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Abstract. In astronomical observations we often encounter spectra which
are a result of superposition of individual contributions from phenomena of
similar kind. We describe here a method together with its algorithm by
which one can decompose a given set of data into a number .of nonlinear
functions and apply the method to a couple of astronomical data-séts. We
discuss the modifications to be made in the algorithm, appropriate to the
particular problem, in order to arrive at a solution. This method can be
used in high-resolution spectroscopic and photometric data on astronomical
objects to extract valuable information which otherwise is not apparent.
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1. Introduction

In many scientific problems, the data obtained are the resultant of a superposition
of a number of functions of a similar type, but of different parametric values. The
type or form of these functions depends upon the physical nature of the source.
Therefore, the problem that we address ourselves to in this paper is to resolve or
decompose into individual functions (with different parameters) from a given set of
data, assuming the functional form.

One often encounters spectra in astronomical observation which are a result of
superposition of several individual profiles which are not resolved unambiguously
either due to a poor signal-noise ratio or due to closeness of the profiles, making the
resolving power of the instrument insufficient. For instance, in the case of Seyfert
galaxies, spectroscopic observations (of Wilson as referred to by Burbidge, Burbidge
& Prendergasd 1959) showed partially resolved structured profile for several forbidden
emission lines and the hydrogen-recombination line H,. These structures are
thought to represent the turbulent motions of several individual gas clouds. By
resolving these structures into individual Gaussian profiles, -one can- obtain the
density in each gas cloud from the peak intensity of each of these profiles, and the
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turbulent velocities from the width of each of these profiles. In the case of a plane-
tary nebula (Wilson 1950; Osterbrock, Miller & Weedman 1966) one expects the
emission lines to give a double-peaked profile, indicating an expanding shell with
respect to the central star in the nebula. However, in certain cases, even the
high-resolution spectroscopic technique may not be able to resolve the double-
peaked structure due to the reasons mentioned earlier. Furthermore, in the case of
near- and far-infrared photometric data, sometimes one needs to fit a two- or
multiple-temperature model (i.e. Planck’s function with different temperatures
and emissivities) representing different physical conditions of the emitting regions.

We describe here a numerical method using which we can resolve or decompose
a set of data into a number of nonlinear (or linear) functions of assumed form.
We consider two specific astronomical data-sets and apply the method to resolve
the unresolved features.

2. Method

Mathematically, the problem under investigation is to fit the data with a model
function which is a sum of a number of nonlinear functions of similar nature,
having physically meaningful parameters of different magnitudes. The individual
functions may be Gaussian, Lorentzian, exponential, Fourier, or Planckian.

The model function F(X) which should represent the given data-set P(Xj) is
written as

M
F(Xy) = kglfk(Xi, 0), i=1,2,3,.., N; j=12,..,1 ...(1)

where fi(Xi, 0;) represent the individual functions that sum up to give F(Xj); 0, are
the physical parameters in each function that need be fixed so as to obtain a good
fit; N is the number of data points; M the number of functions required to fit the
data; and / the number of parameters (9;).

The deviation of the model from the data at each data point is defined as

D(X1) = F(X1) — P(Xy). ..(2)
Then the residual sum of squares ¢ can be written as
N
$0 B ..y 05) =1 z [D(Xi)z]; N>L e
i=1

where L =1 X M represents the total number of parameters that need be
evaluated.
Now the next step is to minimize the function with respect to 8p,(p =1, 2,..., L)
for a good fit. Assuming that ¢ is differentiable, one can write these conditions as
360) _

=0, p=12,..,L ...(4
o p 4)
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These equations may be linear or nonlinear in 8 depending upon the functional
form. So, the problem reduces to determining the parameter set 6, by solving
these equations.

