TIME-DEPENDENT RADIATIVE TRANSFER

A Thesis
Submitted For the Degree of
Doctor of Philosophy in The Faculty of Science
PUNJABI UNIVERSITY

PATIALA

INDIAN INSTITUTE OF ASTROPHYSICS
BANGALORE 560034
~ INDIA

DECEMBER 1987



DEDICATION

10 Every 'RESEARCH STUDENT'



ACKNOWLEDGEMENTS
It is a pleasure to acknowledge Prof.A.Peraiah for

suggesting the problem and introducing me to the Methods
of Radiative Transfer. I am also grateful to Prof.
H.S.Gurm, Dept. of Astronomy and Space Science,Punjabi
University, Patiala for taking keen interest in the pro-
gress of this work. I wish to thank Prof.J.C.Bhatta-
charyya, the Director, Indian Institute of Astrophysics
for providing me with excellent‘research facilities.

The kind enquiries and the encouraging words of late
Prof .M.K.V.Bappu gave me inspiration at the early part

of my career as research student.

I am specially thankful to Mr.M.Sriniwvasa Rao,
Mr.B.A.Varghese and Mr.K.B.Ramesh for providing me all
the help needed in the early completion of this work.

I had fruitful scientific discussions with Dr.N.Gopal-
swamy, Mr.G.Thejappa and Dr.K.N.Nagendra. Dr.Sunetra
Giridhar, Dr.K.K.Ghosh and Mr.V.Chandramouli, the re-
sident Systems Engineer helped me in various stages of
computations. I thank Arvind Paranjpye for reducing the

graphs photographically within a short period of time.

Mr.K.E.Rangarajan heiped me in clarifying some

aspects of the problem.

I am grateful to Mrs.B.G.Pramila for typing the
thesis in a short span of time. Mr.S.Muthukrishnan has
done all the drawings. I thank Mr.A.Elangovan for taking
the copies of the thesis, Mr.R.Krishnamoqrthy and‘Mrs.
Revathi Kfishnamoorthy have done an excellenf job of

binding the thesis.. Mrs.A.Vagiswari, Ms.Christina



Louls and Nr.H.NMenjunath have rendered all the help

required in connection with the Library,

I thank all the staff members of Indian Institute

¢ Astrophysics for thelr cooperation in all aspects

during this works



ABSTRACT ...
Chapter I ...
1.1

1,2

1.3

Chapter II...

NN
. s

v =

2.3
2.4

Chapter III..

3.1

ol J

-

3.4

Chapter IV,.

4.1
4.2

CONTENTS

INTRODUCTION

Importance of the time-dependent
radiative transfer

Description of the problems
studied

Transfer in spherically
symmetric medium

EFTECT OF THE TIME SPENT BY THE
PHOT™N IN THE ABSORBED STATE ON
THE TIME DEPENDENT TRANSFER OF
RADIATION

Introduction

Derivation of the transfer
equat ion

Method of solution

Results and discussion

A NUMERICAL SOLUTION FOR THE
TIME DEPENDENT TRANSFER EQUATION
Introduction

Method of solution

Extension of the method to
calculate the time dependent
line profiles

Results and discussion

TIME DEPENDENT TRANSFER IN

- SPHERICALLY SYMVETRIC MEDIA

Introduction

A numerical method for'solvinq
steady state transfer equation
in spherical geometry

I~IT
1-6

13
38

48

48
50

67
70

89
89

90



¢.3

4.4

Thapter V ...

REFERENCES. ..

CONTENTS

Numerical solution of the time_
dependent transfer equation in
spherically Symmetric media

Results and discussion

CONCLUSION AND FUTURE WORK

101
106

114

116-117



ABSTRACT

The theory of time-dependent radiative transfer
is important in the studies of transient phenomena
taking place in some of the astrophysical objects.
Time-dependence of the radiation field must be
considered if the relaxation time of the radiation
field is comparable to or ionger than the characteri-
stic changes in the properties of the medium. It
must also be considered if there is a temporal change

in the impinging radiation on the medium.

In chapter I, we discuss the importance of the
characteristic time scales which occur in the theory

of time-dependent radiative transfer.

In chapter II, a numerical solution for the
monochromatic time~dependent transfer equation is
presented for the case when the time spent by photon
in the absorbed state is significant, Two cases are
considered whose boundary conditions are respectivelys:
(1) The surface of a plane-pagéllel homogeneous medium
is illuminated by a pulsed beam, (2) the surface is
illuminated by a constant radiation input from time
t = 0. We investigated the effects of these boundary
conditions on the émergent and the reflected radiationf

from the medium,
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In the case (1), we found that the time-dependent
reflected radiation falls more rapidly forf4= 0.2
compared to that of A = 0,7. Here & 1is the cosine
of the angle made by a ray relative to the normal to
the surface . For the case (2), time-dependent
reflected radiation reaches steady sate faster for

’JL = 0.2 compared to that of /4 = 0.,7.

In chapter III, we consider a homogenecusmedium
where the time spent by a photon between successive
acts of scattering is significant. The numerical
‘solution based on ‘the:method'of characteristicg is
presented, For the case when the medium is illuminated
by an isotropic radiation, the time at which the rela-
xation of the radiation field to steady state commences
depends on the optical thickness of the medium. It
also depends on the angle at which the radiation

emerges out of the medium,

In chapter IV, we present numerical methods for
steady state as well as time-dependent transfer equations
in spherically symmetric media. These numerical methods .
are based on finite-difference methods. Numerical
solutions are compared with the known analytical solu-

tions wherevér it is possible to do so.



I, INTRODUCTION

l.1 Importance of the time-dependent radiative transfer

New experimental techniques which increased the
time resoclution of astronomical observations has nece-
ssitated the study of time-dependent transfer of radi-
ation. Many of the celestial objects are found to be
far from the state of equilibrium. The analysis of thé
time-dependent characteristics of the observed radiation
provides additional insight into the nature of these
objects. In particular, time-dependent transfer effects
will be important in the study of the objects ;ike
atmospheres of supergiant stars, active galactic nuclei,
Quasi-stellar objects, supernovae, nova like variables,
planetary nebulae, and compact objects with accretion
disks. They may also be important when the source of
energizing radiation is intrinsically occulted, or

reinstated, as in planetary atmospheres.

Two important quantities characterize the time-
dependence of the radiation field. One quantity is the
time spent by a photon in the absorbed state, &, and
the other is the time spent by a photon between two
consecutive acts of scattering, tz.‘ Usuélly one
of these cl aracteristic times is dominant and
determines the temporal characteristics of the radiation

field.



For a resonance line transition, t—l is usually of the

order 10”8 sec. E_ is equal to ' .where K

- Kmnc¢

is the absorption coefficient per particle, TN 1is
the number density of the particles and (C is the

velocity of 1light. In a low density medium like

planetary nebulae, for a resonance line (e.q. Lo( ),

12, then £, ™~ 102 sec.

L]

Time-dependence of the radiation field must be

we have = M|, K~ 10~

considered if there is a sudden change in the impinging
radiation field on the medium or, if tl or £ is
long compared to the typical time scales in which the

atmospheric system is changed.

Time-dependent radiative transfer for an isotro-
pically scattering medium in a planar geometry is given

by

z) M E) T ™M AT (% fut)
tl(i}t) ( ) A f(2t) dZ

t ‘
+I(@pme)= | U ;(t—h)/t'I(z,ﬁ,t)d)Ja%

ya

o
+ (-w) B(z't)] | —lepe]

Where I('Z.,‘l‘-i,'t) is the specific intensity at positionz
and at time { in the direction C.o-s-'rA (f* € E-i,l])

(1‘)



(2, £)is the albedo for single scattering and BLZ'E)
represents the thermal sources. Ci.) the mass
absorption coefficient and /3 the density of the
medium could be functions of time and position and
require the determination of the non-steady state

populations and dynamics of the medium.

1.2 Descriptions of the problemg studied

(a) Transfer in a plane-parallel medium

If the properties of the medium are constant with
respect to time and position, the equation (1). is
amenable to analytical and semi-analytical treatment
under suitable approximations. Most of the techniques
are based on (1) first Gaussian approximation or
Eddington approximation (Code, 1970, Code & Eason, 1970)
(2) principle of invariance or theory of invariant
imbedding combined with Lapalce trénsform technique
(Matsumoto, 1974, Bellman et al,1964), (3) Theory of

successive scattering (Matsumoto.lQ?G,Génapal,1979,1981).

But most of‘these analytical methods deal with
homogenanxssemi~infinite or finite media. It is difficult
to extend these techniques to time-dependent line transfer
problems where the ratio of time intervalg to optical
depth intervals vary with frequency in the line. Also
most of these methods are restricted only to plane
parallel media. So there is need to develop numerical .
techniques which can handle easily the problems of finite

inhomogeneous media.



We used numerical techniques to study in a
systematic manner the time-dependent radiative transfer
in a medium with given properties. 1In chapter II, we
solved equation (1) by considering only the time spent
by a photon in the absorbed state. Under this assumption
time derivative term vanishes from the equation (1). We
developed a numerical method based on discrete space
theory of radiative transfer (Grant and Hunt, 1969a). We
studied the intensity distributions due to the changes
in the impinging radiation on the medium for various

optical depths.

in chapter III, we considered a situation where
the time spent by a photon between successive acts of
scatterings exceeds the time spent by a photon in the
absorbed state. Since we have l;,-——70 equation (1)

reduces to

Ca SR RS T N SEEMY 4 KL G p)

= A L1 (zpe)dp+ (-9) B “-)]

-1
To solve the equation (2), we have used a finite Aiff-
erence scheme based on the method of characteristics.
We considered a homogeneous time-independent slab.illuu

minated by an externally imposed radiation field which

(2



enters slab at time t = O. The medium is assumed to

scatter photons isotropically. Mihalas and Klein (198 2)

showed that a finite difference method with non-constant

—-

(=8

space and time intervals cannot accurately represent'*
propogating unscattered wave front. - Henc= we have
d@ .stinguished diffuse radiation field due to one or
more scattering processes from the directly transnitted
radiation. We have shown in a grsphical form the re-
laxation to the steady state of the diffuse emergent
radiation, and reflected radiation from a finite slab
with a given optical depth. Also the extension of the
method to the resonance line transfer under the assum-

ption of complete redistribution is presented.

