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THE BEAUTY OF THE SUN !

A photograph of the sun taken during the eclipse of
December 9, 1929. The narrow ring of luminosity is the
chromosphere. Prominences rise into the corona to
heights of as much as 150,000 kilometers at several
places on the limb. The striking feature at bottom is a
loop prominence originating in a disturbed region of
the sun containinga strong localized magnetic field.
It shape traces lines of magnetic force that curve

upward intothe corona and down again.



1 INTRODUCTION

1.1 THE SUN:

The sun formed 4.6 billion years ago, 1s nearly halfway
through its life, and will not change 1lts propertlies appreciably
until it moves off the main sequence in five or six billion years
to become a red giant. It is an ordinary body In the cosmic
hierarchy, similaf to countless other G2 stars on the main sequence
in its general characteristics; but it has one unique feature: it
is 300,000 times closer to earth than the next nearest star. This
closeness of the sun gives it a considerable astrophysical
Importance. The sun also provides us with our only opportunity to

take a close look at a stellar atmosphere.

1.2 THE SUN’S INTERIOR:

Theoretical studies of stars of one solar mass have been



- carried out by many astrophysicists under a variety of assumptions,
and agreement has been reached regarding the general conditions
that exist in the interior of the sun. The temperature of the sun
decreases from a central value of approximately 15 milllion degrees
to a value of 5800 °K at the surface(Fig.1.1)and the outer regions,

the corona ls about million degrees hot!

The density within the sun falls off very sharply with
increasing distance from the center (Fig.1.1). The central density
1s about 150 gm cm-a, which 1s about 13 times the density of lead.
As a result of the rapid fall off in the density of the sun, mosp
of 1lts mass 1s concentrated in a relatively small volume,
approximately 90 percent of the sun’s mass being contained in the
inner half of its radius. The average density of the sun is 1.4 gnm

-3
cm .

1.3 THE ZONE OF CONVECTION:

In the deep interior of the sun the temperature rises up
to many millions of degrees. ‘In this range of temperatures, the
collisions between atoms are sufficiently violent to eject many

electrons from their orbits. Light atoms are completely 1onized,
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depths in the Sun’s interior. The arrow indi-
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while the heavy atoms loose their outer electrons, retaining the
tightly bound inner electrons. These c;nnot be easily dislodged by
absorption of a phdbton. Consequently photons pass readily through
the inner part of the sun. Close to the surface of the sun the
temperature falls, and the heavier atoms recapture their outer
electrons. Such atoms below the sun surface. tend to block the flow
of photons coming from the interior. If photons are the only means
of carrylng energy up to the surface of the sun, the blocking of
these photons will cause the temperature to drop sharply at somé
depth below the surface. Thus, layer of relatlvely cool gas lis

formed on the hottér interior and a convection zone is set up.

At depths greater than 1,50,000kilometers, energy 1is
transported within the sun by radiation (i.e., by flow of ﬁhotons).
At this height the outward flow of radiant energ& is blocked to a
great degree by absorption of photons,and convection sets in. From
that depth out to the surface,energy is transported partly by
convection and partly by radiation. Above the surface,radiation

again becomes the sole means of energy transport.

1.4 THE PHOTOSPHERE:

The visible surface of the sun is called the photosphere.



It is the sun’s disk as observed visually or with a telescope. It
has a uniform appearance when viewed with the eye or through a
small telescope,but through a larger telescope and under good
observation conditions it reveals a granulated texture. The
effective temperature of the photosphere 1s estimated to be about

6000°K.

1.5 THE SOLAR ATMOSPHERE:

The region of tenuous and essentially transparent solar
gas lying above the photosphere 1s called the solar atmosphere.
The outer boundary of the solar atmosphere 1s not clearly defined.
‘-The atmosphere extends out to a distance of 5§ mlliion kilometers
from the sun, if its limit is considered to be a point at which the
density of the solar gas has decreased to the density of the gas in

the space between the planets.

The solar atmosphere is divided into two regions called
the ‘Chromosphere’ and the ‘Corona’. Both regions are invisible
under ordinary conditions because their faint luminosity is masked
by photospheric. light that has been scattered in the earth’s

atmosphere or in the telescope itself. From 6000°K at the



photosphere the temperature, falls to a minimum of approximately
4000°K, and stays at this value approximately up to 2000 kilo-
meters. This thin region 1is called the ‘Chromosphere’.Above
that height the temperature begins to rise very steeply, reaching
the million degree level at an altitude of about 5000 kilometers
and remaining at that level throughout the inner corona(Fig.1.2).
At the high temperature that prevail in the upper chromosphere all
the hydrogen and helium atoms are ionized, and the 6563A° 1line and
other emission lines of neutral hydrogen and helium disappear.
Elements heavier than H and He also loose several electrons at this
temperature, although they are not completely ionized. Thus, the
lines of all these elements, which are prominent in the spectrum in
the 1lower chromosphere disappear gradually as the altitude

increases and are entirely missing from the spectrum of corona.

1.6 THE CORONA:

The chromosphere consists of countless gas Jjets called
spicules which rise to a height of about 5000 kilometers. This
altitude can be referred to as the wupper boundary of the
chromosphere. Surrounding the chromosphere is the coron;. Under

ordinary circumstances the flow of 1light from the photosphere
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overwhelms the very weak emlsslon from the higher layers of the
atmosphere which therefore remain hidden from the direct view. At
the time of solar eclipse, however, the moon passes 1n front of the
sun and blocks out the light from the photosphere. When the disk
of the moon completely masks the solar disk a white halo
(Fig.1.3)of tenuous gas appears beyond the edge of the moon,
stretching a vast distance out into space. This 1is termed as

Corona.

As seen during an eclipse, the visible corona extends out
from the edge of .the solar disk many millions of kilometers.
When viewed from the ground, the luminosity of the corona fades
into the background of scattered light from the sky at a distance
of roughly 10 million Kilometers from the sun. But the photographs
taken from a balloon at high altitudes, where the sky is darker,
show a visible corona out to 30 solar radii. Other measurements
made from satellites and space probes suggest that the corona has
no outer boundary. A stream of wind called the solar wind flows
out of the corona and into the solar system at all tinmes,
continuously immersing the earth and the planets in the tenuous

gases of the solar atmosphere.

The morphology of the corona undergoes dramatic changes

during the course of solar cycle but similar basic elements can be



Fig.1.3 The Solar corona 30 seconds after the
start of totality during the eclipse of March, 1870.
Features are visible at a distance of 4.5 solar

radii or 3million kilometers.



distinguished throughout. The most distinctive coronal features
are the radial plumes generally appearing in polar regions, and the
low, bright, domed structure called condensations. Above the
condensation the dome is often pulled out into a ray or into a set
of rays, which are longer lived than the polar plumes and are known

as streamers. Coronal material flows outward along the streamers

into the wind.

The magnetic field in the solar corona where the magnetic
forces greatly outweigh the thermal forces, 1s assumed to be
relatively uniform., The solar corona is highly structured. Well.
away from the active regions are formed more or less radial rays.
These occur over extended regions of the sun where the field in the
underlying photosphere is scattered and predominantly wunipolar.
These regions are called coronal holes and are found usually at the
solar poles. Over the rest of the solar surface, the basic
structural component of the solar corona ls the coronal loop. Some
loops are vast features linking different active regions.
These typically have temperatures 2-3 x 106 K and density of
about 107%kg m™>. Loops of similar scale but somewhat lower
temperatures arch across quiet regions and presumably link the
dispersed fragments of active regions. The corona above active
regions themselves is characterised by coronal condensations,which

is now thought to represent the collective effect of a complex loop
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system linking areas of opposite polarity. The properties, physical
conditions existing in the loops, the morphology of the cool loops,

hot loops and flare loops are discussed in chapter 2.

Little can be said about the most important physical
quantity of the corona, the magnetic field. The field strength as
inferred from the observations of radio waves emitted by hot
coronal gas suggests a value of 30 mT at an height of 15000
kilometer dropping to 1mT - 0.3mt at 70000 Kilometer. However
these values are subject to a considerable wuncertainty. The
alignment of the fine structures of corona indicates the direction
of the field, l.e., loops trace the magnetic field linking regions
of opposite polarity whilst coronal rays delineate ‘open’field
lines which stretch outward from the corona and close in the
interplanetary medium. Coronal magnetic fleld models and model

equations for coronal plasma are discussed in Chapter 3.

1.7 PRESSURE STRUCTURE IN SOLAR CORONAL LOOPS:

The loop or arch like configurations of the solar active
regions have been seen in the emissions at UV,EUV and X-ray

wavelengths (Foukal, 1978). The current carrying plasma in the loop
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supports a helical form of magnetic fluld.

Typically, magnetohydrodynamic stabllity theory has
been perturbation theoretic, proceeding from linearized equatlions of
motion around quiescent (velocity V=0)equllibria. One elither
follows the evolution of small perturbations or attempts to find
exponentially growing normal modes by variational methods (the
energy principle). Some advantages of linear stability analysis
are (1) the knowledge of growth rates of instabilities and (2)
insight into the nature of whatever growing modes may exist. Some
disadvantages are (1) the difficulty of treating realistic spatial
profiles,and an almost infinite varlety of these proflles. One can
keep on calculating stability by changing the profile,and (2) the
impossibility of determining the effects of 1nstab111t1es‘once they

have outgrown the linear regime.

