identically satisfied. From 9Q/9y = 0 we get on simplification

oy + om 1 3y? 340 » 1
- s tae (1= %)+ 22 (R -3 )} -0

Setting r1 = rz, gives p = } and y® = r? — 1. Therefore, r is given by

b o1 o1 .
r; — Ao 5 1546 & = 0. ...(6.9)

Thus in this case the libration points are given by
x=0,y=4r"—%,z2=0,

where r is given by the equation (6.9)

7. Conclusions

We have shown that the oblateness of the infinitesimal mass does not contribute to
the radiation pressure due to the two radiating, as well as attracting, bodies of finite
masses. Secondly, we have found the possibility of the existence of nine libration
points of which three are collinear, four coplanar and two triangular. In general
there exist seven libration points of which three are collinear, two coplanar and two
triangular.
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