1.3 Transfer in spherically symretric medium

The assumption that the medium is stratified in
plane parallel layers holds good only when the density
scale height in the atmosphere is small compared to
the radius of the star. But many stars, such as,
supergiants, Wolf Rayet stars have extended atmospherecs.

Atmospheric extension has importént physical and cbser-

vational implications. = The stars with extended erzvelor«

exhibit (see Underuiill, 192¢) features such as Ailution

effects, n»resence of large numbers of Balmer lines,

an



forbidden lines etc. We can assume that the atmos-
pheres of these stars are spherically symmetric. We
: 2
have an additional curvature term - ol in
oM
the steady state transfer equation. In addition, if
time-dependent effects are important, we have the

additional time derivative term and an exponential

relaxation factor in the scattering integral.

In chapteer, we presented a method to solve the
steady state equation in spherically symmetric medium.
Also a first order difference scheme is develcped
for the time-dependent eguation under the assumption

that +| &< £, W have checked our algorithm for

few test cases.



CHAPTER II

EFFECT OF THE TIME SPENT BY THE PHOTON IN THE

ABSORBED STATE ON THE TIME DEPENDENT TRANSFER

OF RADIATION

2.1 Introduction

In this chapter, we shall present a numerical
solution to the time-dependent monochromatic transfer
equation when the time spent by a photon in the
absorbed state is significant. We have considered the
cases where a slab is illuminated by a pulsed beam of
radiation and also by a constant source of radiation.
We studied the emergent and reflected intensity distri-

butions for the various optical depths of the medium,

Milne (1926) derived the transfer equation in his
investigations of the diffusion of imprisoned radiatidn
through a gas. He consldered a slab of mercury gas which
is illuminated by light for sufficiently long time for
the gas to reach a steady state. If the source of
illumination is suddenly cut off; the radiation field
in the gas will not cease instantaneousiy due to the
fact'that the atoms of mercury will decay With a
fiﬁite mean}life.time. Chandrashekar (1950)solved ﬁhis,'
problem and obtained a solution which is expresséd in a

series form.



Sobolev ( 1963 ) obtained the reflection function
by considering the time spent by a photon in the
absorbed state for semi-infinite media through the
probabilistic arguments. Using the time dependent
principle of invariance, Matsumoto (1974) studied
the reflected intensity distribution frbm a homogeneous
semi-infinite atmosphere when the time~dependgnce of
incident radiation field is expressed by the Heaviside

unit step function,

In section 2.2, we shall present a brief description
of the Milne's derivation of the transfer equation
(cf.Chandrasekhar, 1950), and in section 2.3, we shall
present our numerical solution to the transport equation.

We shall present the result and discussion in section 2.4.

2.2 Derivation of the transfer equation

Let suffixes 1 and 2 denote respectively the normal
and the excited states of the atom, The Einstein coeffi-
cients B12 ¢ A21 and 521 can be defined in the following

v
an atom exposed to isotropic radiation Qf intensity

WaVe B12 I 1is the probability, per unit time, that

Iydy in the frequency interval ( ¥, V+ dv  )will absvorb

the quantum h<y and make a transition to the state2 ..

A21 is the probability per unit time, that an atom in



the state 2 will spontaneously emit a quantum hy ana

pass to the state 1, and B21 I, is the probability

that the same atom will be induced to undergo the
same transition. The Einstein coefficients are
related by

Al\ = J—-")'ﬂ?, g,
DBy

<t 92
amd

‘Eizi _ :al—
SIPY 2

where dq and g, are the statistical weights of the

states 1 and 2, c¢ is the velocity of light and h is

the Planck's constant. The Einstein coefficients are

properties of the atam only, and are independent of

the radiation field.

If c—-Cv) is the atcuaic absorption coefficient

for frequency ), then

f""’( ') 47 = Big hd
4T

where the integral is extended over the absorption line

corresponding to the transition 1-— 2. By assuming
that the absorption throughout the width of the line .

is uniform., wWe. can approximate the relation.

(2.1)

2. 2)
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(2.2) by

Y)AY = Bz b
=) qm (2.3)

Let 7, and N9 denote the nmaumber of' atoms per unit
volume in the states 1 and 2; Also ‘T and N2 vary
throughout the. gas and are time dependent. Let a pencil
of radiation of specific intensity I, traverse a path
length &S through the gas. Counting the gains and |
losses of the radiation through a path length

we get

dIv _ B I9) =7 B, Iv] h?
Ay 92 [Tu.(Aznez, ?) =M BTV | AT .

where the quéntities multiplying M2 andN; represent
the number of emissions and absorptions (per unit time)
of the gquantum h+< . Dividing the equation (2.4) by
Bi2 h“'D!L}-TT and making use of the relations (2.1)

and (23 ) the above transfer equation becomes

3 |
dIy — =M -2 31 Iv"'%‘bg‘ 31 na o5
c—dS 92 S o

The excess of the number of absorptions over the number

of emissions must equal the rate of increase of the



number of atoms in the excited state. Hence

'T\IJBQ,I)?% — jCAZI-\‘ B'?-I""l‘ dL,('—[‘]') -—%p—é (2.6)

where the integration is extended over the whole
solid angle. We shall define the mean intensity

of the radiation by

]—v:'i:ﬁfl'y dw

By dividing the equation (2.6) by B,, and rearranging

the terms, we get

18! &“Jzﬁ_{_ Na = Zh")B 9 aY)_z__
O L= X < 9 0€ (2

Assuming that 7);77 N1 and time independent, equations

(2.5) and (2.7) can be written as,

A1y — _T,+2h> 9 M
nds <z 9z ™M 2.8

and

Iy = 2hs 91 L Mg+ OM2 (2.9
et g M | /-\Li&t> |
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We assume that the medium is stratified in plane
parallel layer in Z-direction, and d&note the
cosine of the angle made by ray with the normal

to the surface by M-

Defining
3
CfL 32_ Eal
and the optical depth C)\ T = —N le

aquations (2.8) and (2.9) reduce to

+ M AIthZH)__'I(éper —N(t7)
O ¢(Me)

and for the oppositely directed beam,

‘u O‘I(tﬂ’ M = I<t o ﬁ) N (t’—t) (2.10)

OLML]

and

JT(t7) = N (t,“c)—\—;l\ll aaNt-

(2,11)
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t
—Ax t —Azn k[ A, € ;
N(tz) = N(oT)e N + Ay e & T(t)dt
o (2.12)

Assuming that initially a1l the atoms are in the

ground state, we have N (O;’Z’):‘:O. Further writing

6:| = 7,_\?_’ and substituting for N(tft') An Cz- lo)

We get s

TN 2L ez rp) =1(t 2p) 4 S 4] 1) o
T o]
| (2.13)

—t|k
Also one can See that-—,E. c I , is the probability

)
that a photon absorbed at t= @) will be emitted in

the time interval ( £, £+ t) .

2.3 Method of solution

In the following Section, we shall describe the

solution of radiative transfer eéquation in detail.



L .Interaction Principle

We divide the medium into N shells.

At any level

we define upward and downward directed intensities

L)—\.C"Cy,)’ J(_T“} Let M Dbe the cosine of the angle

made by a ray with the normal to the surface in the

direction in which the optical depth increases.

We

select a finite set of values of H o luj z |é.j <M,
-+ -
O < Hu(Hz---Hmél}and write (J (Tn)

as vectors in m-=dimensional Euclidean space

pro—

and J (TY\7

— . _
Ut (Tn, M) O (T, )
U*(_T’n) — U () —
- U (Tn, Nm
U (ZW»{*HD )
»
consider a shell bounded by layers ™M o and 'ﬂ'*'?
as shown in Fig.1(a)
o Lo
o 1T ,
-+ —_—
Un > (:‘h,?u-l)
Un 1 J T "
t . , S
out put imlem - Tlans i tled e‘d‘"m LUJad\"

-gidies = Q,Ind ?k(:—c.f-a-f -+ ENow imlgainal
' 2mna dent imle A
—&;Eéﬁ v PUNCLA
. s 0 I .
Unt) Umn+i <5 (m+,m)
l U+ . T‘.

Fiq 1)

14

(2.14)

-N+



The intensities impinging on this layer are Lﬂtﬁh)

and \5-(Tn44) . The intensities emerging from
the layer U+C—Cn+l) , U (Tn). » depend

linearly on the incident intensities and on the sources

z—r (z—h-ﬂ J Th) J i——( Tn ,Tﬂ-{-\) present within the

layer. Then we can write (hereafter, we shall omit

< and retain its subscripts only)

— ., —,-
sz\+|7= t;(“'*bji)(jz,'fjl(ﬁqf”**)(~an|fbif_(7ru,70
Oy = T(ntim) G+ £ (i) Goat + 5 (nme)
'h —
R T
k);+) ij%

= S ﬂﬂ) + 5 (wn)

ondte
Un Ui

-
The pair t(n+l,n) and t(n,n+l) are the linear operators

of diffuse transmission and r(n,n+1), r(n+l,n) are of

diffuse reflection. EQuations (2.15) and (2.16) are

called the Principle of Interaction.

Now that we have'obtained the respoﬁse function
for a layer of specified boundaries, we shall proceed
to calculate the response function for two or more,
éonsecutive layers, a process termed as "star producﬁ?;

( see also, Redheffer 1962);

(2.15)

(2.16)



II.Star product

and

Let there be two layers with boundaries

Tn+2 where

from equation (2.16), we have

Semmad

—

-and

S(mm+1)

S(T)-t-l,’h-rZ)

Qv & T € Thnti

adgain using the interaction principle,

. —_
N+
| Un |
and
—~ —_
+
Un+a
Unx)
- _
As T, Tnr
U+ —-f
N+
Um
- .
where

———
———

S (hﬂh—l)

]

-
U

Un+z

- .
t (7 *‘?-/’7")

< Thyi25h-
"
Un
Umn+ti
= |
_ _
-+
kJMri
Un+2
B A

_

()

Tn, Tht

Then

16

+3 ()

+> (7\-1—1,7\11-)

Tn+2 are arbitrary, we can write

—.-F

n(pam)  E(nme)

rr—

(2.17)

+ > (nv2)

(2.18)
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can obtain (2.18) by eliminating U'-TT—H and Un-\-l
sm (2.,17). The relation between S(n,n+1l),

n+l ,n+2) and S(n,n+2) is called ‘'Star-product!®

two S-matrices,
S(mmn+2) =S (nn+)* s+, n+2)

SO —

(n+2,m) = t(nz n1) L_I- n(nnr) N (mzmﬂﬂ t(nrum)

~|
N+2) = t (n, ) EL -n (”n»rz,ﬁm—l) 71(71,7)1-1)] t(munﬂ

(.,

_ Cn +2, 'n) =N (’ﬂﬂﬂﬂ} +t (TJJ\H) a! (Wr?-,?nﬂ) .
EI — (M, ) n(mzmﬂ)] t (nr,7)

1_(’*0, m-rZ) = 71('}’)1",7)1—2-) —1— t (n+z,h+;);"7l(h,mr\)
E'I_ —_ '71('7’)1* 2, ’n-rl) TL(T),T)HH t (TH’-l, 'Th-z)

(2.19)

here I 1is the identity operator.

