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General upper limits to the age of the universe*
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Abstract. We model here inhomogeneous and anisotropic cosmologies by
means of a general class of relativistic spacetimes ; and the past extension of
timelike galaxy worldlines from the present epoch is examined under
reasonable assumptions. Conclusions are derived concerning the most
general upper bounds that can be set on the age of the universe within this
framework.
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1. Introduction

The standard cosmological picture describes the observable large scale universe in
terms of the Friedmann-Robertson-Walker models which are based on the assudip-
tion. of the cosmological principle stating that the universe is homogeneous and
isotropic. This means that the universe possesses an unlimited degree of unifor-
nity in matter distribution in all directions and regions of space. These constraints
uniquely fix the geometry of the universe and the picture here is that of three-
spacelike hypersurfaces of constant spatial curvature evolving in time. This
scenario then predicts that all the particle trajectories and world lines must
originate from a big-bang singularity at finite time in the past. The total time
elapsed from this initial singularity to the present epoch which is represented by a
spacelike hypersurface S, then gives the age of the universe :

thgo = Hy F(20)- (D

The quantities H, and g, here are the parameters characterizing Friedmann cos-
mologies (see e.g. Weinberg 1972). f(g,) is a monotonic decreasing function of g,
which attains its maximum value of unity as g, approaches zero and tends to zero
as g, becomes infinitely large. Since the observational data are extremely uncertain
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regarding the value of g, the only definite statement that could be made about
tage 1s that H;™ provides a sheer upper limit to the age of the universe. There is

no certainty again regarding the value of H,, however the present consensus
seems to be for H, between 40-120 km s—* Mpc™ (Narlikar 1983). This corres-
ponds to the upper bounds on age given by

([ 24.4 x 10° yr for H, = 40 km s~! Mpc!
Imax = { (2)
( 81 x 10%yr for Hy = 120 km s~! Mpc-1.

However, it is well recognized that the assumption of exact homogeneity and
isotropy are far-reaching idealizations of the real picture. Actually, we observe the
clustering of matter on all scales and real inhomogeneities may be present at all
stages in the universe (Dicke & Peebles 1979). Friedmann models cannot be
taken as an exact situation but it is an approximation that may hold on a large
scale. But the currently available data in observational cosmology are of uncertain
accuracy and in many cases there are many unknown factors involved so that
it is very difficult to answer this as well as many other questions in a definite
way. As for the early universe, whereas the homogeneity may be obtained in a
‘patchwise’ manner, the isotropy is open to question (Barrow & Turner 1981), and
in fact some chaotic initial state would seem more natural. Actually, the isotropic
models form only a ‘set of measure zero’ amongst permitted relativistic cosmologies
and great attention has been paid to analyse inhomogeneous and anisotropic
cosmologies (MacCallum 1979). Assuming uniformity over the hypersurface, to
which we do not have much observational access, is a big extrapolation. This
postulated uniformity is surely lacking on small scales, and many entertain doubts
as to its validity even on a smoothed-out large scale.

Thus, it would be very useful to study the important questions such as the age of
the universe without demanding the exact conditions of homogeneity and isotropy
and in as much model independent way as is possible. We consider here a class
of general relativistic spacetimes without recourse to the assumptions of homo-
geneity and isotropy and derive conclusions concerning the most general upper
bounds that can be set on the age of the universe. Thus, the universe need not
be of exact Friedmann type, and a knowledge of the cosmological parameters H,
and g, is not required which are any way uncertain at the moment.

2. Timelike trajectories of matter in a general spacetime

We model here an inhomogeneous and anisotropic universe by mean of a general
globally hyperbolic spacetime. These are spacetimes which admit a spacelike
hypersurface S, called a Cauchy surface, the data on which can be evolved into
the future (past) to predict the future (past) states of the universe. Geroch (1970)
showed that such a spacetime can be covered by a one-parameter family (S;) of
spacelike Cauchy surfaces. Thus the state of the universe at any given epoch ¢
can be referred to in terms of surface of cosmic simultaneity ¢ = constant. We
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note that the well-known cosmological spacetimes such as Friedmann-Robertson-
Walker models, Bianchi, or steady state cosmologies are globally hyperbolic.