The turbulence literature emphasizes the important role of
the quadratic integral invariants of the nondissipative, ideal
magnetohydrodynamic model: total energy,magnetic hellcity and cross
helicity. Because the value of these invariants cannot be directly
modified by nonlinear effects,their wave number spectra glve
valuable information about the state and dynamics of the turbulent

magneto fluid.
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In the statistical theory of MHD turbulence, from scalar
numbers, the average total energy, the average magnetic heliclty
and the toroidal and poloidal magnetic fluxes suffice to determine
the level of excitation of every mode in the system for an
initially quiescent system. The quiescent limit is one in which
all of the excitation is locked into the extremal helicity state by
the simultaneous constancy of the magnetic helicity and total
energy. It is the state of minimum energy for glven magnetic
helicity. It 1s a single Chandrasekhar-Kendall mode and so is a

force- free state, (Montgomery et. al,1978).

The steady state pressure structure of a solar
coronal loop can be studied using the theory of MHD turbulence in
cylindrical geometry. The magnetic and velocity flelds are
expanded in terms of Chndrasekhar-Kendall functions using the MHD
equations, the pressure profile is then calculated as a function of
the velocity and magnetic fields. The radial and axial variations
of the pressure in a constant density loop are calculated. These
variations are found to conform to the observed features of cool
core and hot sheath of the loops as well as to the location of the
temperature maximum at the apex of the loop. It is found that
these features are not present uniformly all along either the
length of the loop or across the radiu;. The possible oscillatory

nature of these pressure variations and the assoclated time periods

13



have been explored.

In order to study the temporal behavior of the flelds and
the pressure one has to put in the dynamics, which is described by
a set of infinite, coupled, nonlinear ordinary differential.
equations which are first order in time for the expansion
coefficients of the velocity and magnetic fleld. Since obtaining
the full solution of these equations is a formidable task, we plan
to represent the loop behavior by a superposition of the three
lowest order C-K functions. One Justificatlon for dolng so 1s that
these functions represent the largest spatial scales and therefore
they may be the most sultable states for comparison with the
observed phenomena. This system reduces to a set of six equations,
three for veloclty and three for magnetic field. Numerical methods
will be needed to solve these equations. However analytical
progress can be made in two simplified cases:

(1) When the systen is disturbed 1linearly from its state of
equilibrium and
(i1) when one of the three modes has an amplitude much larger than

the other two, known as the Pump approximation.
Preliminary work 1indicates that the three mode system

exhibits sinusoidal oscillations when perturbed linearly. This

work is to be perused in more detail, checking the response of the
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system under different initial conditions. This will help us to
determine the temperature, the velocity field and the magnetic field
in the loop plasma of constant density. The knowledge of these
parameters and their variation with space and time enables the
explanation of varying emission in other electromagnetic bands at
which the loop plasma emits. The description of small scale
variations in terms of the global invariants of the MHD system
glves a very 1important handle on the dynamics of pl#sma. The
transformation of linear to nonlinearity needs to be studied. The
spatial evolution of three dimensiopal solar coronal loops s

dicussed in Chapter 4 and temporal evolution in Chapter 5.

The fluid theory description of a plasma is sufficiently
accurate to describe the majority of the observed phenomena.
However, there are some phenomena for which the fluld treatment is
in adequate. For such cases we need to consider the velocity
distribution function f(v) for each specles. Thls treatment is
called Kinetic theory. The Vlasov description admits the
investigation of kinetic process like heating and radiation, and
unlike a fluid description it does not require an equation of state
to determine the individual variations of temperature and density.
A Vlasov-Maxwell description of the ubiquitous solar cofonal

structures 1s dlscussed in Chapter 6.
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Future work shall include four-mode interacting system.
One could then generalize to the casé of many modes with initial
amplitudes chosen to fit Kolmogoroff spectrum. Finally it is hoped
that it will be possible to compare the theoretical studies with
the observations on coronal loops. A knowledge of ordinary and
partial differential equations, numerical methods to solve them and
basics of magnetohydrodynamics are required to pursue these

‘obJectives. Sultable programs have to be developed to solve the

multi mode equations.
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2 SOLAR CORONAL LOOPS

2.1 INTRODUCTION:

Visual observations of prominences were the first to
reveal the exlistence of well deflned loop structures arching
upwards from the surface of the sun high into the overlying corona.
Regular visual observation of prominences obtained. during total
eclipses of the sun have revealed more Information about the
coronal loops. Young and Seechi have concluded from a number of
observations that prominences could be classified into two main
types, ‘qulescent’ and ‘actlive’. They are also called as ‘cloud’
and ‘flame’ prominences respectlively. An active prominence 1s what
is referred to as a loop prominence. They assumed the shapes to be
parabolic, since they supposed tﬁat the material was ejected from
the surface and was then subjected to purely gravitational forces.

The true shapes of the loops have however been known only recently.

With the invention of spectrohellograph, spectrohelioscope

birefringent filter, observations were obtained in H and K lines of
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the singly ionized calcium and latter in the Ha line of hydrogen.
These observations reveal structures in the chromospheric region
which are termed as ‘cool’ loops. The temperature of the loop
plasma 1in this region is in the range of 20,000 to 10°k while
plasma loops with temperature greater than 10° are termed as ‘hot
loops’. Based on the film of the corona taken in the A 5303Ao line
Dun (1971) arrived at thls general conclusion: ‘some coronal’ scenes
iook "open"...and some look to be all loops and arches or "closed".
The differences are presumed to be due to the magnetic field
structure. The coronal structures are related to the magnetic
field i.e., they are sald to map the magnetic field. This 1is in
contradiction with the force free calculations according to which
the field should uniformly permeate the entire area and not merely
lie in the loops. It is therefore apt to say that the corona
defines particular flux tubes. The arches and loops can be
considered as very basic coronal structures, since many scenes
appear to contain nothing else. Satellite observations in the
Extreme ultraviolet (EUV) and X-ray region of the spectrum provide
a wealth of informatlon on Lhe loop structure of the corna. Though
there has been substantial achievements from the ground based
observations in the visible coronal lines, there has been very
little scope for further elucidating the structure of the active
corona. The overwhelming brightness of the photosphere at these

wavelengths makes it impossible to observe the corona against the
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solar disk. It 1s reasonably assumed that the observations in the
EUV and X-ray regions could reveal the structure of the low corona
of the disk as well at the 1limb, because 1in this region the
contribution of the photospheric layer virtually vanishes and the
radiation comes from the overlying material at the chromospheric
and coronal temperatures. This region of the spectrum has a number
of strong resonance lines emitted by many of the abundant lons of
various elements In various stages of lonisation which are formed
in the temperature range of 104 to 107K. The soft x-ray region
below 10nm is dominated by emission lines of very highly lonised

stages of a number. of elements superimposed over a weak continuum

of coronal origin.

2.2 COOL CORONAL LOOPS:

Coronal loops are a phenomenon of active regions and they
are believed to be dominant structures in the higher levels of
(inner corona) the sun’'s atmosphere. As already mentioned, loop
plasmas which are in the range of 20,000 to 106K are referred to as
‘cool loops’. Some properties and physicgl conditions in cool loops
based on the observatldns in Ha and other visible and near visible

lines, as well as in the EUV region are mentioned briefly for
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better understanding.

Limb observations in the Ha has established that the
individual loops were anchored to underlying sunspots, though this
aspect is brought out well in disk observations. Figure 2.1 is an
example of an active region loop system in which most or all of the
loops are anchored to sunspots (Bumba and Kleczek;1961). Other
photographs of interest of the active reglon loops are of Lategan
and Jarrett(1982,Fig2a) and Foukal (1978,Fig2). The number of
loops in a single system may range from just one up to perhaps ten
or so, an upper limit is hard to establish from limb observations.
Though various observers have given projected height to the loop,
true heights cannot be determined from the limb observations unless

the loop geometry is known.

Generally three types of motion .are assocliated with active
region loops (1) flow down both legs starting at the top of the
loop (Kleczek; 1963) (2) a flow up one leg and down the other
(Martin; 1973) and (3) a mainly horizontal back and forth motion of
the whole loop (oscillation§) (Vrsnak; 1984). Two methods are

‘generally adopted to measure the velocity and acceleration of the
material observed at the limb. The first method is to determine
the Doppler shift of a sullable line like "a which will give the

line of sight velocity and can be converted into true velocity

20



St A

Fig.2.1 Hoc active region loop system (Bumba &
Kleczek, 1961).Most or all of the loops are anchored
to sunspots whose locations were established with

the aid of auxiliary data.
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along the loop if a suitable geometry is assumed. The second method
is to measure the projected motion in the plane of the sky using
condensations or knots which are prominent features of the loop
photographs. The true velocity 1is determined from the geometry of
the loop, with the assumption that the apparent motions of the
knots represent the genuine motion of the loop material and not
changing conditlons of excitation. Measurements of the velocities
of the loops observed on the disk vary from 20 - 150 Kms-R The
acceleration measurements both in the limb and disk observations
reveal that accelerating and decelerating forces other than the

gravity operate on the material in the loops.