Let us consider the source term E . The
esult of adding two layers may be written in terms
' [
f two linear operators /\(’]‘],7\1—[,7].1—2—) o\md/\(m,'nfl',nf-z.)

Z. (11;7)+2) = /\ (Y\, N+, TH-Z) z (T),YH-\) |
—+ /\’ (“n, M+, ’YH-Z) 'E_‘_' <h+j)hi—l)_
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- =1
where B § G TR T [1-n(noe) (02, TH-D:) ‘ O

Ao, nr2) =

£ (mn+) LMz men) El—ﬁ(nmﬂ) 71(11+2m+§] T

—
and

—

1 t (n+z, M) LM 0+0) E: - (h+zm+\)71('nm+1)_l

/\'(Y),]\+|.11+z>: |

O £ (D) [1'7‘-('7\1‘2.')‘1+|) n(m, T\H)j
' ' (2.20)

So in practical problem, we divide the medium into N

layers and calculate S for each shell and add them by

star product. We have for the whole medium,

S(I,N) :S.(l,z.)}k- SCz,g),;.. ook Shmu)%x--- S(N-LN)

(2.21)

A corresponding equation can be written for the source

terms. Adding layer by layer at a time one can calculate

the complete external response,

III'-Calculation of the internal Diffuse radiation field

To calculake the radiation field at any point inside

the medium, one has to solve the simultaneous equations

— ; — ‘ o
U — 5(”'“”) +Z'(h’h'¢') (2.22)

g

U ol ; |
e Rdad (1 «v<N)
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The details of the procedure is given in Grant and

Hunt (1968) and we shall quote only the results.

Calculate the r and t operators for each shell.
Compute, sequentially, £or n=1,2,.e6cese N, the

matrices r(1l,u) and vectors \/,n,“_ ’V“"'Li. from

n (\ \;'T'\) =N ('H,TH-I) + t (T\H;Tl) ﬂ(l,ﬂ) EI_ Tl(h.ﬂ M) n_(;,y,) t(‘n,“m-l)

(2.23)

\/—]':\+.L ) (n+1,m) V- T2 <Y‘H)n) TR +‘1</-_-(T)’ )

(2.24)
Vary = (v m) qu-{,._ +Tory, > (umtl)
2 | (2.25)
with the initial conditions r(1,1) = O, V;-f'z U+Ca':)
and where
T (neyn) = £ (ne,m) [1-n0/m) n(mw)]
| - (2.26)
A(‘nﬂ n) = TL(B’H—! ?\) [I— (L) Ny, 'Y‘)]
" (2.27)
and
ne,M) L(LM)
‘RTHJ’E. — 't( t ) .
— — (e, ) )
and TFYH.%- B [I ( ) j



On this forward sweep, we need to store the quantities
r(1l,n), t(n,n+l) which represent the diffuse reflection

and transmission for each shell and \j%;L s the
T

diffuse source vectors.

Now we shall calculate the intensities at each

step by computing sequentially for n=N, N=1,N=2,.¢e0.,
2’1.

- +
U+ =) Upn t \/T\'f-‘,i

n+|

o = £ () Ut + Vi

with the initial conditions .UNH: U—(b)

We have ;een in the previous section how to
calculate the diffuse radiation field of general
physical and geometrical properties. Also the
calculation of diffuse field requires the correct
estimation of reflection and transmission matrices
for each shell or pértition of the medium., We
shall calculaﬁe the r and t matrices for the
medium where the time spent by the photon in the

absorbed state is significant,

20

(2.28)

(2.29)



R1

IV. Calculation of Transmission and Reflection

operators in a shell of given phvsical properties

We have seen in the section 2.2, the transfer
equation for a plane-parallel medium when the time
spent by the photon in the absorbed state is signi-

ficant is given by i E +!

M %—1{ = Ii(t,z,igu)—o-S ;(t‘t)/t' I(t'?/“')c—‘—édl“’
o] -1
o < ML

Sometimes, it is convenient to distinguish between

the reduced incident radiation g(t.’L,,ﬂ ) which
penetrates to the level T at time t without suffering
any scattering or absorption and the diffuse radiation
1( &,7T, M ‘) that results as a consequence of one

or more scattering processes,

Then the transfer equation is given by
E +1 _ '
. —-(t‘é-,)/ \ ' t /
T ﬁ 0ol — L (t,"l, i}q>—° O 9e & I(ﬁ’t’r)g\?’dﬂ

0T

(o) —1

- It p)

(2.30)



Though we considered only isotropic phase function,
the extension to arbitrary phase function is
straight forward. Also we assumed only conservative

Scattering atmosphere without any thermal sources

present.

For a slab atmosphere with no radiation falling

on the top, the boundary conditions for the equation
(2.30) are

T(tz=F-p) = $Ca M)

I (t,T:}Oa-H) = 0
GLP<) (2,

where £( E;f*) 1s a given function of t and l*-(

We shall approximate the angular integral in

equation (2,30) as

J N
1(t ) dp = 3 1k )<
I .

(2.
0



Where the coefficients Clj énd cosines PU are

determined by Gauss-Legendre quadrature of order J.

Integral over time is approximated as

4! I —tiJe
| Slrce mppa= 3 SHat e ) o
O

(=1

for J =) - J

Incorporating these approximations in (2.31),

We get
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One can write the system of equations(2.34) as
(By measuNing 4 u n the l'.m-Crea.Aiwav T divechiom. )

M ouT . Q+= O S'[Tc(u‘*-r()) -G (x)

0T

M QU 4u=0> [TC (U4 5)]"’(“(‘)
QT

(2.36)

we shall integrate equations (2.36) from (. To Tt

and write their corresponding discrete equivalents

as

M[Un—:; - UE]—er_.i U:“: O'S'E'C (U:.f{t CJmﬂ
— G (Zn+£)

=M [ U= 0] 4 Tney Upey =05 [—m (Gt Ghes)]
— G (T)«-t{)
where |

—CYH'li = Tney — T @:37)
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Ve shall use the diamond scheme to approximate

L +t
the quantitiles U ”0“5_ as

1 + t7
U'n*li — O‘S[Uhﬂ"\' U)\]

(2.38)

Ten equations (2.37) become,

M[UmrUn + 09 Tney (U“ t U-n) 0 ZSTC(J',}'UQTM

n+d

+025-TC (Q-“H'{'UT\) -Z:hf'li_“ G" T;;,n/z

(2.39)

~M| Une 0 ] + 0+5 Tyt (Uneyt On) =025 T ( Gyt On) T

+025 T¢ (dhf\+ J\") 'znui“‘lc‘l‘ml,_fm-ﬁ_

(2.40)

Rearranging the terms, we get



[[V] +0-5 Zn-r.\]._ (I -0'5 TC)] Uj;“_l — 025 Tc On'zwrll

- 025 TC U-h-n’zm-ls_ + D\'] ~O'52n+11 (I-O'STC}]JM

- T
G"m-.}_ wrl1

— -+
{:er]_+<3.E;]:7na%_<jr"C)'S 1255] ()?)“‘CT Z'S-TZZ(J7?+I7?n+%

+ c A —
- 025 TC Unm znflz-_ T [M -0 Tm—-‘i@ © STCHU"*‘
Here I is the identity matrix of appropriate dimension‘

It is now straight forward to put these .equations in the

canonical form

B Al a7 [+ 7
Uﬂ;‘ﬂ t(n+i,m) n (’hmﬂ) Um Z
- nty
Un - -
] N (n+1,m) E (“{),T)H) ’Uhj Z‘h-f-li
- - JL L |
(2742)

Now we shall express the r and t matrices in terms

of the following auxiliary matrices.
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Qe = 057C
+
S =M-o05t (I & +£)

é:. = O'5 'thfk éRj%f&

+ o
A =MLz (- a0y
=1
?7:f_:: zigf S;‘ } ZET;:[;IE_ 71+*Tﬂi}
t (i) = € | ATS 45t ]

E(nnot) =t ("ﬁ*t—lﬂﬂ ,
h(h-rlm) = 92 T ¢t A+M
n(mmt) = (neim)

and

+ 43)
< < ‘ (2.43)
Zael = 2 mel
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From physical considerations, we know that
reflection and transmission operators r and t must
be non-negative. For this we need : fozyCL

E;*_;7(3 , and we can achieve this if

M

‘lz‘_‘ ( I=Tj CJ'J)J

T & Tenit = Mim;

(2.44)

So with the help of these transmission and reflection
matrices, one can obtain the radiation field as

described . previously.

Specific cases considered:-—

The transfer equation is solved with different
types of boundary conditions. The various cases

considered are given beldw.

Case I 13 Two stream approximation with an incident

pulsed beam on the lower boundary of the atmosphere i.e.
1({;, =T, -/u::) = & (¢)

where é;({,is

Dirac-Delta function.
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I(t,f:o,*ﬁ*:l):O (2.45)

To avoid including the highly singular function
(the 8 - function distribution) in the equation,
we distinguish the diffuse field due tO one or more
scatterings from the reduced incident field without

scatterings. The equation of transfer for the diffuse

field is

+
+ 017(67T) + T (87)
| ot k ) ’
e ([ ==k —t|t, —(T7)
~0'S | - / (I—r-rf)d_f‘:_'-l"o‘Sf e

0]

(2.46)

where + and - denote the two oOppositely travelling

beams of radiation.

