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Generating solution of the restricted three-body problem in
3-dimension

A. Ahmad Department of Mathematics, Sahibganj College, Sahibganj 816 109

M. N. Huda Department of Mathematics, St. Xavier's School, Sahibganj 816 109
Received 1985 May 25; accepted 1985 December 1

Abstract. As it is well known, the KS-transformation is a transformation
which regularizes the equations of Keplerian motion in the three dimensional
physical space to the four dimensional phase space. Kurcheeva (1977) has
given canonical equations of motion for the circular restricted three body
problem using KS-regularization.

This paper presents the generating solution of the circular restricted
three body problem in four dimensional phase space.
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1. Equations of motion

If g1, g5 g5, g, be the generalized coordinates and Q;, 0., O, O, the corresponding
generalized components of momentum of the infinitesimal mass, and u be the ratio
of the mass of the smaller primary to the total mass of the primaries, then the
regularized canonical equations of motion of the 3-D restricted three body problem,
as given by Kurcheeva (1977), are

dg, _ 2Q dg, _ _ @Q

i = 20" =5 (=1239 (1)

where

Q=1$}0i+ 0%+ 03+ 00D+ ?—PZ(quz — Oaq1 — @39 + O4gs)
—4(1 — ) + dhc — 3 P + wg? — gi + g% — g2)
—ufre],

¢ = Jacobi constant,

T = 0195 — Q3q1 — O2q, + Q2= 0.
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The distance between the infinitesimal mass and the bigger primary is given by
ry = (gi + gz +q3 + qi) = ¢~

The distance between the infinitesimal mass and the smaller primary is given by
r3=1-—20q1—q} +qi— gD+ " |

The physical time ¢ and the pseudo times s are connected by the relation

dt = 4(:’l ds. (2)

2. Limiting case for un = 0
For p = 0 we get

= §(Q1 + Q% + Q5 + QU + 20%(Q1g: — Q291 — Q394 + Qi)
— 4 1 2t

;11 =01+ 2%, > O = (}1 — 2p%qy, ]
7= Q2 — 2¢°q1 > Q2 = @2 + 2p°qy, L

g, = Qs — 20%q, = 03 = q, + 2p%q,, l .3
and |

"14 = Q, -+ 29243 > Q= .% — 2p%qy,

Hence from equations (1), we get

él — 492‘.12 — (g3 + q%) .qz — 4 (9.9 -+ 0:4,) ‘}a - 4(42514 — 4:193) q;
= 12p%q, — 4cq,,

g + 4% +4(q? F gD @+ N@ds — 2.9) ¢ + g + 9:99) 9
= 12p%g, — 4cqy,

éa + 4P2é4 -+ 4(q19s + 929,) G’ll + 4 (9:9s — 9195) 51'2 + 4(q3 + qi) 44
= 12p%g; — 4cq,, |

.‘j-l - 492;13 — 4(q:9: — 42‘14) f-Ji — 4 (qaqs + QJ‘h),_ ‘.h — 4 (g3 + qi) éa
= 12p%g, — 4cq,. ...(4)

Now adding equations (4) after muitiplying them by g.h, c']Zz, c},, 214 respectively
and then integrating, we get ‘

g} + g} + g3 + g% = 465 — dcp® + 8. ()

Here the constant of integration is taken to be 8, the same value as for the two-
body problem.
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Again, multiplying equations (4) by ¢,, q., g4, and g, respectively and subtracting
the sum of the second and third from the sum of the first and fourth and then
mtegratlng, ‘we get

Gy — Qide — duds + 0sds — 20" = b, ) -(6)
where b is the constant of integration. | “
We take
_ P n (2T @) = P
ql'—\/2 Sln( 2 )s ‘Iz—‘/z )

_ P cos (Rt e — % s
qy = V2 cos( 7 ), and ¢, = ) sip (
where Q and w are unknown variables. /
This will be a solution if equations (5) and (6) are satisfied; i.e., if

) | (D)

a 1
20 20 + b.

Following Krasinski (i963), we suppose that p = 0 when s = 0.

Then we find b = 0.

Hence  Q = 42 | o .(8)
Now from equations (5), (7) and (8), we get ’

o+ T @t = 8 — et

In the case of plane-restricted three-body problem with po= 0 we have p? P - 8 \—>4Cp2‘
(Krasinski 1963). This will also be the case if o = 0, i.e., @ = constant.
Hence, we get

= (2/c)'/2 cos Vs — éy),

1= - [4ves + sin (dy/e s — 24 + wn

where ¢, and w, are constants of integration. Now instead of Q and w we can take
the variables 8 and ¢ which are given by

N D
LN

0= 252 _ Liyes +sin @ves — 2] +
Q 1 :
b= 5 [4/es 4 sin (/e s — 249] + wn, .(9)
where w, = %o ; @ and wy = =2 'J; ® and hence w; and w, are constants.
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Using relations (3) and (9), the geherating solutions can be written as

e _
—p—cose,qa_—.ﬁCOSg‘,, g = —= Sin ¢,

V2 V2

@ = \/2 sin 0, g, =

sinf, Q, = cos 8, 0, = sm é,

..(10)

0, = \/2 \/2 '\/2 cos ¢, Qg = '\/2

where p = (2/c)'/ cos (2v/c 5 — ¢o)

0 = -217[4\/@ + sin (4ve s — 25{}0)] + o,

and ¢ = %[4\/c s + sin (4y/cs — 2¢0)]‘ + w,
(n = cy/c = (V/¢)® = mean motion).

It is not difficult to see that the solutions (10) will be periodic only in the case when
n is a rational number, i.e. if it may be represented in the form n = k/m, where k
and m are mutually prime integers. (k and m are called the characteristic numbers
of the periodic solution). The period of such a solution is equal to

Ir 2“\7; if (k + m) is an even number
S =< ©
IL % , if (k + m) is an odd number. -

Substituting the values of ¢’s from the relation (10) in (2) and then integrating we
get the followmg relatlons between t and s forug = 0

£ 20— ) = 2 — ) = —[4\/c s +'sin (4v/c 5 — 2¢,,):|
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