2.3 MAGNETIC FIELD IN CORONAL LOOPS:

A measure of the magnetic field of prominences has been
most difficult. However a number of c;ncordant results have been
obtained using Zeeman or Hanle effect. Athay et al (1983),measured
the linear polarization in two resolved components of the He I D3
line and obtained complete Stoke's profiles for thirteen
prominences, mostly quiescent ones. They used the Hanle effect to

interpret the results, obtalning the vector magnetic fleld at a

number of locations. From the observations and analysis, they found
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that one of the prominences (prominence N)had two arches extending
down from the main body to the chromosphere. In this prominence,
the total field B in the loop ranged from 4 to 46 Gauss. Since the
polarization depends on the scattering angle, the Hanle method is
found to be sensitive to the assumed geometry of the prominence. The
Zeeman method has been more widely used than the Hanle method even
though it ylelds only the longitudinal component of the field B";
Vrsnak(1984) has estimated the total field B in Hu loop, by
measuring its bodily oscillations (mainly horizontal)in the plane
of the sky. He found the period to be 8 minutes. Assuming that the

motion was controlled by the magnetic field he showed that the

observed period was consistent with a Value of B = 45 Gauss.

2.4 DISK OBSERVATIONS OF CORONAL LOOPS:

On the disk, an active region loop appears in the. H“ line
as thin, curved dark feature linking a sun spot with another spot or
area of opposite magnetic polarity. r Observations of Ha active
region loops on the disk indicate that loops occur ogly during the
most active stages of complex groups (Ellison;1944). Though loops
and small flares tend to occur 1in active reglons at times of high

activity, it does not imply a direct association between a
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particular loop and a particular small flare. Ha loops terminate
in or near sunspots at one or both ends(Ellison; 1944,
Tandberg-Hanssen; 1974, Bray and Loughheed;1983) Two types of flow
are observed: (1) a unidirectional flow along the axis of a loop
i.e.,ascent in one leg and a descent in the other;according to’
Elllson, the direction of the flow is independent of the magnetic
polarities of the spot(s)involved; this type of flow 1s a commonly
observed characteristic of loops in new and complex active regions:
(2) a down flow from the top towards both foot points. The
appearance of single or double loops is quite common while, the

appearence of a complex loop is rare.

The motion along a 1loop may continue up to several
hours (Ellison,1944)which is roughly the same interval over which
loop systems are observed to persist. However, Tandberg-Hanssen
(1977) give 15 minutes as a representative figure for the life
time of a single loop, while Martin (1973), has shown evolutionary

changes in a long lived loop over a period of one hour.

The diameter of the cross section of a loop, 1i.e., lits
thickness, is typically only a few seconds of arc and may be much
smaller (Loughhead and Bray; 1984). If the cross section is
circular, measurements of loop thlckness are ‘carried out on the

(projected) image of loop recorded on a high resolution filtergram.
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The thickness varies from 930 to 2100 Km (Loughhead,Bray and wang
1985).

Measurements of velocities and acceleration 1indicate
that ascending material in the loop is subject to a force which

accelerates it to highly supersonic velocitles,while the descending

material suffers a retarding force.

2.5 OBSERVATIONS OF CORONAL LOOPS IN EUV LINES:

Below 1500A°, up to aﬁout 100A°, the spectral region is
called EUV. In this region, the contribution of the photospheric
layers to the solar spectrum vanishes and the radiation comes from
the overlying material at chromospheric or coronal temperatures.
The solar EUV spectrum is dominated by emission from resonance
lines of H 1, He 1,and He 11, of intermediate stages of lonization
of C,N,0,Si and S of highly lonised stages of Si,Ne,Mg and Fe. It
is also characterized by the Lymann continuum and He 1 and He 11
continua. Under the conditions of forﬁation normally assumed to.
apply, the intensity of any given line is a sensitive function of
the electron temperature Te peaking at some particular value

Te(referred to as formation temperature) and falling of sharply on
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either side.

The observation of warmer lines than He 11 reveal the full
three dimensional structure of the active regions. An active region
is seen to consist of a complex system of bright loops arching
between areas of opposite magnetic polarity. Photographs of active
reglons near the limb help ldentify these structures as loops in
the geometrical sense. The indlvidual loops are oriented in many
different directlons and frequently overlap one another.Thé
clarity and sharpness with which a loop 1s seen depend both on the
temperature of the, line used in the observation and on the spatial

resolution achieved.

Foukal(1976), after a thorough analysis of EUV emisslions
over 22 large sunspots, found that the emission is often brighter
there than elsewhere 1in the active reglon (Brueckner and
Bartoe, 1974; Sheely et al., 1975 and Dere, 1982). However,the inten-
sity and distribution of radiation above the spots change markedly
with time and as a consequence a large umbra can remain invisible
in the cool EUV for as long as several days. Figure 2.2 is an
illustration of the three dimensional structure of active regions
seen in the EUV. This is a photograﬁh of McMath region 12628 at

the west limb taken in the line O vi A 1032 AO(Te = 3.2 IOSK).

From the photographs, it is evident that the reglon is composed
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Fig.2.2 A photograph of McMath region 12628 at the west
limb taken in the line O VI A1032.The region consists
basically of a number of separate loops lying in planes

inclined at widely differing angles to the Solar vertical.
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basically of a large number of separate loops lying in planes
inclined at widely varying angles to the solar vertlical. Some loops

are nearly vertical, while others are almost horizontal.

2.6 PROPERTIES CORONAL LOOPS:

Due to an inadequate spatial resolution of the available
EUV observation and paucity of systematle analysis of these data, -
little information 1is available about the morphological and
dynamical properties of individual 1loops, yet the following

properties can be associated.

Like all other solar features; cool EUV loops are always
observed in projection of the plane of the solar disk or of the sky
beyond. Limb observations indicate that most loops are essentially
planar. The inclination of thc planes containing the loop may vary
from nearly vertical to nearly horizontal. The estimates of the
heights attained by well defined loop prominence are typlcally of
the order of tens of thousands of kilometers. Cheng(1980),has given
a value ranging from 57,000 Km 1n Ne vir to 67,000 Km in Mg 1x

indicating increase of loop height with temperature. The width of
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the cool EUV loops increase only slowly with height,Foukal (1976);
Cheng (1980). On the other hand,loop width increases with
teﬁperature. The foot points of cool EUV loops are observed to be
generally located on the peripheries of the two areas of opposite
magnetic polarities in a bipolar actlive region as shown in figure
2.3. (Sheely,1980). Loops observed in cool EUV lines,beyond the
limb, show a strong contrast wilth respect to their surroundings.
The intensity of the background emission is weak but increases with
temperature. Loops observed in cool lines evolve appreciably in
Just a few hours (Levine and Withbroe; 1977,Cheng ei al 1980). Spot
assoclated loops are found to be more stable than other cool EUV
loops (Foukal;1976 has published photographs of a large spot loop
near the limb whose basic form remained relatively umchanged over a

period of 27 hours.) The pattern of flow 1s analogous to that

observed in the Ha active region loop.

2.7 SPATIAL RELATIONSHIP BETWEEN LOOPS SEEN IN DIFFERENT LINES:

Though an inspection of the EUV spectroheliogram gives the
ldea that the same coronal loops In lines of widely dissimilar
formation. temperature are seen, Foukal (1975) has concluded that

these loops are coincident and has hypothesized that a loop

29



Ne ViI 465 100 000 km Mg IX 368

P

%

Magnetogram Nov. 28, '73 14:50 Fe XV 284
Fig.2.3 Bipolar active region on the disk observed almost

simultaneously in the two cool EUV lines Ne VII
A465A° and Mg IX a368A°,as well as in in the hot
EUV line Fe XV 2284A° (Sheely, 1980). White and black
patches on the kitt Peak Magnetogram delineate
areas of positive and negative polarity respectively
in the underlying photospheric magnetic field.
The elongated bright features radiating outwards
from the central areas of bright emission represent

the lower ends of coronal loops.
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consists of a cool core surrounded by a concentric sheath each one
filled with material hotter than that in the adjacent inner sheath.
This does not describe the relation between cool and hot EUV loops.

They are not known to be coincident.

2.8 PHYSICAL CONDITIONS IN COOL LOOPS:

Loughhead,Bray and Wang (1985) have given a complete
description of the, physical conditions in a loop observed on the
disk in Ha' From observations, it 1s possible to determine the
electron temperature Te and electron density Ne, the gas mass
density p and pressure P, the Mach number M if the axial flow speed

along the loop Vo is known.