Case II : If we consider the full angular scattering

of the radiation, we have for the diffuse intensity



The transfer equation for diffuse jptensities in this

case 1s
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AT
t ‘) + ( )u’
-t-{-.]i-_ - ——Lt"-‘""‘/f
= o~5g f( '_g‘_[(t', 'Z,[‘J)i"_;@.’lf’(‘\"g_é-ﬁl f\: A p
E;‘ tl
0
0 -1
(2.47)
with the poundary conditions
I (t/ =T ,\’) =0
+ - =0
1 (t:z o M) QZ_PL)
case II1 ¢ gearch ligh® peam with Dirac-delta time
distribution is also considered. The incident field
is given DY
1<trcrw):—-6(f>6(w-w)
+
1 (t=0 1) =0
- (2.43)



with
I <b, -C:-TIH) =0
177(E,zzoM)=0

For checking the numerical results, we can make use

of the following relations

Denote

0

—+ ‘ -~

T (¢ p)dt'=T (T
O

By integrating equations (2.46), (2.47) and (2.49.
with respect to time from 0 to &g , we obtain the

following steady state equation for various cases,
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(2.49)

(2.50)



For the case I,

~ t ~ - -
T o1 —rII:O-S(I*—,‘- —>+Q'5€
AT .
(2.51)
with -~
1" (z=0) =0
T (7=T)=0
For the case II, we have
-+ |
~ 4 - -
tp 21 —rIi:o-SJI('M“')dr*
0%
. i -l |
© (2.52)

 with

T (T=T.pM)=0
for the ¢ase III, ' -+
{f ( [
+ M OTT L T o sfr (2, M) A
2T
__(T~C)/H°

(2.53)



with

f+ (-C:O / '\“-) = O

j‘- (77=-T/P4) =0

The equations (2.46), (2.47), and (2.49) and the
corresponding steady state equations (2.51),(2.52)

and (2.53) are solved. The steady state solutions

are also obtained by the method of Grant and Hunt (1969a)¢
The time dependent solution I(t, T, M ) 1s integrated
with respect to time and checked against the steady

state solution as given below,

o0

+ ! , l 'i.
1T (top)dt=17(op)
(2.54)

The maximum deviation from the’ steady state value'is 15%
which is fact that the above‘+time in;eqration'

is°  truncated at a finite time limit.



Case IV: We also considered the situation where the
incident radiation distribution with time is given

by Heavisde unit stsp function H ()

U+ 91(80) = I7(7)
T t

_ "'{.T fﬁ - L)/Ef (N+(£)‘E)+I (’c' 2’))0“7

o) (2,55)

With _
T (&, 7=7) = H(%)
1 (&7=0) 7
vhere H(£)=0
for £ 40
H (f)'—‘-l for € 7/0 4+
t
1) + MO é)'f“r =T (t *C,N)—O'SJE&wD[{,/ (&5 Hd_td{’
0 -
O -
with <b l

fletopm =0 @



37

As intensity distributions reach steady state after
sufficiently long time, one can check the steady

State values from the following equations

+ 0T = T () —os(T+T
o C
v T (2=7T)=)
1 (7=0)=0
and +
:t_f'él;"' 1 (Tp) -0 'I(t/f“‘)df'l

with

T (T=0,M)=0

T (T=T, M) =|
OLME]
~ Let tldenote the time spent by the_photon_ in the

absorbed state and ty_ is the ti-ma spent by the

photon between two Successive acts of scatterings.



Van de Hulst and Irvine (1963) pointed out that

the non-stationary problem for £2:=0 (infinite
velocity of propogation) and tl?I)(time spent by
the photon in the absorbed state 1s significant)

is equivalent to the problem of finding the distri-

bution of photon over the number of scatterings.

2.4 Results and Discussion

The numerical results are displayed in graphical
forms for all the cases. In all the cases, we have

assumed t) = 1.0,

Figsl and 2 illustrate the reflected intensity
distributions for the two stream approximation when
the medium is illuminated by a pulsed beam, The
reflection function due to Sobolev (1963) for tﬁe semi-
infinite medium is also plotted in Fig.2. Reflected
radiation starts at time t = 0 with the value 0.5 D" ¢
We see that it falls more rapidly for T = 1; Also
for the semi-infinite medium the radiation drops down
gradually compared to a medium with to£31 optical
depth T = 2. This is because the photon spends more
time in a medium with higher optical depth, Diffuse

emergent intensities are plotted in Fig.3 and 4
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respectively. At time.F = 0, the intensities starts
with the value 0.5 1-;;7 ® We see that the time

at which it falls by L 4s 1.6 ana 2.6 for

T =1 and T = 2 respectively. From this it is
evident that emergent intensity for the medium with
T = 1 decays faster in comparision to the medium

with T = 2. Similar interpretation can be given as

in the case of reflected intensities.

When isotropic pulsed beam of radiation falls on
the medium, the emergent and reflected radiations for
optical depth T = 1 are displayed in Figs.5 and 6
respectively. A photon reflected at the grazing
angle (M = 0.2) can be regarded as coming from the
shallow layers of the medium. Hence it é&periencesr.
few scatterings and spends short time before it re-—
appeares on the surface. On the other hand a photon
reflected at an angle nearer to the normal ( /M = 0.7)
can be regarded as coming from the deeper layers of the
medium. Hence it experiences more number of scatterings
and spends. longtime till its reappearance. Due to this
reason, the reflected radiation'ﬁor/{-'a 0. 2 falls more rapidly wirth
time compared to that for M = 0.7. But the photons

emerging from the’atmosphere along the direction M = 0,7,
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experience few scaﬁterings which results in the slow

dropping of the emergent intensity distribution for

,JL_ = 0.7.

When the pulsed beam in a specified direction angle
Ho= 0.5 is incident on the atmosphere, the correspond-
ing reflected and emergent intensitiés are displayed in
Pigs.7 and 8. Even though the gecay of the reflected
radiation for}4= 0.2 is almost identical to the pre-
vious case, we find for'fLs O.7 there is éome slight

difference.

We also considered a medium illuminated by a con-
stant input of radiation. Once the radiation field re-
aches steady state, the illumination is cut off. The re-

sults are shown in Figs.9 and 10.

Now we shall discuss the cases where the medium is
illuminated by a constant radiation starting from time
t = 0.

When the medium is illuminated by a constant fadia-

tion field of intensity 1 firom time t = 0, the emergent

43

intensities are plotted in Fig.11l and 13 for optical depths

T &« 1 and T = 2. Reflected intensities_mie depicted'in Fig.

‘ T
12 & 14. Emergent intensities start with the value e

and reach steady state after few time units. At time
£t = 0, the integral in the transfer equation vanishes and
the formal solution which we get is IoéTder the emergent

intensity, wWhere I isthe initial conditionmn.
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Time during which the relaxation occurs is roughtly
> twice for the medium with T = 2 compared to that of

the medium with T = 1.

The angular dependence of the emergent inten-
sities for T = 0.5 and T = 2.0 are exhibited in
Figs.15 and 17, while the reflected intensities are
plotted in Figs.16 and 18B. If we consider the relative
reflected intensity I(t,O,fJ )/f(O,r*)(f(O.f4) is the
steady state value) the convergencé to unity is faster
forM= 0.2 compared to that for M = 0,7. Similarly,
when we consider the relative emergent intensity, the
ratio approaces unity faster forM= 0,7 compared to the
case M = 0.2. This can be explained by the fact that
reflected photons coming in the direction f#=0.2 ex-
perience few scatterings and hence spends less time
in the medium. Similarly, the emergent photons coming
in the directionﬁ = 0,7 experience few scaﬁtering and
reach steady state faster. These are in quantitative
agreement with that of Matsumoto (1974). 'Also one
can se= that for T = 2.0 the emergent intensity for
M = 0.7 and reflected intensity for M = 0.2 show

steeper variation with time compared to T = 0.5 case.



i 1 1 | | i 1 | d
00 04 08 12 16 20 24 28 32 3.6
t
. Fig,15,

Emergent intensity distribution
when the slab is subjected to
constant isotropic radiation
for T = 0,5

|
04 06 08 12 18 20 24 28 37 3.8

Reflected .intensity distri-

bution for the same case as
111 fig."SO

0.8

0.7

0.6

0.5

1

0.4

0'3

0.2

a1

47

H=0.78

|
08 - 16 24 33 zo 48 56 64 7.2 8.0

Figglz
Same as in Fig,15 for T » 2.0

H20.21
0.78
- Te2.0 -
1 1 L L ] 1 1 ! i
08 W8 24 32 40 48 56 84 22 80
t
Fig,18

Same as in Fig.17 for' Tw 2,0



48

CHAPTER IIXI

A NUMERICAL SOLUTION FOR THE TIME DEPENDENT
TRANSFER EQUATION

3.1 Introduction

In this chapter, we shall present the numerical
rethod for the problem of time-dependent transfer in
L. finite slab in which the material density is
sufficiently low so that the time spent by the photon
>etween scatterings exceeds the time spent by the
»hoton in the absorbed state. We have studied the
wonochromatic transfer problem for a homogeneous
:1lab which is illuminated by a constant beam of
~adiation from time t = 0. We solved the problem when
L. pulse of radiation (a ? - function in time) ‘:meinges
»n the slab. under the two stream approximation. Time-
lependent transfer of resonanc¢e lines under the assumptiqn

»f complete redistribution is also investigated.

The factor E%b , where ©X denotes the absorption
:oefficient and c, the velocity of light, is the-tihe
;pent by the photon between emission and reabsorption.

v1so /X connects the time derivative with other terms
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in the- transfer equation. If it is long compared to
the typical time scales in which the atmospheric
system is changed, the time derivative C)IA)tis impor-
tantr Klein et al (1976) considered thermal relaxation
time which is given by the ratio of the internal
energy per unit volume to the emission per unit

volume of a gas. They showed that the ratio of thermal
relaxation time to the photon's time of f£light is less
than unity for the typical densities in planetary and
crab nebula suggesting that the time deriva tivemay

be important in these class of objects.

Bellman et al (1964)solved the time dependent
transfer problem by the theory of invariant imbedding
and Laplace transform technique. They obtained
diffuse reflection function for a finite slab whose
surface is irradiated with a constant net flux of
radiation. With the aid of time dependent principle
of invariance and the inverse method of Bellman
(1966), Matsumoto (1974).obtained the solution for
semi-infinite homogeneous media by taking into
account both tn,'Ez. *0( &£, is the time spent by a
photon in the absorbed statey t*z. is the time spent
by the photon between two successive acts of scatterings).
Later, he (1976) obtained a convergent series solution |

Py using Laplace transform and the theory of order of



scattering developed by Uesugi and Irvine (1970). The
series solution is seperable into a time like factor
and an angle factor. The angular factors are identical
to those developed by Uesugi and Irvine. Ganapol (1981)
developed a time~dependent solution directly from sta-
tionary solution. Kunasz (1983) proposed.an implicit
finite difference method for time-dependent line tra-
nsfer problem.