We would like to investigate within this globally hyperbolic framework the exten-
sion into the past of timelike geodesic trajectories by considering the gravitational
focusing effect on the matter in a spacetime. Let the present epoch be charac-
terized by a spacelike global Cauchy surface S, where we set ¢= 0, and the
matter distribution on S, be given by a second rank stress-energy tensor 73; which
satisfies the usual energy condition that there are no negative energy fields in the
spacetime

(Ty — 2y VW >0, - (3

where V! is a unit timelike vector. Further, let the dynamics of the universe be
governed by the Einstein’s equations

R” = 8TI:G(T1] —_ %guT). (4)
The last assumption means, using equation (3), that we have
RyVivi >0 ‘ ...(5)

for all matter fields. Though we have not required the homogeneity "or isotropy of
material distribution on S,, we shall be assuming that there exists 2 minimum
for density distribution on S,, which, in view of the observed expansion of the
universe, should exhibit a nondecreasing behaviour in the past. This means that
there exists some &k > 0 such that

RYVWI> k>0 ...(6)

at the present and all past epochs.

The gravitational focusing effect on matter in a spacetime can be characterized
by the concept of a point conjugate to a spacelike hypersurface S; along a timelike
geodesic y(z), orthogonal to S;. Consider a congruence of timelike geodesics ortho-
gonal to S;. Let +(¢) be a member of the congruence, then a point g along +(¢)
is said to be conjugate to Sy if neighbouring timelike geodesics orthogonal to S
intersect at ¢. Such a situation arises when the expansion 8 of the congruence be-

comes infinite at g, which is governed by the Raychaudhuri equation (Hawking &
Ellis 1973)

do . 1
5= RyVivl — 26% — - 02, (N

where o is the shear of the congruence, which is intrinsically positive. Here n = 3
for timelike geodesics and » = 2 for null geodesics. A timelike geodesic y(t) will

be orthogonal to S, provided the expansion 6 along v(r) satisfies 6 = x: at Sy,

where X,p is the second fundamental form of the spacelike surface S,. It is easy to
see that if we substitute 8 = z—Y(dz/dt) with z = x®, then equation (7) becomes
(Tipler 1976) '

dz
d—j; + F(t)x = 0, ...(8)
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where F(1) = 3(RyVW! + 24%). Then the problem of finding a point g conjugate
to S, along v(7) becomes that of finding a solution x(f) to equation (8) which vani-
shes at g. Specifically, for the orthogonal timelike geodesic (), a point g along
v(t) will be conjugate to S, provided a solution x(t) of equation (8) satisfying the
initial conditions

x(0) = «, (%\;—)0 = aX, ...(9)

vanishes at g. In order to analyse the occurrence of zeros in the solutions to equa-
tion (8) we shall use the Sturm comparison theorem on the solution of second order
differential equations (see e.g. Hille 1969) which compares the distribution of zeros
of the solutions u(t) and v(r) of the equations

2.
((_l-lttﬂl + GL(t)u = 07 ‘\
' ...(10)
d¥ s T
1.2 -+ Gﬁ(t)v = 05 '
dt ' ]

where G, < G; in an interval (a, b). The theorem then shows that if u(t) has m
zeroes in a < t < b, then v(¢) has at least m zeroes in the same interval and the ith
zero of v(t) is less than the ith zero of u(7).

Now let A? = min F(t) = min $(RyV!¥! + 24*%), and consider

d—d'tiz + kx = 0. (1)

Then applying the Sturm theorem to equations (8) and (11) we see that if the
solution to equation (11) satisfying the initial conditions (9) has a zero in the
interval 0 < ¢ < ¢, then the solution of equation (8) defined by the same initial
conditions must have a zero in the same interval which must occur before the

zero of the solution of eaquation (I11). The general solution of equation (11) can be
written as

x = Asin (B + kt). ..(12)
Let us choose the initial conditions as

1 dx Ya
x(0) = : . 2 = a8 , ..(13
*O) "+ &y)d (dt )o (3 + k)i _ (13)

where X: is negative valued on S, since the universe is expanding everywhere. It
may be possible to envisage scenarios in which the universe might be expanding at
some places on S, and contracting in some other regions of S,; however we shall
not consider such possibilities here. It is then easy to see that the corresponding
solution of equation (11) is given as

X =

sin (0 — ki), (14)

(=
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with

- k
0 — sin? {W} | .(15)

Thus we have 0 < 8 < =/2 and a zero for x must occur within 0 < kt < x/2.
Then, using the comparison theorem, we see that the solution of equation (8) as
defined by the initial conditions (13) must vanish within an interval of time
0 < t < =/2k, i.e. if y(t) is any timelike geodesic orthogonal to S, then there must
be a point g on y(¢), conjugate to Sy, within the above interval.