The observations reveal a striking variation in density:
there 1s distinct compression near the top of the loop and
rarefactions in both the ascending and descending legs. The
variations in the pressure 1s even more marked. If these
variations point to the evidence for the presence of a wave in the
loop, then, the wavelength will roughly be equal to one half of the
length of the loop. The variations in p, P, Te and V° plotted

against the distance along the loop indicates the presence of node
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at the highest point of the loop. These conditions in the loop
inferred from EUV data are in very good agreement with observation

in visible and near visible regions.

Roussel-Dupre et al(1984) on the basis of their results
concluded that the EUV emission from the loop originates in very
thin sheaths of materlals surrounding an(assumed) cool core. Each
sheath is 1solated from the others by the magnetic fleld in the
loop and radiates at the temperature élving the maxlimum abundance
of the particular ion involved. The observations in the cool loops
both in the visible and EUV regions indicate that the electron
density extends over a wide range of several orders of magnitude
while the gas pressure is restricted to a much smaller range
(single order of magnitude). This indicates that the stability of
é loop, whatever 1ts temperature depends on the malntenance of
approximate pressure equilibrium with the surrounding coronal
medium. Further it is evident that all cool loops appear to have
similar properties with exception of temperature and can be

regarded as manifestations of the same basic physical structure.

2.9 PHYSICAL CONDITIONS IN HOT LOOPS:

Observations made in the visible and EUV 1lines provide
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extensive Information on the large scale systems of loops which
dominate the structure of the lower corona above the active
regions. These lops are assumed to trace out closed magnetic field
lines which emerge from beneath the photosphere and expand to fill
the whole coronal volume above an active region. Though the loop
system gives some insight into the three dimensional configuration
of the magnetic fleld ; the picture is not complete. Hence,

observations of hot loops which are filled with material at coronal

temperature of a milllon degrees or more, seem to be more

pertinent.

Loops observed in the visible region of the spectrum have
generally been observed in the Fexiv A5303A° line. The follﬁwing is
the summary of the properties associated with the active region
loops from the descriptions of Kleczek(1963) and Dunn(1971).These

refer to both flare and non-flare loops.

2.10 PROPERTIES OF HOT LOOPS:

Loops in A 5303A0 reglon occur as systems of loops in
a single active reglon, with typical heights of up to 50,000 -

100,000 Km. Larger loops may connect two active reglons and the
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system appears to be rooted in the sunspot groups or in plage
areas. The larger loops are generally more uniform in intensity
along their widths and lengths and smaller loops are less uniform.
Loops are more active when they are small, they tend to grow in
situ, then fade, and others grow at higher elevation. Larger loops
are very stable. Loops are found to be planar structures. The
smaller loops last for hours while larger loops last for‘days. The
high temperature EUV emission from the sun is confined very largely
to the active regions and the loops emanating from them. Individual
hot EUV loops are distinguished by their broad and irregular and
less loop like appearance as compared to those visible in. the cool
EUV loops. Unlike cool EUV loops the hot loops are never observed
to brighten progressively along their length but appear to brighten
and fade in situ. All hot loops appear to be basically similar in
their properties regardless of the wavelength region in which they
are observed. All loops extending outwards from an active region
necessarily return to the same vicinity. The spectrum of the core
is harder than that of the rest of the active
‘region, implying, that, if the emission is thermal in origin, the core
is hotter. The X-ray loops associated with an active region are
similar in general appearance tb those seen in hot EUV lines. Hot
loops, especially some of those observed in the X-rays, can attain
much greater helghts than cool ones. Both hot and cool loops

exhibit a wide range of lengths but certain classes of X-ray loops
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are much longer than cool loops observed in Ha or cool EUV lines.
Hot and cool EUV loops have the same diameter but cool Ha and La
loops appear to be much thinner than any other class. In general
hot loops last longer‘than cool ones. It is difficult to compare
the electron densities in hot and cool 1loops since, both cover a
large range, with undesirable overlap. The gas pressures have a
smaller range and the values for both hot and cool loops are of the
same order. In general hot loops tend to be thicker, longer,higher
and longer lived than cool loops. Other morphological and physical

properties except temperature are also simlilar.

2.11 SPATIAL RELATIONSHIP BETWEEN HOT AND COOL EUV LOOPS:

Foukal (1975) inferred that the peak emission from a cool
loop coinclides with a drop in the level of the hot EUV emission,
which then rises to a low peak on either side. Foukal interpreted
the observation as implying the existence of concentrlc sheaths of
increasingly hotter material around a cool core; so that what is
seen as a hot EUV loop is rcally a shcath of hot gas surrounding a
cool EUV loop. This ldea was subsequently elaborated by Levine and
Withbroe (1977) by studylng the varlation 1In the physlical

conditions in a loop as a function of distance from the axis. Hot
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and cool EUV loops, although obviously related, are regarded as

separate physical structures (Dere;1982, Cheng et al; 1980).

2.12 FLARE LOOPS:

Much of the knowledge of flare loops 1is from the
photographs obtained on the disk and beyond the limb in the
Haline. Disk observations throw light on their relationship with
flares,while the .limb observations yield information on the
structure,dynamics, 1ife time and evolution (Bruzek, 1964). Figure
2.4 shows a typical well developed loop system photographed
simultaneously in Ha and A5303A° at the Mees Solar Observatory,
Haleakala (McCabe, 1973). A number of loops is seen to be present,

although it is not possible to count thenm.

Solar flares are remarkedly diverse and complicated
phenomena involving transient heating of the localized regions of
the corona and underlying chromosphere within an active reglon.
The sudden release of energy is accompanied by the emlssion of
electromagnetic radlation over a very wide span of the spectrum,
ranging in extreme cases from y-rays to kilometric radio waves. 1In

almost all cases,flares seen in the chromospheric Ha line also
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Fig.2.4. Loop prominence system photographed simultane-
ously in Ha(upper) and A5303A%f Fe XIV(lower) at the
Mess Solar Observatory,Haleakala(McCabe, 1973). The loop
details appear sharper in H_than in A5303A°.




produce an increase in the flux of soft X-rays. Both Ha and soft
X-ray emission pertain to what 1is called the ‘thermal’ or
‘quasithermal’ component of the flare; 1i.e. they originate in
plasmas where the distribution of electron veloclitles 1s belleved
to be Maxwellian. All flares pass through at least three
phases:rise,maximum and decay (Moorelet al.,1980). These phases
are easlily recognizable in curves showing the varlation of the Ha
intensity and soft X-ray flux over the life time of a flare. The

physical properties of a flare change markedly over its lifetime.

The morphological and dynamical properties of Ha loops of
both flare and non-flare loops are the same or nearly the same.
However, compared with non-flare loops, Ha flare loop system appear
to be slightly higher and lasts longer, as dq the individual flare
loops. EUV flare loops are also simllar to those of EUV non-flare
loops. EUV flare loops appear to lie some what lower, but the
ranges of values overlap. In the microwave region,data are
inadequate to make comparison between flare and non-flare loops.
In the soft X-ray region,both flare and non-flare loops reach very
great helghts,but the non flare ones appear to reach greater
heights. Comparison of the physical conditions of the flare loops
with hot non-flare loops Indicate, that independent of the

‘wavelength region,the flare loops are approximately an order of
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magnitude hotter compared with non-flare loops. Further,except in
the EUV region, the electron density of the flare loops is also an
order of magnitude greater. Thus, 1t ls reasonable to arrive at
the conclusion that the gas pressures in flare loops 1is
approximately two orders of magnitude greater than in non-flare
loops. The value of the total magnetic field B in the microwave
region is bigger for flare loops than for non-flare loops. Unlike
hot flare loops the value of Te for cool flare loops in Ha and
other visible region lines 1is simil#r to that of cool non-flare

loops.

Thus, hot flare loops are distinguished from hot non-flare
loops by their different physical conditions rather than by
morphological differences.On the other hand,cool flare loops can be
distinguished from non flare cool loops only by characteristics

other than thelr morphologlcal and physical propertles.

2.13 SUMMARY:

Though, there 1s a storehouse of Iinformation on the

observed properties of coronal loop structures, in different regions
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of the electromagnetic spectrum, there is no physical model which
is valld for all types of loops. One of the reasons for this
situation 1is the insufficiency of data on coronal magnetic
fields,which govern the morphological and dynamical propertles of
all types of loops. Coronal magnetic fleld models are discussed in
Chapter 3. A three dimensional modeling of the spatial and
temporal evolution of coronal loops ls discussed in chapters 4 and

S respectively.
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3 CORONAL MAGNETIC FIELD MODELS

3.1 INTRODUCTION:

In the previous chapter the observed properties of coronal
loops were descrlbed. To interpret the observed properties and to
provide an account of the physics of coronal loops, some of the

"models that have been established are discussed in this chapter.
There is very little empirical knowledge of the strength of the
coronal magnetic field and almost none of its topology. Hence, a
relationship between the plasma loop properties, physical
conditions in them and the coronal magnetic field is based on
theoretical models. The models governing the structure of magnetic
fields are inferred from measurements of the magnetic field made in
the solar photosphere, the only region where such measurements are
at all reliable. This method provides a basis for comparing the
structure of the observed plasma morphology with that of the

extrapolated and inferred fields.