Recentiy. Ganapol (1986) presented results for the
reflected photon intensity from an énisotrOpically scatt-
ering semi-infinite medium taking into account a mean free
time between scatterings and a mean time of temporal

capture.

Many different numerical schemes have been proposed
for solving the time-dependent transfer problems (see
Richmeyer and Morton, 1967). Keller and Wendroff (1957)
proposed characteristic sn method to solvg the £ransfer
equation in spherical geometry. Our method presented
is similar to their's. |

In section 3.2, we ocutline thé method of solution
for the monochromatic transfer problem and in section 3.3.
we discuss the extension of the method to time-dependent
line transfer. The results and discussion are presented

in section 3.4.

3.2 Method of Solution

The monochromatic time-dependent transfer equation
for the specific intensity I(Z,M ,t) in slab geometry is

given by,



1 aj—z/”'t 21 (7 t) ,B)I1(gMt
L 9Lz ft) 4 OLME) 4 (2 E) 165 )

+1

\

= % (2| &) JPC/“'/“')I(ZJ ) A

|

+ (l"“) B2 t)] o &<

Qe

and for the oppositely directed beam,

L 0L (zut)+ M2IE~ME) +X(7t) I(z P+
C “5"[-_(‘ ) A dZ ) ]
-+

=« ) B[ perf)IGR) K

+ (1-9) BC’th_ﬂ oMl @Y

where C'Z, i:) is the absorption coefficient at
spatial coordinate "/ and time t ' C.O(_Z,{:)is the
albedo for single scattering and C 1is the velocity
of light. The phase function PCH; ["‘) ‘gives the

probability that a photon travelling in the direction

[L{ is scattered into the direction }J!



We assume that there is no radiation incident
on the top of the atmosphere and initially at time
t = 0, there is no radiation present within the
medium., Then the initial and boundary conditions

for the equations (3.1) are given by

T(z=0, b/ t) =4 (pt)
T (Z;T,—ﬁ,t) =0

, tz0)=0
TI(z =M o) o oszlT

o0 &ML (3.2)
where T is the total geometrical depth of the medium

and :—Y—Cf-&,t) is a given function of [L( and t"

We shall approximate the angular integral in

equation (3.1) as
|

| T .
(o)1 (B ) A = 5o PO ) T
J=1
o) . (3.3)

where 'qu and [Hj are the weights and roots of the

Gauss-Legendre quadrature of order.j‘,



Incorporating equation (3.3) in equation (3.1) we get

| aj_ (2N E) £ [N clr (22 t)_fd@&)l(zjjﬁ +)
c

||

B (z, ¢t I
A2 E) {%’- ) L[P (FMis M) I(= 2 M3E)
| 1

— . J'____
£ P(EMi, ) T (2 hine) [ W
+ (1- ©) B(ZA:J:U

In these problems, it is convenient to distinguish
between the reduced incident radiation field 3( )
at spatial position Z and time t  and the diffuse
radiation field | ( Z, :f'_[‘#,t) that resﬁlts as a

consequence of one or more scattering processes.

Then the equation (3.4) becomes,

| a1 () + M= cz”‘*“‘“t)‘*‘

c ot

(28 2( % pist)
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T /
=40 [ 9@ 5 pem ) 1e 1)
J.'Z‘

+ PCxpiy _IL’JJ) Tz M {:)S Wi+
[1- w(=8)] B(z/t)] % 9(= k) .

j:l) 2,--J

with initial and boundary conditions given by

L(z=0,Mist)=0

T(z=T,-Hj,t)=0 J=Vv2, T

I("ZI IHJ/E:()):O b—n 042-41.

(3.6)
The equations (3.5)form a hyperbolic system of
first order linear partial differential equations.
The characteristics are the straight lines in the'Z/t
planes defined by
4z = =+ f"J'
st T .
d A D
Jd
| | (3.7)
dE  _ 1
-+ .
A A;- <Dy

[ -
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Where )%U represents the arc-kength along the 555
characteristic with positive slope and 4& represent
the arc-length along the jib characteristic wath
negative slope. Denoting T (Z,"_t f"j, 17). = IJd

the equations (3,5 can be written as

D; OL&J X T =% ST
J

where

e £, [P e

IBGQfJ ‘fg(
—fP(ﬂ*J,‘h)I(Z t]wJ + () . }( |
J=u 3-8

and
j 41 + < TIj = A S
d 4] ,

where

Sj = {-9-‘3: g— | PCra M) I(= [t )

—+ P( [, ﬁ;) ICZ“'M”‘L—H W/ +  (3.9)
(1-w) B(= 4;)} + 3(z&) S

(.4} (,Q(z, 'b)

oheste A = OQ\L'Z t)
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We shall divide the medium into N layers of equal
depth ANZ.

Also the time domain is divided into

equal intervals of time -duration A t. " with +this,

we can construct a two dimensional mesh in space
and time as shown in Fig.1(ou)

1 s

Livi 6

ti

o4

I .
Pj J

ki

2.1‘-.4 | Zml

F1G t(ov)

At and 52 are chosen such that

|[\“J|Cété /N\7. for all j:l,'.?.,-"»/j‘

We identify @) with an arbitrary point GJ—-‘:- CZ.M_,)t',u-D~
Through @,draw a characteristic line whose slope is

'7\_,1—.'&- - The first intersection of the \'\m back
J

characteristic with the horizontal mesh line is given

by the point PJ' (_Zh.;n -Mjcot, ti) "



Similarly, if we draw through @_ a characteristic

- |
whose slope is )\"JC » 1t intersects the mesh

. . ) '
line at the point PJ (pr.ﬁ MjCAE, tc.)
Integrating equation (3,8)along the J’ﬂ

cterisitc from Pj to 8\ .we get

chara-

[(17e) -1 Cri) ] + j«z 44 :jo<s 45;

Pi

Using the modified trapezoidal rule to approximate

the integrals we can write equation (3.10) as’

[I (&) - I_,(PJ)]—;L C’i['j_ (&) +1; (PJ)J
~ .‘ ¥ a4F
= L [ sy sia) | 255

wnere T = A a.) Jco<<PJ)

=
(W]

Dj

,DJ

‘(3.11)

T

(3.10)



Similarly integrating equation (3,9) along the Jm

characteristic from PJ' to & , we get

[IJ (@/)"l CPpy )] + A [1 (&,)—I-I CPJ)]UM

= G‘K[S CPJ>+SJ(&I)]O{/SJ

i)

2= K (&) +°<CPQ (3.22)

where 2

j—- .
since ’JJ Cé.E \<., /l we have Cl /SJ :Cét

We can use a formula for linear interpolation

-+ : - !
to approximate the quantities IJ (Pj)arid o IJ' ( PJ )

T (pi) = IJT*(ZTH, ~picat, ki)

< QZAEZ IJ—" (Zn i)+ (-1 ?"-%%-)Ij(%m/{:")
J

—

(3.13)

T7(0)) = TG (Zanrycotsts)

- preet, 7] (zM,u) + (- M5 0) T f;“sz)
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Similarly, S+< PJ) y § ( PJ’) ’O(CPJ‘)/LJ(PJ,)’(D((PJ,)

and (,\)( PJI) can be approximated,.

‘_t
Denoting T\'H,J ( L, ) = _j (z_mut-?nd
incorporating the relations (3.13) and (3.14) in

equations (3.11) and (3.12) respectively, we obtain

[z‘;,,gm)—{(ﬁcm>1m(t) +(1- mcot> ﬂ

+ & [ o+ i eay (e (0 preog) T (6|

! J . At

~ ~( 3 + COt t
= L [ %11 JQ }%’)Ws’i +.,,(l‘*') NS l )
3=

(e eek) B, T RCHR) ST

bz Nty
. - v - (k }}0
T IH‘J C% I'“/J’('t‘) * CI )ud C%z) Ih"’)jg ) |

+ (l-w) {[’)m“C‘:l-tl)'l'Fd C%’LB (t:)
2 | | |
<|- Mi Cbt >B~n+; Lt;)} . o5 %j“ﬂ(h-v—l)
v o | 1Y -

i C Ak q,,; (€D + 1M ©255) dnait 7] |
D=2 ! ' | .
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SURLONY: +.J<t>}]

¢ T (e SRR O caz\zw}“)}

'h+',J'

[:I_‘nﬂ,j( i) { (Mycat ) :mz

- < alt

g = ‘;2; — +
= X [% { Z- \.P (- N5, 1) W (Tne, ¢ CEid #Y C%‘izgﬂ(j)

B ( - [ C‘:"é[)%- T (t ))‘1“) (’f"i f{"f) WJ' (I;HIJ[;hﬂ)-f

a7

M Coat I(tj) + (|_qu (;A_t_ T (t)ﬂcgt}

2Z ey “n*')J

("“ 5) {Bwu(t;“) T FJ' C—Q—ét-z Bm+;(-t5) +t ('—FJ' C——i%t:z) er@")}

2

cAat -w{ 3m+;,J(t"") r« Cbt ﬁm(t +Cl M CAe) w%

cot | |
g (3-16)
Defining the following matrices

P.Ot

[e——— g

a% 2
Y
L2
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|- M AL
2z
A =
(- M7 £F
- 1 Tx3J
]_:n:t, (tJ-H)
+ , *,
Un_”(ti-el) = .
=+
L_IFN't‘I/.J— Ct-““"l?_jj‘x,
~
v | PCRR) POy () ]
P PC Mz Mi) PO e P (M2 f47)
’ PR bt . P([\l zr')
| P (Mg ) Pl o
PC-p ) P(-fu HD)|
_P— v = P(-= f"') P(—)Hz,f‘l:r)
PNz, M, —- 7, 1)
- ) PC fumi)_l TR



P

[ —
W
W =
— \/\]i I x3T
r_ﬂ‘h-ﬂ (-t‘)
CJ‘\'n-H (t‘i): .
%('hﬂ)(t;)
— A4 TIxd
| B (£ ]
BTH,C‘:;)’ = '
(3.17)
RBver (£4)
— 1 T x}
e can write equations (3.15) and (3.16) as
w U*’(&)+Bthiﬁ>y]+
[U:;m(.t"*' {A M1 _

cpt =
(s )—+A(Jm Lt)—fBU”Ct)E
Uy 4]