3. Maximum age of the universe

It is now possible to investigate in general the past extensions of arbitrary timelike
trajectories I' from the present epoch S, (Joshi & Chitre 1981). Let p be an event
on S, and I' be a past directed, endless timelike curve from p = I'(0). Suppose I can
be extended to arbitrary parameter values in the past, then choose ¢ = I'(n/2k) to be
an event on I'. Then by a well-known property of globally hyperbolic spacetimes
(Hawking & Ellis 1973), there exists a timelike geodesic ¥ from ¢ orthogonal to
S, along which the proper time-lengths of all nonspacelike curves from g to S, are
maximized and further, y does not contain any conjugate point between g and S,.
However, as shown above, any timelike geodesic. y(¢) orthogonal to S, which is
as long as =/2k in the past must contain a point conjugate to S, within that interval,
which is not possible. Consequently, we conclude that no timelike curve from S, can
be extended into the past beyond the proper time length =/2k.

The above results can be employed to obtain general - upper bounds to the age of
a globally hyperbolic universe. Taking the stress-energy tensor of the form

Ty = (p + p) wmiuy 4- pgyy, o ..-(16)
and using Einstein’s equations (6), we get
| RyVWi = 8aG(TyVW! + 3T)
= 8aG(p + P) (V*)* — 4=Gp + 4nGp,
ie. RyVWI > 4nG(p + 3p). ‘ o o .(17)

If the pressure p is neglected, then we get

) ) |

K = min JRyVIW! + 26%) > 4"69

...(18)

and the maximal possible extension for any timelike worldline from the present
epoch into the past, or the maximal possible age of the universe, is given by

o 3 1/2_ 3 12 \
Imax = 3 (‘-17:_(;; ) = ﬂ(mp—) - ...(19)

within the framework of general globally hyperbolic v\spacetimes. In the case of
radiation-dominated models we can take p = g/3 and we have

7
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T 3 1/2 3 1/2 '
we =5 (5 ) —(mme) 0

The relationships (19) and (20) provide upper limits to the age even when allow-
ing for departures from homogeneity and isotropy. It should be noted that the o
occurring in equation (19) is a global minimum taken over the epoch of constant
time for the averaged out demsity occurring in equation (16). The average mass
density as indicated by the visible galaxies is about 107%° gm cm—3. However, as
such, the entire subject of mass-energy density of universe is under active investiga-
tion and it is believed that about ten times the visible mass may be in some invisible
form in the intergalactic or intragalactic mediums (Faber & Callagher 1979). The
x-ray observations strongly favour the existence of a hot ionized intergalactic gas
within the cluster of galaxies whereas weakly interacting massive neutrinos could be
another source. We may have to wait for further observations which might deter-
mine the contributions from these sources. However, if a hierarchical clustering of
matter: stops at any stage, such as, say, clusters of galaxies, then the above density
minimum would be achieved. In any case, if one accepts the microwave back-
ground radiation (MBR) as having some kind of global origin, then Pusr provides
a firm lower limit to the pmin sought for and the firm general upper limit to the
age of the universe as given by equation (20) is

_ 3 1z . 7
Imax = ﬂ(mn) = 3.2 x 102%yr, ...(21)

where Pupr = 4.4 X 10734 gm cm3.

Next, if we want to take the contribution by matter into account, we have to
choose an entire range of densities as suggested by the above mentioned possibilities.
The average matter density arising from all possible sources is believed to be
anywhere between 103 to 1022 gm cm—2 (Peebles 1979). The general upper limits
given by equation (19) are given in table 1. A comparison of these results with the
Friedmann bounds as given by equation (2) shows that inspite of their generality the
global upper limits are quite tight and interesting. This suggests several further
applications of the formalism developed here, such as deducing limits on the
maximum amount of dark matter density that could be accommodated in the

Table 1. Maximum possible age of the universe as a function of mass-energy density

Matter fmax
(10-%° gm cm~3) (10%° yr)

1 9.43

4 4.72

8 : 3.34

12 ) 2.72

16 \ 2.36

20 2.1

30 1.72

40 1.49

60 1.22

80 ' . 1.05

100 0.94
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universe or on particle masses such as neutrinos or axions in a model independent
way. We also note another implication obtained here that is, nonvanishing anisotropy
in the universe will contribute towards reducing the age. These topics will be taken
up in a later work.

4. Concluding remarks

In conclusion we would like to note the profound implications that the global
methods bave in analysing the structure of spacetime towards obtaining general and
very useful results. An example of the above is the well-known singularity theorems
in general relativity. We have shown here that it is possible to obtain significant
exact results also on such important problem as the age of the universe from general
global considerations.
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