Despite the inability to measure the field in the corona
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with any precision a simple calculation establishs its importance.
The spatially averaged magnetic flux density 1in the solar

photosphere ranges from about 0.4mT in the quietest regiohs to over

30mT in the active regions. The minimum mean square field strength

can be obtained by assuming thé field to be uniform; hence the
magnetic pressure Bz/poranges upwards from about 0.1Pa in qulet
regions to well over 400Pa in active.regions. In the low corona
which.are at heights of 2000Km or so, these estimates will not be
significantly different since this dlstancé is small compared to
the radius of the sun (7x105KmL On the other hand, empirical
estimates of the gas pressure in coronal active regions lie in the
range of 0.1- 1Pa. Hence, the magnetic pressure greatly exceeds the

gas pressure.

The magnetic field in the corona cannot be measured with
precision, however,by calculations as mentioned above it is found
that the magnetic pressure greatly exceeds the gas pressure. The
solar corona is a low B gas (B 1s the ratlo of gas pressure to the
magnetic pressure) while the sub surface region is a high B gas.
In a low 3 system the fleld controls the gas, while for a high B
gas, the gas dynamics controls the field. In low B systenms, the
field either can simply expand in response to unbalanced magnetic
pressures or can adopt a static configuration in which magnetic

stresses balance one another- a .situation in which the field is
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said to be force free every where. A fleld which is force free
throughout a given volume must experlience stresses on some bounding
surface in order to maintain it. In the case of the solar corona,
the field cannot simply expand away because it is anchored by the
gas dynamical stresses exerted on the sub surface portion of the
field. These stresses are, of course, continually varying and
produce in the corona a state of constant evolution. However, the
observed changes to the overall structure of the coronal loop
systems are generally slow, which suggests that as a first
approximation the variations can be ignored and a static magnetic

structure can be assumed.

3.2 FORCE FREE FIELD:

In order to focus on the geometric properties of the
magnetic field, a model in which the fleld is static and is
determined solely by the distributlon of its own stresses, free
from any considerations of the gas that must be present is adopted.
This assumptlon reduces Lhe problem to that of finding solutlons of
the Maxwell's equation for which the Lorentz force vanishes
everywhere with In the coronal volume. i.e.,

jJxB=0 (3.1)
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subject to the appropriate conditions at the lower bounding surface
that reflect the determining influence of the sub surface field and
current distributions. Equation (3.1) to be true, requires that
either current density j should be parallel to the magnetic

induction or it should vanish. Hence,

uoj = a(x, t)B (3.2)

M, is the permeability of free space. Current free case
corresponds to @ = 0. If the fileld is assumed to have attained a
static configuratipn, the parameter a becomes a function of

position alone. Hence, using Maxwell’s equation for a stationary

system
VxB-= iy J (3.3)
or, VxB=a (x)B | (3.4)

In the integral form equation (3.4) can be written as
J (Vv x B).dS = [ « B.dS (3.5)

where,s 1s any surface within the volume

44



By Stokes theorem the surface integral can be transformed to
J (UxB).ds = § B.dl (3.6)

where, c 1s the curve bounding the surface s and dl is a line
element of the curve c. If s is assumed to be a flat disk ¢ will
be 1ts perimeter. The RHS of the equation (3.6) represents the
component of the field around the circle and the RHS of equation
(3.5) the component of the fleld normal to the disk. Thus, «
determines a measure of the degree of twist of the field. When a=0

there 1ls no curreﬂt and no twist. Such a fleld conflguration is

known as a potential field.

Taking the divergence of equation (3.3), it is found, that in the

steady state

v.jg=0 (3.7)
Equation (3.7) indicates that llke a magnetic fleld,a steady
current cannot end in space.

Taking the divergence of equation (3.2),

(B.V)a + « V.B = (B.V)a = O (3.8)
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which implies that the value of a does not change in the direction
of the field and so remains constant 'along a field }ine. If the
fleld line crosses the boundary into a force free reglon, it
maintains the value of « set by the boundary condition throughout
the volume.

The solution to the equation,
(VxB)xB = 0 (3.9)

is non linear. The equation may not have a guaranteed solution and
if it has, 1t may not be necessarlly unlique. Construction of general
force free models for the coronal magnetic filelds 1is a

mathematically intractable problem.

The difficulty assoclated with general models (existence
and uniqueness of the solution) is overcome if, a is deemed to be a
constant within the volume under consideration. This will ensure
the invariance of « between foot points. The solution of equation
(3.4) when a is a constant #re the elgenfunctions of the curl
operator. Instead of solving this equation directly, Chandrasekhar
and Kendall (1975) took curl of both sides to produce the Helmholtz
equation for each cartesian component of B
2, 2

(V°+ «“°)B =0 (3.10)
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This equation is linear in B for a given « so that the solution

will describe a linear force free field.

Seehafer(1978); Alissandrakis(1981); Chen & Chen(1989)
have adopted linear force free flelds to the modeling of the
Iregions of the finite horizéntal extent, such as an active region.
The solutions are not however unique if normal component of the
magnetic field Bn is specified only on the‘iower boundary (Chiu &
Hilton,1977). Most observations furnish only the normal component
of the fleld at the photospheric surface. Comparison of the
structure with observations of the morphology of actlve regloﬁs are
arbitrary because they are based upon models in which the value of
o 1s adjusted to provide the best agreement between the observed
morphology and the field. Since,observations give no indication
whether this procedure 1s justified, the valldity of the constant a

model for coronal field is doubtful.

Heyvaerts and Priest(1984), provide a justification for an
approximately constant « force free field in the solar corona.
Since, it 1s assumed that the coronal magnetic flield evolves
through quasl-statlc cqullibrlium struclures as the fleld at the
photospheric boundary changes slowly. During the time interval over
which equilibrium 1ls achléved, the changes 1In the boundary

condition may be neglected and it may be supposed that the field
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structure changes only within the volume where the field must be
force free. Under these circumstances Woltjer(1958) has proved
that in the limit of infinite electrical conductivity (ideal MHD),
magnetic helicity 'ls conserved for each field line as the field
evolves within the volume V. Magnetic helicity 1is defined as A.B
where A is the vector magnetic potential (B =7 x A). Like a, the
magnetic helicity is also a measure of the twist Qf the field, but
unlike «, the helicity of a potential field does not necessarily

vanish. If helicity ls conserved for each field line, the total

helicity in the volume

K = IA.B v (3.11)

v

will be constant throughout. The total magnetic energy

E = I(BZ/ZFO) dv (3.12)

v

will however change. The lowest possible value occurs when the
fleld adopts preclisely Lhat constant « force free conflguration
having the prescribed normal component Bn on the boundary

(Sakural, 1979).
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Although a mlnimﬁm energy state exlsts, the system has no
means of evolving to this state when there 1s no dissipation,i.e.
when electrical conductivity 1is infinite. If dissipation 1is
allowed by introducing the conductivity to be finite, helicity will

‘no longer be conserved on each field line

3.3 MODEL EQUATIONS FOR THE CORONAL PLASMA:

3.3.1 MHD APPROXIMATION:

At the high temperatures and low densities, characteristic
of the corona, the atoms of the coronal gas are almost all ionized.
The long range electrostatic forces between the charges goverﬁ the
small scale motion of the particles. Any medium in which this is
the case is said to be a plasma. It is the basic property of
"plasma that the strength of the electrostatic interaction
precludes any permanent large scale separation of opposite charges.
The average charge denslly ls effeclively zero everywhere, so that
large scale dynamics of a plasma is controlled by the magnetic
field. Magnetohydrodynamlcs and plasma physics both deal with the

behavior of the combined system of electromagnetic fields and a
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conducting liquid or gas. Conduction occurs when there are free or
quasi free electrons which can move under the action of applied
fields. Unlike a solid in the case of a fluid the fleld acts on
both electrons and ionized atoms to produce dynamical
effects, including bulk motion of the medium itself. This mass
motion in turn produces modifications in the electromagnetic
Ifields. The distinction between plasma and magnetohydrodynamics can
be established by considering the relation J = ¢E. In conducting
liquids or dense lonised gases the collislon frequency |is
sufficiently high even for very good conductors that there is a
wide frequency range over which Ohm’s law in its simple form s
valid. Under the action of applied fields the electrons and ions
move in such a way that,apart from the high frequency jitter, there
is no charge separation. Electric field arises from the motion of
the fluld which causes a current flow, or as a result of time
varying magnetic flelds or charge distributions external to the
fluid. The mechanical motion of the system can then be described in
terms of a single conducting fluid. At low frequencies the
displacement current 1is neglected in Ampere's law. This

approximation is called magnetohydrodynamics.

In a less lonlscd gas the collislon frequency ls smaller.