In solving such problems (nonlinear Jeast squares and optimization) the generalized
Newton- Raphson method (Powell 1964, 1965) can be used very efficiently provided
the initial approximations are properly chosen. The method essentially is an iterative
procedure based on a Taylor series expansion about the current approximation to
the required solution. In case the function to be minimized is a sum of squares
and if each term in the sum of squares is relatively small at the minimum, further
approximation can be made; and the procedure gains substantially because there is
no need to explicitly evaluate the second derivatives. ]

Applying Taylor’s series expansion in the neighbourhood of 6°p (present approxi-

mation) and assuming that 6, = 69 4§, is a later approximation, one can write
equation (4) as

2 d '
aip - ﬁj +3 z aeoa" + 0@ =
| forp=1,2,., L. ()

Substituting equation (3) in equation (5), and neglecting O(Si) terms,

). z [ (03 _
N 05 28 Jo-ce =0, p=1,2,..,L,

i=1
which is,
N N

S8 o)e s (S0 B2

— D"—-

aep 6=6° - 00p 00q 00p 00q 0=0° -
i=

i=1
| ...(6)
Near the minimum, if D83 + 8;) = 0, then Dy(fp) is of the order of 8p; thus
the second derivative in the above equation turns out to be the order of 82 and can
theretore be neglected. The equation (6) then reduces to

D L N

oDy R foD1 9Dy

Z[ :Io=e° + Z [z {aﬁp 00q }]e=0 % =0 (1)
, g=1 i=1

Defining the matrlces

-F

z [aep ]0260; - p = ]’ 2, eeey L,
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- N
oDy 9Dy .
G = 01 04
[z 00p 69q 0=6° (8)
i=1
one can write (7) as '
$=—G'.g | .(9)

which gives the solution for 3j; and the next approximation 0, = 6y + & caﬁ
be calculated.

3. Algorithm

The following are the steps we follow in solving equation (9) :

(i) Depending upon the nature of the source from which the data are obtained,
we define the functional form of fx in equation (1) and the number M of such
functions which together will represent the data-set.

(if) Then we choose a set of initial values for 69 based upon @ priori knowledge

of the source of the data. 'We comment on this aspect later.
(iii) We compute the deviations

N
Dl(Bg) = Pl —-kzlfki(e;?, 62, eg, cers 92 .

(iv) The column matrix elements
N

= D [ 09D |. =1, 2 L
i=1
are determined.
(v) We determine the matrix elements

eDy oDy
— — M = ], g vees L,
Goa [Z{aep aeq}:|0=°° P 2 , !
i=1" .

(vi) We then solve the equations
= — Glg.

l
—
»
b

(vii) We check whether Max :g—\ ,
) . . P

where 7 is a pre-assigned accuracy limit. If this inequality is satisfied then we go to
the following step, or else we start all over again from the step (iii) above.

(viii) We calculate (: % z Df ) , the residual sum of squares, with the
i=1
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new 0, = 02 + 8p and check whether ¢ < vy, a limit given to the standard devia-

tion based on the amplitude of the errors in the data. If this inequality is satisfied
then we stop the iteration or else we start from step (iii) above with new 0.

The following remarks on the nature of the solution are in order. In general, the
solution to the problem discussed here is not unique because of its nonlinearity.
Therefore, care should be taken in accepting a particular solution and rejecting
several others. The method that we have adopted here searches for a solution in
the neighbourhood of the initial choice 69. Thus, unless the initial choice is pro-

perly made, the method either diverges giving no solution, or even if it converges,
does so to a sclution which may be numerically correct but has no physical meaning.
The first two steps in the algorithm as given above, namely, (i) choosing the func-
tional form and the number of such functions, and (ii) assuming a set of initial
values Bg, require a prior knowledge as to the nature of the source from which the

data have been observed.

Even after choosing the functional form and the number of functions, one needs
enough prior knowledge regarding the object in order to judge whether or not a
solution is meaningful. Sometimes the stability of the parameters also causes prob-
lems in convergence of the method. In such a case the iteration need not be done
simultaneously for all the parameters. One can estimate a subset of parameters
which are stable, and substituting these, the other parameters can be estimated.
The whole iteration process is repeated once or twice to get the full set of para-
meters. The matrix G which consists of partial derivatives at data points gives an
indication of the order in which the parameters to be iterated.