Ei (t))
2 (t)+BUm
UW,
N ~ w U (.E-"‘H) —fl—A
[ (

-

st
(; )+A&,N(J:)-t!f5 (t)&c
J\{‘ft )—EB G\n(,’: )'{"AQ%ﬂ(b‘)-S Qg le)

+(%

o} 15@@%



£3
ey (i) = (A U (13) —+BQ'7,+,_(t-.)} +Z {U‘W(t;ﬂ)ﬂt
‘ Z

L
- —_ ~ S\ pt T+(E:+l)
(t’.) ‘fBUn—rz_(ti)’% chHht = ﬁ{%i}) \/\)(Um;

A L5n+)
4+ B Gmee™

: N ) 't'm—
4 A U+11+\(.t;) + BU-’-T\*L(b‘)) t P \2 (‘UT“H(- ’)

o Gony (£0)§eat + 8) 1, (k) pAB L)

. t.
8 ()] coi]aos corom () O

+ A Gne (&) }

&)

Rearranging the terms we have

[T+ cotT— XSG w'wcat] ey (i)

:LI——'_J_cotl-f—o?% Frw cat] AUm"l.(’(i)
2z

\_ _ A cotI t+ J% P'”»JCM] B U;(t;)
2‘ .
_—-f(;-.te)"*

(,{:,4-;)494 (facot p U A Uy,

B (Lie)+ Al

J% cot P H Unn
LW oeat P*"WBUm(t;) +U_:%_ ‘

A
; (enlbin (t:)+
—~+ B“\‘Bv‘,r ( ti) } ot to§ CQt icnmﬁ?i—u)* By Lt
o G

A G (43 ] |



€4

and
[z 4?_&;_6@1&1
:[1— %CAtI—r i'_(% P~ Wcot|A U;,(Ei)
L [- eorns X Fucai] B0t
+ j _@; cot P—*W e (tm) + i% cat—+
g cot P*WBUWJ*J

+ \'—Cd D:éi B.n{.'<t+l)+AB’ﬂl |
: ( )
&) (54 +AG‘ +)
‘\'O S‘Cé)ti\Cnm.,(f:wf)‘\‘ B 7Nt 2 )
(3.21)
where I is the identity matrix
By setting _
~ o A
L i‘—CAtI——o(_c,g_PHCAﬂ
2 Z
: -1
A-[1+Zcoe1-F G Fucat]
2. 4 |
IT-11-& catT+4 & F*H cot
S - "2 F |
g = =y 438 pPHcat
S‘_. [I %CA*.:I_ 4? g



&+_: X B cat ﬁ—u : é—t: owz_é c_at-ﬁ,}
and é* ‘¥
+ 1 —+ + +- -
A S = T A § = R
AS = T Aal= R
+ ~ Y% ~ ~
> . :&(t—_&__u)gé Bm; (L) + A BN,UQ +B B, (_ch)} CAL
ey 7

+05¢8 tz{ G, Clist) + B Gy () + A Gy (&;)}

C20-8)4 s B (& 5 (CE E
S E(-8) B (b +A 5, ()18E,,C >}ca

n+2 2.
2

S () +BmaE)+AG (41

T o SCMA;i (3.22)
we get
(L (ti) = TA Umn T BT (6]
+ R Upy (b)) +RA Unsi(ti)
| | (3.23)

- g
+ R BOw (fi)f Zmi( (:',)



U;\-H({:"ﬂ) - T"'A‘ Ui (Jc") T T—B Uh:l ({‘-1)
+
4 B Ut i) TR AU (8)

‘\‘R BUTHQ_(& +z(t)

N+3/,

(3.24)

_r
Eliminating Um, ({:..H) from the equation (3.24)
asing equation (3.23) we get

Um',(km): [ Q.R] ER _'|1'+ R)A Une (83}
+ (¥ R+T)AUMC&)+R T 0T (b)
+R FTBUN () TR Z (6)+Tgo,n (&)

p BU“+1(JC>+Z (bj (3.25)

N+ )2

From the inttial values, one can calculate the
,UY\ﬂ(kz) for N= N"_|)‘ . -+ O, And then
these values are used to obtain U:\+‘L+L) for N=1,---N
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This procedure is repeated for L‘_3) ‘:4,-- ) etc.

3.3. Extension of the method to calculate the time-

dependent line profiles.

The time-dependent transfer equation for a two
level atom under the assumption of complete re-

distribution is given by

oX (7_ ip,X;t) —l— ’»4 c)]'. (z,—rp X;t>

C 3t
FKL (2, 8) OO I(Z 2N X, t)
+0 +|
kL(Z,t) CP(X) L_,-l-é @(x I(Z r"/)(;‘:)d]“d?
=R
gy B(x,l,t)] oML

(3.26)

We have neglected continuous absorption in _writing the
equation (3.26). X is the frequency measured in Doppler
units and is defined by X: @‘ ‘?O’)/AS/ S being some
standard frequency interval. KL(-Z! ) is the line
centre absorption coefficient and @ Cx) is the absor-

ption profile function.
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(3.27)
is the probability per scatter that a photon will be

destroyed by collisional de-excitation. (:zlis the
rate coefficient for collisional de-excitation of the
atom and A2| is the Einstein coefficient for spont-
aneous emission. L} and L are the Plandcand

Boltzman constants and |e is the electron temperature

of the gas.

Other symbols in equation (3.26) have the usual
meaning. The assumption of complete redistributicn
supposes that there is no correlation between the
frequencies of the absorbed and the emitted phqtons.
We pave assumed that the profile function is the Voigt
function H (G); x>given by

CP(;().. Howx)=2e | < dd

(3.28)

where a is the damping constant for the upper level of the

transition. We have considered isotropic scatterlng.
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We discretized the angular integral by Gauss-quadrature
of order J . We discretized the frequency integral

also by Gauss-quadrature of order K.

J@(X )T (22 Mix) = % Cf)(xQI(Z/—PJ,Xk o

J=tzd

(3.29)

Since the problem has symmetric solution with respect
. to the line centre, we have considered only positive

frequency grid. Using (3.29) in (3.26), we get
1 3T (= tfiXewt) X M aI (2,1 Mixist)
C at -
+ k(2 8) §(x) T (2, % Mixk, &)
K B
K (28) )1 (-€) T x| TEmAd

:_.
t
C

i

+1( 2z, M %, t) ¢l (+EB(ZE)

= .30)
K‘:‘J’Z‘,”"K. 3
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As these egquations form hyperbolic system of linear
partial differential equations, we use the same

computational procedure as described in section 3.2,

3.3 Results and discussion

We have setg(= C=11in eqn.ggémﬂgggceqfa~l,the:;otal

optical depth of the medium is same as the geometrical

depth T,

Case I To check the numerical algorithm, we considered

a pure absorption case. The transfer equation solved is

ol AT 4I=1
S5t T

with

I(_Z.'-‘-O’ V,-{;) :‘_O"‘, t‘7/O
I(Z/ rq,{::.o)::O') 0Lz2<T
and B:\ for t-7/o

O0LZ LT

(3.31)

The analytical solution when o and B are constant

with respect to the time and position Z is given by
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The numerical solution agrees with the above solution.

The results for rul?O' 2) and O- |8 are plotted in fig.l.

Caze 11 A slab is constantly illuminated by a bear
of radiation in a specified direction Po'—O'Sfrom time

+ = 0. The transfer equation for diffuse intensity is

OL 44 aL+T (s 11k)7 {os{xcz Jap+osHEZ)e

(3.33)
where H ({‘.) is a Heavisideunit step function.
The initial and boundary conditions for equation (3.32)
are
I(Z:o, M t) =
: t 7/ ®
I(z:T,*H;t)—O ‘ |
(3.34)

(2 —rr‘( o) FﬁO<ZéT
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Fig,1

The intensity distribution for a

pure absorbing medium with a constant

thermal source,

72
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As the intensity distributions reach steady state

after sufficiently long time, the steady state solutions

" are checked by solving the equation

+1 2/,
o oT 4 T (zpt)= s (1 pdpros = i
—_ AZ =1 ‘
with —~
T CZ:O, M)=o
- OLME]
= - — 0
I (2 —r} r“) (3.35)

Emergent intensity distributions for total optical
depths 1 and 2 are plotted in Figs 2 and 3 respectively.
Van de Hulst and Irvine (1962) pointed out that the
non-stationary problem for 't;= 0 is e&ﬁivalent to the
problem of finding the distribution of photons over

the pathlengths in a homogeneous medium.

We know that in a medium with optical depth [ .
the photon path length is at least few multiples of |-
For jﬂ=Q_one can see that the time at which the relaxation

to steady state commences is nearly twice that of T = 1.

Reflected radiation distributions are plotted in

figs4 and 5 respectively. The reflected radiation
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.10~
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283 L4008 558 712 {84 1048 nwn 1% 1477
127 12 sy 733 935 <
Fig,2 Fig,3
The emergent intensity distri- Same as in fig.2 for a slab
bution with resprct to the time with T =» 2,0

for f‘l » 0,21 and 0,78 when a
sSlab’ of total optical depth
Tx=1,0 is illuminated constantly
in a direction /6‘ = 0,5,

Fig.’-l
0.8
- H=0.21
0.6 |- .
o.8
T(t)
0.4 |- 0.78 o
- fwa [
ol
0.2~ T:1-0
e 0.2
0.0 | | | [ SR . | ‘ v
152 304 456 608  7.60 812 | i L L 4 - . ve

SATTTe 30k 84 sa8 740 1044

The corresponding reflected o .. e R :
intensity for the same case ‘ 5::;;5,12 g‘g,k for a slab
as in fig.2. . HER. LR S



reach steady state faster than the emergent radiation,
This can be explained by the fact that most of the
reflected photons emerge from the shallow layers of

the medium and hence travel less pathlength.:

Also if we examine the steady state values
for the emergent radiation, the value for 0.21 is
slightly larger compared to that of Pl:07 for the
medium with T=10. This is in qualitative agreement

with Chandrasekhar'sresult (See, Chandrasekar 1950).