There may still be a low frequency domain where the magneto
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hydrodynamic equations are applicable. Astrophysical applications
fall in this category. At higher frequencies the charge separation
and the displacement current cannot be neglected. The separate
inertial effects of the electrons and ions must be included in the
description of the motion. This domain is referred to as “"plasma
physics". At higher temperatures and lower denslitles,the
electrostatic restoring forces become so weak that the length scale
of charge separation becomes large compared to the size of the
volume being considered. Under such circumstances the collective
behavior implicit in a fluid model is gone completely. A plasma ls_
an ionised gas in which the length that divides the small scale
individual particle behavior from the large scale collective
behavior is small compared to the characteristic lengths called the

Debye length (which is numerically equal to 7.91(T/n)1/2

cm,where T
is the absolute temperature in degrees Kelvin and n ls the number
of electrons per cubic centimeter). For length and time scales
larger than the charge separation scales the plasma may be treated
as a fluid and the magnetohydrodynamic description lis use#. In a
fluid, the transport processes of diffusion, viscosity, heat
conduction and electrical resistance can all be modeled in terms of
the local thermal and dynamical properties of the gas,the

temperature T, the pressure P and bulk velocity V together with the

macroscopic magnetic induction B.
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3.3.2. MHD DESCRIPTION OF LOOPS:

Consider a nonpermeable conducting fluid in
electromagnetic field. Let it be described by a matter density
p(x,t), a velocity v(x,t), a pressure p(x,t) (taken to be a sclar),
and a ' real conductivity o.The hydrodynamic equations are the

continuity equation

Im
|

+ V.(pv) =0 (3.13)
and the force equation:

v _ = 1
pa?- Vp+—é—(JxB)+Fv+pg (3.14)

In addition to the pressure and magnetic-force terms viscous and
gravitational forces have been included. The time derivative on
the LHS is the convetive derivative which gives the total time rate

of change of a quantlity moving instantaneously with the velocity wv.

+ v.V (3.15)

&la
P

For an incompressible fluid the viscous force can be written as:
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F, = wWv . (3.16)
where m 1s the coefficlent of viscosity.

Neglecting the displacement current,the electromagnetic fields in

the fluid are described by

VUXE+ — — =0 (3.17)

VxB= J (3.18)

The condition V.J = 0, is equivalent to the neglect of displacement
currents. From Faraday’s law(d/8t) V.B = 0 and the requirement
V.B = 0 can be imposed as an initial condition. With the neglect
of the displacement current, it is approbriate to lgnore Coulomb’s
law as well. To complete the specifications of dynamical equations
the relation between the current density J and the flelds E and B
are to be specified.For a one component conducting fluid,Ohms law

can be written as:
v .
J=¢ (E + P x B) (3.19)

The equations (3.13),(3.14),(3.17),(3.18)and (3.19) together with
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an equation of state for the fluld, form the equations of

magnetohydrodynamics.

3.4 STEADY STATE STRUCTURE OF LOOPS:

The model with the coronal plasma in magneto static
configuration (V=0) 1s the simplest case for a theoretical
discussion. This implies finding a solution for the equation
~-Up+p Ve +JIxB=0 ‘ (3.20)
allowing a small Lorentz force to be balanced by equally small
pressure and gravitatlonal forces. Along with thls, the following
equations
V.B = 0, VxB = uj (3.21)
and, an energy equation are required.

In the steady state /8t = 0 and pressure balance condition is

V(-p+pd)+ 3jxB=0
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When the density 1ls treated as an independent scalar field, it is
possible to find fully three dimensional solutions that have the
geometry of the system of loops(Low,1982) or a large scale coronal
structures (Bogdan & Low,1986). According to Priest(1978), the
separate requirements of force and enérgy balancé are incompatible,
and that a system of loops cannot be in ﬁagneto static equilibrium.
Staedy state struéture can aiso be discussed wlthoﬁt assuming the

flows V to be = 0. This will be discussed in Chapter 5.

3.5 LOOP MODELING: .

The historical development of modeling outer stellar
atmosphere has followed two princlpal directions:emission measure
(or empirical) analysis and energy-balance modeling. The former
line-of-attack focuses directly upon the observations to generate
the expected differentlial emission measure Q(T)= Ni(dT/ds)_1 along
the instrument 1line of sight in the atmosphere, and uses this
result to deduce the parameters characterising the atmosphere,as
well as the required mechanical heating to malntaln energetié
equilibrium(Withbroe, 1975; the revliew by Gabriel,1976a;and the
detalled analysis in Crailg & Brown ,1976). The second approach is

based upon the solution of a local energy balance equatlion, together
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with relations specifying momentum and mass balance and an equation
of state: these together with boundary conditions that are used as
adjustable parameters and integration over the model
atmosphere, yield expected radiative fluxes that are compared with
observations,with parameters varied as to obtain a "best fit"(cf
Kopp & Orrall, 1976; and Rosenner and Valana, 1977 for application to
coronal hole modeling). The two analysis techniques generally
adopted are 1)Emission measure analysis and Z)Energy' balances
analysis which are considered to be alternative means of modeling
the solar atmosphere(cf Gabriel,1976a; Orall & Kopp, 1976 and
‘Withbroe & Noyes,1977).Due to the strong coronal structuring
provided by high-spatlal-resolution observatlions,the two methods
mentioned above become complementary,thus providing answers to
somewhat different questions about the atmosphere. These modeling
techniques have been most fully developed in the context of

homogeneous atmospheres, particularly for the quiet sun.

By' regarding coronal loops as plasma volumes relatively
isolated by the magnetic field that defines them,each individual
loop structur.é can be characterised by two coordinates specifying
displacement along the length of the loop(s) and radial
displacement from the loop axis(r). In general, the equatlions of

motion of the plasma 1is solved within the loop subject to the

boundary conditions at the foot points and at the "surface" of the
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loop,with the additional constraints upon the internal transport
process imposed by the magnetic field. A complete treatment then
includes the effects of plasma upon the coronal magnetic
field, providing a full MHD description of the coronal structures.
Current modeling has attempted to lay the groundwork by
investigating separately longitudinal and radial temperature and
density structure of coronal 1loops. Since the magnetic field
defines the longitudinal loop coordinate, these studies have further
segregated themselves into;longitudinal analysis wusing energy
balance arguments,while radial studies emphasises the emission

measure analysis.

3.6 RADIAL STRUCTURE OF THE LOOPS:

Extensive studies of the radlal structure of coronal loops
by (Foukal, 1975, 1976, 1978) using EUV line intensity data from the
HCOS-055 spectroheliometer and emission measure analysis techniques
have reveaied that coronal loops undergoing dynamic change (such as
post [larc loops) arc characlerlsed by a non statlonary,"inverted"
temperature structure, in which the core is cool relative to a
substantially hotter surrounding sheath. It has not been possible to

correlate these EUV observations with simultaneous soft X-ray data;
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for example the event studied by Levine and Withbroe in which case
a small soft X-ray loop was observed to flare ~ 10* sec before the
inltiatlion of EUV observalions at Lhe locallon of Lhe EUV evént,but
no temporaly overlapping data was obtained. A question that
remains unanswered 1is whether such complex loop structures are a
norm, or they reflect the consequences of occasional,significant
departures from qulescent conaitlons. Foukal(1978) has studied
long lived (= lossec) cool loops at least one of whose foot points
emerges from sunspots,and has shown thelr observed size, low
temperature and life time taken together, to be inconsistent with
simple hydrostatic equilibrium. Therefore he has suggested that
these structures are in dynamic statlonary équilibrium y,with
observed downward mass flow along the loop axis(and field) balanced
by mass inflow across the field,whose energy balance is largely

controlled by the mass flow rate.

3.7 LONGITUDINAL STRUCTURE OF LOOPS:

Longitudinal loop structure due to the anlisotropies
introduced by the coronal magnetic field emphaslizes energy balance
arguments. Landinl & Monslgnorl—Fossl(1975) have refined the work

of Jordan(1975) and have glven a detalled description of the
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temperature and density structure of the individual coronal X-ray
loop. Using the temperature as the independent variable,it has
been possible to derive an analytical description of the variation
of temperature and density within the loop,and a sequence of loop
models by varying the base pressure and maximum coronal
temperature, based on the hypothesis of acoustic heating. Such work
based on the emission measure analysis techniques has led to the
essential result that X-ray structures could be identified in a
quantitative manner with regions of enhanced temperature and
density and hence enhanced energy deposition. However, there is no
detalls rcgarding the relation of the slze of the loop structure to

its other attributes in these works.

The technique of Landini and Monsignori-Fossi has been
extended by Rosner,Tucker and Viana(1978) to show that stable
quiescent X-ray loop structures must have their temperature maximum
at their apex,resulting in scaling laws for the 1loop temperaturg

and heating rate.

3.8 ONE DIMENSIONAL MODELS:

One dimensional models of coronal flux loops account only
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for mass,momentum and energy balance along the field lines. Also
the geometry of the field line 1s assumed, so that the dynamic and

thermal properties of the loop can be analysed without reference to

the field.

Steady state models have been classified into two classes,
one which is trhly static 1l.e., without any gas flows, and the
other which allow a steady, time independent flow along the loop.
The observations of the emission measure from loops and ensembles
of loops are consistent with simple loop(static) models, though
there is very little constraint on the free parameters of the
model. However, the model allows insight to be gained into more

complicated structures.

