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Abstract. A numerical method for deconvoluting one-dimensional optical
imaging is described along with its algorithm. This method can be very
successfully used for achieving image enhancement and restoration with
minimized noise, spurious as well as systematic, in the case of spectroscopic
and photometric data in optical or infrared astronomy. An example has
been given to illustrate the importance of the smoothing and restoration
parameters in the method.
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1. Introduction

In most of the astronomical photometric and spectroscopic work, the observed
image of a celestial object under study is inevitably modified by what is known as
instrumental function which is essentially defined by (i) aperture function of the
instrument or the point-spread function, (ii) filter response, and (iii) the response
time of the detector used; and many other limitations in the experimental and obser-
vational process. In all these cases, it becomes necessary to retrieve from the noisy
image observed the actual signal from the object without the modifications intro-
duced by the extraneous agencies.

Let us suppose that we observed an object with a certain instrument under certain
conditions pertaining to various extraneous factors which influence the data. Then,
in general, the measured function s(z) does not truly represent the object function
p(1); but, on the other hand, it represents the convolution of the object function with
a modulation or transfer function a(z) :

s(t) = p(t) = a(t), ..(1)

where the symbol = represents the convolution operation. We can rewrite the
above equation as
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s(t) = ,‘jnp(t’) a(t — t)dr', ' ‘ -(2)

where the integral on the right-side represents the convolution integral. Knowing
s() and a(t), is is indeed possible to retrieve by direct methods the Ob_]CCt p(t)
provided the observations are noise-free.

For instance, one can take the Fourier transform on both the sides of equatlon
(1) and then a simple division followed by an inverse Fourier transformation would
give the desired object function p(t), in terms of the observed image s(z) and the
instrumental function a(r) which is also called as the point-spread function (p.s.f.).
However, the p.s.f. in many applications has dominant values in the central part
of the data and falls off steeply to near-zero values on either side of central.
maximum. This may lead to practical difficulties in obtaining the discrete Fourier
transform.

Alternatively, we can write the integral equation (2) as a set of linear equations
and can, in principle, solve for the unknown function p(t) by matrix inversion.
As already stated, the matrix elements formed by the function a(z) are usually very
small and this fact renders the matrix ill-conditioned. Therefore, even though, the
errors (or noise) are negligibly small in s(z), they will contribute to large errors in
p(t). Thus, it is desirable to approach the problem as if s(¢) had errors (however
small they may be) and minimize these errors in obtaining p(t).

In this note, we describe a method and its algorithm to find a solution to the

problem addressed to here.

2. Mathematics of the method

Wntmg down the convolution integral and adding the noise term n(?), equatxon
() becomes,

-.s(tm) =_}° jz(n) a(tm — 1) dt 4+ n (tw), ...(3)

where m = 1, 2, 3,..., N; N being the number of data points. Approximating the
integral as a finite sum and assuming that there are closely spaced data-points,
equation (3) can be written as .

Y, ; - o i
S(tm) = ‘~21 p(t) a(tm — 1) wi + N, (4

m=12.,N

where w; are the weightage factors for the numerical method used for integration;
= kiAt with k; some constant; and Ar the stepsize in ¢#. The summation
approximation in equation (4) is valid when a(|¢]) is a fast decreasing function of ¢.
This property is satisfied ih most of the applications.
From equation (4) the variance in noise is written as
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N N N
a? =X1f mzzl (n;) = le mzl [s(tm) - ; p(t) a(tm — 1) wl:r-

.(5)
Now the condition for minimization of &2 is
aa® i
| 8—171. =0 fori=1,2,..,N. ..(6)
Substituting equation (5) in (6), we obtain the following set of linear equations :
N
z Aypy=B,i=12,..,N , , (7
=1
N
where, A4;) = ;7 z Wi a(tm — 1) Wia(tm —t;)
m=1
N
and B, = % z wid(tm — 11)Sm- ' ...(8)
m=1

The object function p; can now be obtained by solving equation (7).

3. Smocthing

The solution obtained by solving equation (7) is known to be contaminated, in
general, by spurious ripples (Phillips 1962). This is because of the ill-conditioning
of the matrix [4] involving the p.s.f., a(z). To avoid these spurious ripples,
in addition to the minimization of the variance of the noise, we seek to impose
smoothness constraints on the solution in which we choose an operator C together
with a parameter y and minimize

fap —s*+ylCp|"
In this method, known as regularization (Phillips 1962), the operator C can be

42
Id

» g7 T g and so on. A proper selection of y removes the ill-posed nature of

‘the problem.