We have used Gauss-Seidel iterative method for solving the matrix- equation
given in (vi) above. In general, we have found that the method leads to fairly
fast convergence, provided that the matrix G is well-conditioned.

: ' 4. Examples

We now give two examples; of the type of functions that we have used for two
astronomical data-sets '

(a) Gaussian decomposition of spectroscopic data

It is fairly reasonable to assume that the emission-lines from, astronomical sources
have Gaussian profiles. This is because in most of such cases the line broadening
is caused by the motion of particles in thermodynamic equilibrium or by the random
turbulent motion of the gas. In such a situation, the resulting spectral line intensity
distribution can be best approximated by a Gaussian.. The data we have used for
the decomposition are the hydrogen Balmer-alpha line observations made by
Anandarao, Sahu & Desai (1985) on the peculiar Mira variable star R Agr by using
a high-resolution Fabry-Perot spectrometer. The model function F; in equation (1) is

Fi =szkl(e]); i = 1’ 2: weey N, _] = 1: 2, seey |
=1

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1986BASI...14...25A&amp;db_key=AST

9IBBBASI ~ T.C14T T TZ5AN

rt

30 B G. Anandarao and Suhasini R. Rao

(Ao -_— A Z
Jri = Ay €xp {— k 2;{) + -

The parameter Ay represents the maximum amplitude; Aox the wavelength of
maximum amplitude; and ok the width of the profile number X. We have chosen
M = 4 so that the observed profile represents two expanding shells with respect to
the central star—each shell represented by two Gaussian profiles, one approaching
edge and the other receding edge.

In figure 1, we have given the emission-line profile data alongwith the model-fit
with four Gaussians. One can see that the fit was remarkably good giving physically
meaningful parameters. We have found that a model with three Gaussians also
fits well enough with the data. However, the case of three Gaussians is rather
less meaningful because if there were to be two expanding shells, then, these should
necessarily be represented by four profiles. Supposing that there was only one
shell then it should be represented by two profiles. We tried to fit two profiles to
the data. However, the result was not satisfactory and the right-hand side of the
observed profile could only be accounted by assuming that the profile with
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Figure 1. H-alpha line profile in the peculiar variable star R Aqr. Observed profile fitted with a
Combination of four Gaussian profiles (after Anandarao, Sahu & Desai 1985)
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the maximum amplitude in the data was actually composed of two _profiles
representing a single shell.

We have solved equation (9) by taking a set of similar parameters each time.
That is, we first keep widths and position of the Gaussians fixed, and find out the
amplitudes; then keep amplitudes and widths fixed and compute the positions; and
finally, keep amplitudes and positions fixed and obtain widths. In doing this,
it is of course necessary that we first keep the best known and stable parameters
fixed and vary the least known ones. Thus the solutions depend to a considerable
extent upon the initial values. We had to do this kind of piece-wise computation,
because as we can see, in the matrices [G]pq and [g],, the elements corresponding to
different parameters are different by orders of magnitude. It is felt that this way of
solving the problem in a piece-wise manner reduces the risks involved in wild-goose
chase. The reason’is that when we know a priori the values of certain parameters,
it is better to fix them first and solve for the unknown parameters, in the end
making only slight changes in the parameters assumed a priori.

(b) Multiple source model for far-infrared data

There are a number of sources in the sky which are very strong emitters of far-
infrared radiation: molecular.clouds in our galaxy; external galaxies; protostars; and
stars with circumstellar shells. In general, each of these sources can be approxi-
mated to be emitting like a blackbody at a certain temperature, with emissivity
characteristic of the nature of the source. However, there are a number of sources
for which we cannot make this simple approximation. Most often, the far-
infrared emission is reradiation from dust grains heated by energetic photons from
a hot source embedded in a dusty molecular cloud. The same is the case of a star
with a circumstellar envelope. In such cases the far-infrared emission comes from
two or more sources, namely, one stellar component and one (or more) dust com-
ponent. What we observe is the sum of the radiation from those sources. The
problem, therefore, is to decompose the observed far-infrared flux into the fluxes
from two or more individual sources. '