The assumption that loops are static 1s invalidated by
their observed properties. The apparent life times of the loops
suggest that they are maintained for times at least comparable to
the time for a sound wave or Alfven wave to propagate along its
length. Steady flows from one foot point of a loop to the other are
inevitable if conditions of perfect symmetry on the geometry of the
magnetlic fleld are violaled. In hot‘ loops, the flows are
relatively slow and cause little change to the overall
structure. But as the maximum temperature of the loop decreases,

the flow speeds tend to increase throughout the loop and the
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asymmetry betwcen the two legs becomes much more pronouncéd. In
cool loops the emission characteristics models are more in line

with observatlions.

One dimensional loop models appear to be stable not only
to infinitesimal perturbations but also to very large finite
amplitude disturbances. However, a one dimensional analyslis allows
only necessary conditions for stability. Sufficient conditions can
be found only by examining all possible perturbations, including
those that produce transverse disturbances of the loop. For this a
MID model of the caronal loop is needed. In the one dimensional
model the thermodynamic structure and plasma motion 1in the
direction of the fleld 11nes_may ge analysed without regard to the
magnetic field. Slince loops have transverse structure as well as
longitudinal, the propertlies of the loops vary over their cross

section and from one another.

3.9 SUMMARY:

The early view,which is still regarded as the appropriate
one, conslders the exlended almosphere, and corona in partlcular, as

the simple,direct byproduct of convective "noise". Inspite of the
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differences about the nature of coronal heating mechanism, there is
a general agreement that the turbulent fluid motions at the
photospheric level as the source of energy supply. The solar corona
appears to correlate its intensity not with the level of local
phofospheric convective activity but rather with the topological
nature of the magnetic field. These circumstances raise an
interesting question as to whether the formation of corona as
opposed to the extended atmosphere as a whole is at all related to
the level of surface convective activity. The role of the magnetic

field is a further correlate to this question.
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4 THREE DIMENSIONAL STEADY STATE STRUCTURE OF
SOLAR CORONAL LOQPS

4.1 INTRODUCTION:

Solar active regions are found to be magnetically,
spatially as well as temporally complex, the complexity being
manifested through emissions at optical UV, EUV and X-ray
wavelengths. The solar corona is highly structured. The most
common geometrical form observed in the active regions looks like a
loop or an arcade of loops essentially outlining the local
magnetic field‘conflguration. These loops are believed to contain
current carrying plasma and therefore have a helical form of the
magnetic field (Levine and Altschuler, 1974;Poletto et al.,1975;
Krieger et al.,1976; Priest,1978; Hood and Priest, 1979.). The MHD
equilibria of coronal loops have been lnvestigated by Tsinganos
(1982). Inspite of the continuous pumping of magnetic and velocity
field fluctuatlons into the coronal plasma, the loops exhlblt a
fairly stable and well configured geometry. The steady state
pressure structure is the resull of varlous manlfestations of the

balance of inertial and magnetic forces. High spatial resolution
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observations of lines of C 11,C 111,0 1v,Ne vii and Mg x indicate
that in the steady state, a typical loop consists of a cool central

core with temperature increasing towards the surface which merges

with the hot corona outside.

From purely statistical treatment of the magneto-
hydrodynamics of an incompressible fluid subject to the invariance
of total energy, magnetic helicity and magnetic flux, a steady
state configuration of the magnetoplasma including turbulence has
been derived by Krishan (1982). Krishan (1983a,b) have also
discussed a steady state model of active region coronal loops using
statistical theory of Incompressible magnetohydrodynamic
turbulence described by Montgo&ery et al (1978). The method adopted
follows that of Montgomery et él (1978), wherein the steady state
i1s described by the superposition of Chandrasekhar-Kendall(C-K)
functions which are eigenfunctions of the curl operator. The force
free magnetic fields (V x B = aB) and the Beltraml flows (V x V =
oV) represent the minimum energy state of a magneto-fluid. A single
C-K function represents these configurations of the magnetic and
velocity fields. The magneto-fluid in the coronal loop is believed

to be in an approximate state of the force free fields with

departures from

small

the current free flelds of the photosphieric

fluid. Though a single C-K function represents a force free state,

superposition of these functions 1is not force free. By
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representing the fields as the superposition of the C-K functions,
we can maneuver these departures in a systematic and quantitative
manner. Thus, in general the steady state may have small departures
from a force free state and it 1is possible to account for the
discrepancies in the observed.and the model force free state by the
addition of more than one such states. This approach differs from
the usual MHD stability theory in the sense that it does not
involve small perturbation expansion and therefore 1is fully
nonlinear. The main features of the theer consists of using the
MHD equations for an incompressible fluid. The magnetic and
velocity flelds are expanded in terms of C-K functions. The
completeness of these functions has been proved by Yoshida and
Giga(1990). The pressure profile 9f the plasma is obtained from a
poisson equation for the mechanical pressure as a function of

velocity and magnetic fields.

Further, following Montgomery et al (1978), the toroidal and
poloidal magnetic fluxes are introduced as additional invariants.
This results in sever;l states being accessible for a fixed value
of the ratio of toroidal and poloidal fluxes and for a fixed value
of the axial and azimuthal mode numbers (n,m) respectively. The
lowest mode sta{e (m=n=0) has accounted for the radial temperature
profile of a cool core with a hot sheath loop. This has Dbeen

extended to the study of the statistical distribution of the
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velocity and magnetic fields in the state m=n=0 by Krishan
(1985). The results of this method sets the trend for studying the
nature of magnetic field and velocity field fluctuations, their
interrelationship, their correlations and the temporal behavior in
the solar coronal loops. The superposition of the two C-K
functions brings in the three dimensional spatial varlatlons
(r,0,z) in the plasma parameters and the state does not
correspond to a force free state. The study has been restricted to
two dimensional variations (r,z) of the plasma temperature as
observational results on the azimuthal variations are not.
available. The results indicate that the radial variation of
pressure corresponding to the larger spatial widths of the hotter
lines does not exist all along the length of the loop. A twisted
configuration of plasma 1is obtained. The pressure or temperature
is maximum at the top of the loop but only near the axis. On
smaller spatial scales,the radial pressure variation exhlbits

oscillations.

It is evident from the above discussion that there has
been no attempt made so far to study the three dimensional spatial
profile of the coronal 1loops. The constraints have been due to
difficulties in observation and whatever has been known is only in
a two dimensional plane. Hence, the present study,is an extension

of the earlier work of Krishan (1987).. The earlier work has been
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extended to include the three dimensional variations of pressure
in coronal loops by representing the velocity and magnetic fields
as the superposition of three C-K functlons. This brings in the
three dimensional spatial variation (r.e.é) in the plasma pressure.
Though the individual C-K functions represent a force free state
the super position does not. The three mode representation,
besides exhibiting a chaotic behavior admits temporal behévior of
the fields in 1its most basic form. A truncated three  mode
configuration has been explored by Chen,Shan and Montgomery (1990)
and their results qualitatively agree with the predictions as well
as with computations obtained using the numerical code (Dahlburg et

al 1986, 1987,1988 and Theobald et al 1989.).

4.2 DERIVATION OF THE PRESSURE PROFILE :

The coronal loop plasma 1s represented by a cylindrical
column of length ‘L’ and radius ‘R’. The equations describing an
incompressible ideal MHD turbulent plasma in terms of fluid

velocity V and the magnetic field B are

VP _ (VxB)xB a v

- (V.V)V - — (4.1)
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Vx(V x B) - L 0

at (4.2)

where P 1s the mechanical pressure and p is the mass density. The

force due to gravity has been neglected. Equations (4.1) and

(4.2) preserve In time the constraints

vV.Vv=20 and (4.3)

V.B=0 (4.4)

Using the identity
(V.U) V= (VxV) x V+ 172 W,

equation (4.1) reduces to

- v = av
V[ P/p + a/2V] = [-(-Y’-‘%’-’f - (VxV )xV] - 3t (4.5)

In the steady state dv/ét = 0 and for a force free
representation of the magnetic field and for a Beltrami flow 1l.e.,

for VxB = «B and UxV = aV, we find,
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VIP/p+1/2V3] =0 (4.6)

Equation (4.6) also holds good where there 1s equipartition of
energy between velocity and magnetic flelds.1ls 1i.e.,when |V| =

|B|/p.

In cylindrical geometry, with a rigid perfectly
conducting.' impenetrable wall at a radius r =R, the boundary
conditlons on B and V at r= R are Vr(r =R)=0 and Br(r= R)=0. A
periodic boundary condition with period L in the z direction is
assumed. Identifying L with the major circumference of a torus
enables to include the case of a toroldal boundary with curvature
neglected.. The z or the axial direction 1s referred to as the

“toroldal" direction and the 6 dlrection as the "poloidal"

direction.