2

. ) . d* . .
Here in our present discussion, we use C as dp and use the numerically equi-

valent second differences for minimization.
Let us now define

e = (Tg——lj EN: [:P(’i+1) — 2 p(t) + p(ti) :r- -(9)
i=2
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Then the condition for minima in equation (6) becomes

o(c® + &%)

o =0 ...(10)

This leads to the following equation

N - . f
(4y +vCy)py =B, i=12,.,N ..(1D)
j=1

which is a modified version of equation (7) with 4;; and B, having the same defini-
tions as before, and with '

T wen

The parameter y is to be so chosen as to give importance to both the observed
data and the regularization or smoothing required. In other words, there will be
a particular value of vy, say v., above which the smoothing process dominates
and we start sacrificing the information or the self-consistency, while below the
value of v, the ripples will dominate the solution. In general the value of yc has
to be chosen in accordance with the signal-to-noise ratio and after a few trials we
can fix the value of v, for the desired and meaningful solution p(z).

4. Algorithm

The algorithm of the method described above is as follows :

(i) We have the observed data set s(¢) at t = #,, ¢, ..., Ix-

(i) We assume the point-spread function a(¢) at t = #,, t5, ..., In.

"(iii) Then we form the constant matrix C.

(iv) We choose the weightage factors wy(i = 1, 2, ..., N) depending upon the numeri-
cal method of integration. And we fix the stepsize At. ‘

(v) The column matrix elements

N
1 z : .
TV wia(tm — ti) Smy I = .1, 2, ..., N

m=1

By =

are computed and the matrix B is formed.
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(vi) Then the matrix elements
N

1
Ay = N z Wia(fm — 1) wya(fm — 1y)

m=1

fori=1,2,3,..., Nandj =1, 2, ..., N are corhputcd and the matrix A4 is formed.
(vii) We assign a certain value to v.
(viii) Then the solution py(i = 1, 2, ..., N) is initialized by assuming, for instance,

p} = 10-1° for all i.

(ix) The matrix equation (4 + yC) P = B is solved for P .
(x) The error, then is computed by E = — v BP and check whether
n = max| Eil = n
1

a constant value representing the variance of the noise originally present in the data-
set. If this inequality is satisfied then the deconvolution procedure ends. If not
then we start from the step (vii) all over again by changing the value of y. Some-
times, one may use the value of v fory and go to step (vii) — in each iteration
substituting the new value of  for vy.

We have used Gauss-Seidel iterative method for solving the matrix equation
above, and found that a reasonably fast convergence to a solution is achieved.

5. Example

We have successfully applied the deconvolution method discussed above to far-
infrared photometric data. The data were obtained by a far-infrared photometer
at the 'Cassegrain focus of a 32.5 cm telescope on board a Caravelle aircraft.
The specific data used refer to the planet Venus in 100 micron photometric
band. The planet was observed in a scanning mode with a field aperture
of 1.4 arcmin. Since the planet’s angular size is about 8 aresec one can
consider this as a point source and use it to obtain the instrumental profile or the
point-spread function. In order to check this, we have used the actual observations
on Venus and deconvolved these with a point-spread function of Gaussian shape
with a full width at half-maximum intensity of 1.4 arcmin. The result is shown in
figure 1. One can see that there is almost a perfect agreement between the actual
data and the deconvolved profile. This proves that a point source like a planet can
be used to obtain the point-spread function even at far-infrared wavelengths (Van
der Wal et al. 1985).

6. Conclusions

The following conclusions emerge regarding the application of the method :

(i) While approximating the convolution integral as a finite sum, in many cases
the Simpson’s rule is adequate; if the data points are sufficiently closely spaced,
even the trapezoidal rule may be used.
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Figure 1. Far-infrared photometry of planet Venus. The beam size is 1.4 arcmin. The curve
shows the deconvolved profile while the circles represent the data points (after Van der Wal er al.
1985). g

(ii)) The operator C can, in general, be taken as a second-order difference; how-
ever, if necessary, in some cases one may have to go to higher order differences.

(iii) The choice of the critical parameter y. depends on the observational
errors; generally y. can be determined by trial.
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