Let us assume that p(};) is the observed data from a source. We use here a
simplified version of radiative transfer problem (Jones & Merrill 1976). We write
down the following equation for the model F(a;) :

F(Al) = a-B(z\l, T*) + kE—:']bk'B(,\i, Tk) {l — €Xp (—deQk('\i))},

where a, by are constants which physically represent the source size in steradians;
B(A, T) is the well-known Planck’s function for blackbody radiation given by

2hc 1

BQA, T) = A—'S{ehd/KTA — 1}'

Here dy is a constant; Qx(A;) are the far-infrared absorption efficiencies of a parti-
cular type of grains that we assume; T, is the effective temperature of the star.
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The data used, given in table 1, were obtained by Epchtein ef al. (1980) on the
peculiar symbiotic star R Aquarii in the region 9-30 xm when the star was in phase
¢ = 0.35. The field of view was 15 arcsec for all the photometric bands. The
effective temperature of the star was taken to be T, = 2800 K. We can find readily
that the fluxes in the region 9-30 pm cannot be accounted for by the star alone. We
also know from the nature of the star that it is surrounded by circumstellar dust
shells which have formed due to shedding of matter from the star in its late stage.
We have assumed that silicate grains constitute the dust in the circumstellar
envelope. The infrared absorption efficiencies for silicate grains were taken from
Pegourie & Papoular (1985). Models were generated for various sizes of the grain
and it was found that the best fit required a grain size of 0.5 um. As given in
table 1, we were able to explain the infrared fluxes observed by the following
source parameters : (i) The star with effective temperature T,, = 2800 K and the
solid angle @ = 1.0 x 10-15 Sr and (ii) a dust shell with temperature T4, = 430 K
and the solid angle & = 7.0 x 10-13 Sr. We point out here that the observational
errors in the data are more than 109,. These errors will reflect in the model para-
meters also. o ' '

Table 1. R Agr mid-infrared data compared with a two-temperature model

Wavelength - ) : Flux density, janskys '
wm ! Observations* Model
9.6 879 898.6
10.0 ‘ ‘ 991 ’ 951.8
12.0 ' 623 ‘ ‘ 668.4
20.0 . 424 ‘ 416.6
30.0 174 144.0

*Data from Epchtein et al. (1980).
Model parameters : T, = 2800K; a = 1.0 x 10-28 Sr.
Ta= 430K; b =170 x 10-2Sr
Silicate grains of 0.5 um size are assumed to constitute the dust shell.

i

5. Conclusions

We have developed a method and its algorithm to decompose observational data
into a given number of nonlinear (or linear) functions. We have given two examples
to show that physically meaningful solutions for the functional parameters can be
obtained. When prior knowledge of the source is available, our method yields a
better physical insight into the nature of the source. Though the mathematical
method described here is a standardized one, the details of the usage of its algorithm
depend very much on the particulars of the given data. Thus the algorithm is
data-dependent.

Acknowledgement

This work was supported by the Department of Space, Government of India.

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1986BASI...14...25A&amp;db_key=AST

BEASI I I4; DTSR

[

Decomposition of data - 33

References

Anandarao, B. G., Sahu, K. C. & Desai, J. N. (1985) Ap. Sp. Sci. 114, 351.

Burbidge, E. M., Burbidge, G. R. & Prendergast, K. H. (1959) 4p. J. 130, 26.

Epchtein, N., Guibert, J., Rieu, N. Q., Turon, P. & Wamstekar, W. (1980) Astr. Ap. 85, L 1.
Jones, T. W. & Merrill, K. M. (1976) Ap. J. 209, 509.

Osterbrock, D. E., Miller, J. S. & Weedman, D. W. (1966) Ap. J. 145, 697.

Pegourie, R. & Papoular, R. (1985) Astr. Ap. 142, 451.

Powell, M. J. D. (1964, 1965) Comp. J. 1, 155; 303.

Wilson, D. C. (1950) A4p. J. 111, 279.

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1986BASI...14...25A&amp;db_key=AST