Case IIT A slab is constantly illuminated by an
{isotropic radiation field. We set & (z=0 M ‘-‘): H(¢)
at one boundary of the medium and zero incidence

at the other boundary. Transfer equation for the

diffuse intensity is

z, 40, k) X Z I(z 2t
21 (2 2pt) T 23, (zap T

+ | | , .z —-2/
= 30§ I(Z/]\j’t) O‘fu +0:5 | ( )

—1 ' ° (3.36)

The steady state values are checked by solving the

equation



76

I
+1

— \ , _*(D.FS '—:3942* !
)\AaI —\"I<Z +I~1) OS I(’Z/)“)O\T‘ < F
—) (s}
| (3.37)
Nith
1 (2=0, M)= 0
g (z:T/ ———r*)‘—“fO (3.38)

The reflected intensity distributions are plotted in

Figs 6,7 and 8 for T = 1,2 and S. The corresponding

emergent intensity distributions are plotted in Figs.
9,10,and 11.

The behavior of the reflected radiation is almost
identical in all the cases except for the fact that
the time at which the relaxation commences”is more for
the medium with higher optical thickness. Same quali-

tative reasons hold good as in the case TL-~

»
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The reflected intensity distribution
when a slab with T =» 1,0 is illumi-~
nated by an isotropic radiation field,

Fig.8
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Same as in fig.6 with T=2.0 Same as in fig.7 with T=5.0
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- where

Case 1V A slab is illuminated by a pulsed beam.

The transfer equation under the two stream appro-

ximation is

— M %ﬁ;+ T'=o0-5(1+1)
T(o,t)= 8(E)

T(Tt)=0 ondp:=ln

Here J ¥ and T refer to two oppositely directed

streams of radiation. By setting ‘1: 4-3/22 A {‘79_

’

we can transform the equations (3.39) to

AT + 2T + T'= T
ON) Q %

_ _ — -+
oI — oI +1T =T
AY DX

with I'1‘<xo,y> = 6(7’)
I._(XJ y):: o ‘ ,

79

(3.39)

(3.40)

(3.41)

(3.42)



Code (1970) solves the above set of equations (3.40)

(3.41) and (3.42) using a technique developed by

Chandrasekhar (1950). Also note that

j_i(t) =L 17(9)

To check the numerical results, we can derive some

relations which connect the time-dependent solutions

to the steady state solution.

(i) The characteristic of the equation (3.40) is
given by

s FIG 2(o)

(10130) $x

Integrating equation (3,40) from (’Io,’ﬁ ""7(1‘7‘0)‘;0 (113_) '

along the characteristic, ( see Fig 2 (a) ), we obtain

80

(3.43)

(3.44)
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3
)
t -+ - —J P | /
I (’1,3) =7 (10,:1-1+1o 63-1— < J € I (‘5-31»1,’3)0‘“6
Y-
(3+45)
Boundary condition (3.42),1is
+
1 <7\o ,"a—x-rxo) - & C“a—x-l"WO)
Integrating the relation (3.45) from T(x) to ©O
where T (1) is the travel time for the pulse to
reach the depth point W of the medium, we obtain
O K 0 '
—T() (- )t) ~/, 1 _\ J d
\ Ty —x]AY ar
Jf{x,j‘)a\j: S PR LR
T Ao TV (3.46)
If we set
o0
-+ | l V+
JI (v,9)dy = T7(%)
. (3.47)
T(W) | |
and
N

S f(%’, )‘fb—x)dj: f"(x} _
| (3.48)
T B |
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we oOobtain

A MO

////////,(X,u—x+y)

<)

| g s
— __TC . . _ \ ~ l
Ta= < [ SOV a4
Y

(3.49)

N
[ 4

X
FI1G: 3 (o)

(ii) The characteristic of the equation (3.41) is

given by, (see fig 3@3)

, ) y
Integrating the equation (3.41) rrom(')’tj\j) +0O (7{, 1~X+7j; s

we get o
7’

\

- (3.50)

T()= |2 T () d

N



Since the reflected radiation at any point X of
the medium starts only after the arrival of the
pulse, we integrate (3.50) from Tf to N
where 7 -77 )&

Then

o0 X 0

(To)di=[2[7 G o) Ao

; xS

S P CURIIEE LN
d

and

The equations (3.49) and (3.53) are the integral

solutions of the steady state equations

~+ g ~_
oI+ T =1
oA

83

(3.51)

(3.52)

(3.53.



with

T'(0)=1
1 (x)=0

one can note that

T = LFX
| + X

~/,
~L

:E/_<1> - X-U
|+ X

The relations (3.47) and (3.49) i.e.

J T(n4)dy=1"'0)
TGO o

J T (0¥)dy= T (W

are useful in checking the time-dependent solution

at each depth point of the atmosphere.

g4
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Since the Dirac-delta distribution is difficult
to treat numerically, for the reflected radiation
we imposed the conditions Jn'.,,-(tnﬂ) =05 ét*‘“
and added a source term .G é't“*?- to the equation

(3.25) to obtain (Jﬁ:v(hn+23 .

Two cases which are identical to Code's (1970)
are considered to check our numerical results. The
emergent intensities are plotted in Fig. 12. for

X = 0.433 and X = 0.866 respectively.

— X
A pulse of radiation with a value <€ emerges

out of the medium at time \yﬁ:.x . Following this
pulse, the multiple scattered radiation falls off
approximately as E;7}< . Reflected intensity
distributions are plotted in Fig 13. Reflected
radiation commences at ‘7:=C5 and initially decays
as CD-S'E;V' . Its behavior is identical for all
values of X until = 2% which corresponds to
twice the transit time. Then the radiation falls

off to a low value,.

Also the results for N‘ +5 ,—T=3‘O are plotted
in Figs 14 and 15. We see that the sudden drop of the
reflected radiation at twice the transit time reduces
gradually and smoothen oﬁ£ at higher optiaal depths.

- One can note that Code's methods works only for
T < 1.8138 but - our method does not have ahy such

restriction.
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The emergent intensity distri-

0.866 1299 1.732 2165
Y

Fig,12

butions when a pulse impinges
on the medium with X = 0.433
and X = 0,866

Fig,13
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Case V A slab is subject to an isotropic white radiation
field. The boundary conditions imposed are
I(z=T,~M Wt) =0 €70

T(z=0, M, M E)" H(E) . E70
1(,7—,'_’1'-1"‘ /F)\)O>_—'——O

The transfer equation for diffuse intensity lS

a}_ + N ar L HOIT= cp(x)[% f‘]S(X')T(Z;W&)
| )
ee  goafate3) 0

with zero incidence at the boundaries,.

Since the computational algorithm is. time
consuming, we have calculated the line profiles only

for two cases, After adding the contribution of the

directly transmitted light - ‘éﬁ—} to the

diffuse intensity, we have plotted the emergent line

prefiles for T = 5.0 and"T = 25.0 in Figs 16 and 17.
At earlier times, we see deeper absorption ?m_f%le$o~
Since the optical depth in the wing is “very sma%l |
(of order ™ 10"4), one can see the immediate |
convergence to the steady state in thawimggggian o
of the line profile, |
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+
Ilx.t)

0.4 T= 5.0

i=0.78

0.0 1 1 ]
0 1 2 3 4
X

The emergent time-—dependent line
profles when an isotropic white
light falls on thas medium with
T = 5,0. Numbers denote different
time steps. _ '

1o

o8} b=
T(KLxt)

0.6
57.6 o/ _

c.4

0.2

0-0

The same as in rig,16 ‘for ‘1‘ » zg,s
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CHAPTER IV

TIME DEPENDENT TRANSFER IN SPHERICALLY
SYMMETRIC MEDIA

4.1 Introduction

In this chapter, we shall present the numerical
methods for the steady state and time-dependent
transfer equations in spherically symmetric media.
Reflected intensity distributions with respect to
time are illustrated for the various ratios B/A

where B is the outer and A is the inner radius of

the atmosphere.

The assumption of plane-parallel stratification
of the atmosphere holds good only when the actual
thickness of the atmosphere is very small, i.e. gﬁrﬁzo
where 4% is the thickness of the atmosphere and n
is the radius of the star. However, many stars,
such as the supergiant stars and wOlf—RaYeﬁ stars,
have extended atmospheres whose thicknesses are an
appreciable, fraction of a stellar radius. As a
first approximation, one can aasume that these

atmospheres are spherically symmetric.

Hummer and Rybicki (1971) usg@ytheﬁya£1§%%9 

Eddington factor method to solve the steady state

transfer equation in spherical symmetry.
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and Grant (1973) have proposed a numerical method
based on discrete space theory of Grant and Hunt
(1968,1969a,1969 Db). Peraiah and Grant derived
simple conditions for their method to be stable
and give non-negative solutions. In section 4.2,
we present our numerical method to solve the

steady state transfer equation.

There are several numerical methods proposed
to solve the time-dependent transfer equation in
spherically symmetric media. Carlson (1953) proposed
E;n method for neutron transport calculations.
Keller and Wendroff ( 1957 ) suggested the variant
of fsq\method and they also discussed the stability
and the convergence of the method. Grant (1968) has
solved the time-dependent transfer equation in
purely absorbing media using a method developed by
Lathrop and Carlson (1967). He has written difference
equations in a matrix form and studied the stability

and the non-negativity of the sclutions.

The method to solve the time-dependent transfer
equation is given in section 4.3.' Results are dis-

cussed in section 4.4,

4.2 A numerical method for solving steady state

transfer equation in spherical geometry

Transfer equation is given by
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M %i(m«) n \—T/\: allu(m r«)+c—<h) L(hy M)

= = ()[{1- e BoV+ wwjr(w)

o4ﬁ<|

for the outward going ray, and

—M a g‘h,——ﬁ) - M AT (n r«)+o-<n)l(‘h, -M)
no oM +1
:o-—(n) B\ m R+ w___)c fI("v dl”jﬂ 2)

O« M4

for the inward going rays, where we restricted f-l-

to lie in the interval [0,1] . We have assumed
isotropic scattering in writing the equations
(4.1) and (4.2). The integral over N is
approximated by Radau-quadrature formula based on

the zeros of polynomial of degree 2J over C—-l.f]

=+
fI(h, DE NZI(%,;\«,)WJ —rZI(?L =M ) W;

(4.3)

We shall denote I(?‘L iNJ) IJ « Ve repl"ace'
the S derivation in the equation (4.1) and

o (4.2) by CI}'H"IJ)/AP . F—*ﬁmm@“ﬁ&i =Ni+3 A0



By approximating the other terms centered at the

same point, we obtain

1 vy éldﬂ +1 ay aIJ —+ ‘OJ (I ‘I *"“(Iﬂﬁ)
> w2 >

J _
:G—Z%.J_ ZWJ(I—: + IJ)*G w) B@L)‘j J(‘4'J4
J=1

and

— | a_)JaIJH.___LCU aIJ _ by I _1)—+0‘“ I.+7T,
AN d O M (Jﬂ J ( -")
J _
= E%J_' Z\A&(I: + IJ) + <|"w) BC%)} J=b-J
J=1
| (4.5)

The quantities V), QJ; ang LDJ are determined in

such a way that the approximationsj

| — l (O) C)IJ_H @I
(N N ,u My 2 an 3

(4.6)

I-N a1t ) L. ( + =\
= 24T "”‘:Lth\i
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ave a minimum truncation error. Keller and
lendroff (1957) listed some possible choice of
he coefficients (N, ,O\)‘j- and \’.')J . The co-
:fficients (Uj, QU] are listed in Table 1 and
‘or the bj Table 2.

Table 1

'J":*;oo A B C

Quj s (M)l LG punr Hi) | Mir

o) —%_(Hj—rﬁm) L (v +2M) My

3
Table 2

130 A B}

1 - "r'ﬂ-!--'?-‘r"'* ; - 12?
L::,J 'A‘,ui '.f&_.f‘n: lﬁ: j’ éij-‘ (f"a FJ@'*PJ;? —é-lq[\ f"ﬁ'i"u’

Keller and Wendrofif {1957) have chosen the coefficients
A in the tables which reduce the equations (4.6) and
(4.7) to the normal form. The entries in the column B

E the tables 1 and 2 are used by Carlson (1955) and.



are determined by assuming that intensities vary
linearly with f"' over the sub-intervals and inte-
grating across each interval. The coefficients
C in the tables can be determined by integrating

equations (4.1) and (4.2) over HJ to HJ-{-I and appro-

xi'r\n-'ating
3t .
fu =
ji(u @__I__i dp= 05 1[“’JC2_I_J'_ + Mit Q_EJHA’U»
QI O c)ULJ
Mg
Mi+ .
( |- I‘*?- é__j_:_t_ J = - _G‘N‘:H P"%) i]'__jtﬂ—]:ﬁ
N QM T 2z
MJ _
arnd,““-H | |
T ) - j—- .
I dp =05 Ij—\-l +1]
’ (4.7)
[MJ

At r.( = + 1, the curvature terms vanish from the equa-

tions (4.4) and (4.5)

Writing




K
03]

I._Z

Qo

l_l

- U7

4 IXT

TXT

— b bz




092

:h .
2, .
_B (n)
: B(n)
|

| IXT

Ix3J

(1-8)



We have for the outward going rays,

- T
M QU+ LA 0"+ o TU"
ORLE

and for the inward going rays,

Moo — L AU+ ST
| In N

_ {O,S o)W (0+0)+ (\—w)g}

(4.9)

— io. 5) W (U*‘* D)*O_w) 834.10)

We shall divide the medium into JN spherical
shells. To perform discretization with respect to

the radial coordinate, we integrate equations (4.9)

and (4.10) from J, to /%, giving
-+ —+
M [UT\-H— U'ﬂ] T T'n.,..;j._r (-)T)'t-‘i :

= z.n-‘-_%_ [C"‘ CQTH_\i) FB\"n.*li—‘\_ —lj_w"?’)-r.‘i‘/\l” /ffr/_,\*)

+
| Um*lz-_

L
-1 (4.11)



Q
and
M [ Un™ Une |+ ?7‘*15_ Ny
- Z-Tl-f-\i[(I—w'h-rJi) .Bhfl —+ (-%_Cdmg_\lxj + /0/\ U’ml
2 tm‘\i 2
.f.
- (—L Com+ L \/\l U"a']-t_!.
2 2 2
(4.12)
=
Here Ufn (T\TB) while U'n+Ji,—Cn+,%./CQn+.%_
and R4l are the suitable averages over the cell.
P

W#e shall define A"I\_n*ﬁ —%T\ﬂ 31.11, Thf_k —S med Aﬁy\.u_
and /o__ Aﬁxm«-v}_h el where Ch—‘n-r\/ci is mean radius | (c)h\ﬂ‘t’f\'n)

We shall use the conventlonal "Diamond"™ scheme to

approximate the gquantities Um+l. as

=+ . + =X
U']\—r—)\; —* Ji__ { U'b’\t-}+ Ufh]

(4.13)
Now we can arrange these equation: (4.11) and (4.12)
in the canonical form
i + | r—E;('mt'h) %LCn'm+d—"
k]’ ’ ’ (4.14)
N+
(U h(+,m) (N n+)

3



whereh and ‘t are the reflection and transmission

operators defined below:

writing + N ,F ™
—— et

N+ '\i 2. Tk :

2.

— 1

™
[\’[ — Ji’c'm)i_ (T*‘ é:“”zﬂ
i |

(4.15)
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h a M
and
z—t— = TYH-L <‘“ Q'“t%-) t A+B+ﬁ1—58
ntd
S = oy (1-ony ) E| A B4TAE|
1 2

(4.16)

We have solved the set of eguations (4.14) using the
method outlined in chapter 2. We tested the method
for a pure absorbing medium with constant thermal
source where we know the analytic expression for the
radiation field. For a pure scattering mgdium, we
checked the solutions with that of P_eraiak;;\%ndlv«@?antﬁ

(1973). Our method does not seem to imp9§§§ny res-
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trictions on the optical thickness ¢ of an .
elementary shell, and on the " aspect ratio "
f):: Z)?L}31. « Also we found that the choice
of the coefficients <c in the tables 1 and 2
give better results compared to the coefficients

A and B. This may be due to the Radau gquadrature

points which we have employed.

4.3 Numerical Solution of the time-dependent

transfer equation in spherically symmetric

media

Time-dependent transfer equation 1is given by

(o) 1 2L (upd) 4 121910 18)

°1

1 o1
c ot
G(%‘C)I(ﬂl‘*t)“‘ Cc“zt)

CJ(" <) fI(‘h M £) d —r(‘“w(”f“DB(" Y

..._'4I\4<l

(4.17)
Again we use the coefficients < in t@blag 1 and 2

discussed in section 4.2 to di.scret.iz,e the }.1
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variable.. Using the same notation which we employed

in section 4,21 we can write equations (4.17) as

LT U 4 M AUt 4 A J(ne)
C ot N o

G ()T U (e) = o—mw[@_@yw(u +0)

- < - w (7, Jc)) P?(%z t)] (4.18)

and
LT o0 _pf200vY GRS
¢ Ot OM n

+a (N, t)TU @l t) = o (M l:)[w(m EDW(U-H))
+ O"w@‘/u) B(%t)] (4.19)

We divide the medium into N layers. We use forward
time differences to represent O U U For ‘4701
we use backward space differences and for p,c.d, we

use forward one. Then we shall obta:l:n

%T { Utnﬂ(h*')-— O'Tlﬂ(%;) _{'M% 7‘+.u> 0.6 +
o At AN ..

05 /\ [Um; (,{:'*f) + U"}‘H-]LE)] —+ O 5(7‘ U'm U")"*'Um(ﬁ")]

Yimg)
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. S &015 a [W ( U’y\t; ({:i-ﬂ) "t' U—;ﬂ(hD
T \/\J;C()%J,,<{m> + 6ﬂ+'(’ti>7J + 0'5‘(\*(":’)>
' + .
[BI\-H (h) + By (6.+1>]}f0r 1 C4.20)

and

T g Gﬂﬂui”) — GT\HU‘)} ‘_ M %U U:.w) ,E:f)}

< At —

gl U;H(E‘“)"'U;ﬂ(h) t0 5T
Tun

{U—m‘ (&) + Gnn Um)] Xo 25 W [w <U-rw’u) U“(“*‘){
+ \/\I < U_'h‘fl (t') + GTDH (ti-rl))‘J + O S--C\" (:5)

[ B (&) 3, ( tm)]f

for n = N-llo---.0. (4-21)

where a::: O S {G;(%—h%l,{:iﬂ) +T<7Lh+|; El)}

() = 0°S %CJ(%ml;km)i-@(hnmti)}
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Since we have used only first order differences in
space and tirﬁe, the truncation error of the scheme
o(at) + (5 (a%) . As the method follows
the characteristics in a certain sense, there is a
cancellation of the errors coming from the deri-
vative terms. To make other terms accurate up to

second order, we replaced the un-differentiated terms

U‘.;ﬂ C{:i,-r)) etc. by the averages
05 [ U_:H) (_":i-tl) —+ U——;ﬂ (’t[)]
Denoting

A Er+ o5 /\@t—ro S& At —025 wWCAt‘}

YH'\

—+ T- MecAt — 0-SAAt _o- .5 6% TeAk+025 WHeat
S - AN T Timed

D = Meak

AN
&, 025G WeAL
7; <Ez) =05 U-G) A [B;H(E;) + é:”(ei—ﬂ)]CAt'
N+l

=1
A— _:_E—Y_O.S ANODE L0 S chAt—OQSCTJ'NCAij

Tntl
S T— MCAt + O S {_\Eé_t __ 0. 5o TAt
A L  Am+

4+ 025 LW Wcecat
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i;l( £;) =05 (1-3) A—[gml(b) + B, (tmﬂc Ot

e have (4.22)
4+
U_r:,+,(£'-+l) - + _f-U:H;(t.) + A+D U (f ) +4 &lb’hﬂ(£.ﬂ)
—‘l'A&.U'n |(€)+OSA<| w){ +Bm+(t'*')§
nd (A 23) <Ot

U_v\ﬂ(’cm) = A D Unsa (k) + A S Ona (t ) + A &Uw(*‘)
4 A6, ey (Einr) T O (1-G) C ot [Br GHE (o]
(4. 24)

51 imi . + .
ilminating U-nﬂ(tm)from equation (4.24) using
equation (4,23), we get

_ ) )
U?\I'H(t;l+l>: [I“‘—A_& A+&] [A-DUN-).(&“)

t+ A& O.F (E) + 48 S Upn (ki) tO 5(1~&)
Cot 4 { B, (t:)t B““+,C<:z+()} + A« [ATS“UI,,(’C)
w5 pur(t) 4+ ATa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>