Following the procedure adopted by Montgomery et al(1978),
the velocity fleld V and magnetic fleldlB in the loop plasma are
represented Dby the superposition of Chandrasekhar-Kendall
functions. They are eigenfunctions of the curl operator. They are

the solutions™ of the elgenvalue problem ¥V x a = Aa, where A

is real. Indlvidually they are force free fields although the sum

of two or more of them is not, in general, force free. The
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complete dynamics can be described by a set of infinite coupled
nonlinear ordinary differential equations which are of first order
in time for the expansion coeffliclents of veloqity and lmagnetié
flelds and it is a formidable task to find solutions to these
equations. Hence, the flelds are represented by the superposition
of the three lowest order C-K functlions. Another justification for
doing so 1s that these functions rei)resent the largest spatial

scales and therefore may be the most suitable states for comparison

with observed phenomena.

The elgen functions of the curl operator can be written as:

-

a(n.m,q) = vw(n,m,q) X ez *Vx [V X ( ezw(n.n.é))] . A(n,m,q)

(4.7)
where np(n o Q) is a solution of the scalar wave equation
2 2 -
(v= + A(n,m,q)m’(n,n.q) 0 (4..8)
w(n'n.q) = J_(a'n.qr) exp(ime + iknz) ) (4.8a)
where A =t (45 +k% )2 (4.8b)
(n,m, q) nmq n
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Here,kn = 2nn/L, where n = 0,+1.2,....
The integer m takes on the values m = 0, %1, %2,

1nnq >0 and is determfned as that solutlon which makes equation

(4.7) satisfy the boundary conditions at r=R. J-(rnnqr) is the

Bessel function. -

Written in detaill equation (4.7) is

- - ~ im n 3
a(n.m.q) B er[ r * or w(n,m.q)
(n,m,q) -
o8 o™ 14
(] ar rA (n,m,q)
(n,m,q) “
2 2
- A -
+ e [ mma) n ], (4.9)
z A (n,m,q) .
(n,m,q) * “

For the inequality m2+n2>0. the condition Rr= 0 at r= R, requires

Rky J' (¥ R) +mA Jyr R)=0 (4.10)
nomgq ®» nmq ( nmq

n,m,q) m

The eigenvalues for m=n=0 are not determined by the

radial boundary condition, since Rr=0 for n=m=0. A(oc>q) is
vy

determined using the fact that for each individual(0,0,q) mode the

ratio of the toroidal magnetic flux wt to the poloidal flux ¢p is
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W, R |Acw,0,q) J;(wooqn)
v -—L—. A0,0,9) J (¥ R (4.11)
'I‘p 20, q 0 7°°q )

Where wt and wp are defined as follows:

Using the vector potential A,for which B=UxA, and it obeys 8A/8t=
Vx(7xA)+V¢. Writing the z and 6 components at r=R and integrating

over one period(As there 1is no contribution from the <V (VxA

term). wt and wp have the dimensions of magnetlic fluxes.
L 13
y = ‘[ dz f de Az = Constant, r =R,

R 2n .
Yy B e dz j‘ de A, = Constant, r =R
t L 0 ]

€
it

g = 7 2T ;€(0,0,4)700qc(0.0,q)'10(700qr)

<
H

J« r)
P 2nL gs(o.o,q))‘(o.o,q)c(o,o.q) 0 ¥o0q

Since both n[:t and \bp are constants of the motion, it is

natural to determine A(0,0,9) from equation (4.11) as:
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JO("OOqR) - L ;\(0,0,q) wt.

TG R - (4 12)
JO 100qR R IA(opopq)l wp
for all q =1,2,3,...... q=1 is the eigenmode corresponding to the

lowest IA(OJLO)I The choice of equation (4.12) guarantees the
orthogonality of all pairs of modes. For n2+m2>0. the modes occur
in pairs, so that if A is an eigen value -A 1is also one,

corresponding to the opposite sign of m or n.

Is the normalized a such that
(n,m,q) (n,m,q)

3

Jd™x A (4.13)

. = )
(n,m,q) A(n',m’q’) ann’(smm’ qq’

O
]
(=]
[}
O
n

1 if,n=n",m=mn" and q = q' and =0, if

n,m,q are not equal to n’,m’ and q' respectively.

The normalizing constant that relates A is given

to a
(n,m,q) (n,m,q)

by A =C

4.14
(n,m,q) (n,m,q) a(n,m,q) ( )

Using equation (4.13) in (4.14)

73



IC:m a .a d%-= 1 (4.15)

'In cylindrical coordinates,

¢ =1/fa .a rdrde dz (4.16)

nm nm nm

The limits of integration are:r = 0 toR, 6 =0 to 2mr and z =0 to L
Eigen values : of Anmfor n = m not equal to zero are obtained
from equation (4.10). For the mode n =1, m = 1, equation (4.10)

yields:

2nR , ' -
T 711J1(711R) + Aqu(arnR) =0, or

Ak (Aum J1(711R)
(711R) J1(711R) =T Zn J1(711R) == 2n(R/L)
2172
_ 2,2 2nR
A“R = # [711R +[ 3 ] ] (4.17)

where the ratio of the radlus R to the length L of the cylindrical

loop has been taken to be : R/L = 0.1
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The value of w“R satisfying equation (4.17) is ~ 3.23

Similarly for the mode n = 1, m = 0, from equation (4.10),

2nR , A
T 710'10(710R) =0, or
2R =0=-J(zR) (4.18)

The value of rmR satisfying the equation (4.18) is 3.85
For the mode n = 0 m = 1, from equation (4.10),
AOI J1(701R) =0 or Jl(a'mR) =0 (4.19)

The value of 7°1R satisfying equation (4.19) 1is 3.85

The corresponding values of A's are

3.29, A R =3.85 and A R= 3.85 (4.20)
11 = 10 = o1 _-—

The values of normalisatlon constants are found to be:
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C11 2.922 L
001 1.0198238 L (4.21)
0.1278097 L

10

The magnetic field B and velocity field V can be expanded in terms

C-K functlions as:

B = E E(n.m,q) A(n,m,q) A(n,m,q) (4.22)
nmq

v= Z (n,m,q) A(n,m,q) A(n,m,q) (4.23)
nmq

where 1's and §'s are the expansion coefficients and are functions

of time.

Since, B and V are real, by symmetry condition the expansion

coeffliclents £ and n must be such that
(n,m,q) (n,m,q) :

so that 3 n are real

= and
(n,m, q) E('n y =M, =q) (0,0,q) (0,0,q)

for all values of q. In the truncated triple mode representation:

<
I

An (L)A +An (t)A + A n (t)A (4.24)
aa a b b b cc c

-]
L]

ADEQ(L)AG+ Ab€b(t)Ab + AcEc(t)Ac (4.25)

7's and £’s are in general complex.
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The functlons a satlisfy V x a = Amanm.
7m have been determined from the boundary conditions for a
perfectly conducting and rigid boundary since the observations do
show very well defined loop structures aligned with the magnetic
field across which there is little or no transport. Thus the

radial component of the velocity and the magnetic field vanish at

the surface r = R.
In this chapter the study is confined to the steady state

solution to the pressure . For the steady state 8/t [w,€] =0,

and n = £&. From equation (4.6),

V(P/p + 1/2V2) =0, which implies

P/p + 172v® = constant (4.26)

At the origin where r = 0 and z = 0, let the pressure be PO. Then,
.the constant of integration comes out as = Po/p +1/2Vo,2 where V0

is the veloclity at the origln. Hence, equation 4.6 reduces to

- . Ve - _%_ v (4.27)
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In this confliguration the total energy E of the loop

plasma 1is given by

E=EA (n+ &) (4.28)
i=a,b,c

Though there is some estimate of the total energy of a
typical plasma loop, there is no obvious way of fixing the relative
magnitudes of the three modes. Two considerations which are
generally wused to fix the relative strengths of the three modes
whenever such three mode interactions are involved are :
(1)Pump approximation,in which one of the three modes is consldered
as the strongest as compared to the other twoJ
(2) The mode strength is assumed to vary in proportion to their
spatial scales. Equation (4.27) will be discussed in the light of

these two considerations.

4.3 PUMP APPROXIMATION:

The spatial varlation of pressure as already mentioned
earlier is discussed for a cylindrical column of plasma for which

the R/L ratio is assumed to be 0.1, and the ratio of the toroidal

78



to poloidal flux wt/wp as 0.1. Two triads (a!bici) and (azbzcz)
are chosen such that they represent the largest possible spatial
scales, as well as sallsfy the conditlon a = b + c.(as will
be evident in time dependent case discussed in Chapter 5). The two

triads chosen are,

o
|

= (1,1), b = (1,0) and ¢, = (0,1)

Y
It

(O’O)n b2 (1,1) and Cz = (-1,"1)

The corresponding . values of %'s and A’s are obtalned from

equation (4.10) as explained earlier. The values are

YyR=3.23, yR=3.85, y R =3.85
a b C
AR=3.29, AR=3.9, AR=23.85
a b c
for the triads al,bi,c1 and,
7R =1.44 , yR=3.23, vy R=3.23
a b c
AR=1.44, AR=3.29, AR =3.29
a b c

for the triads az, bz'cz.
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CASE 1 PRESSURE STRUCTURE P1 FOR THE TRIAD a1 = (1,1), b1 = (1,0),

and c1 = (0,1):

4.3.1 RADIAL VARIATION:

The mode ‘a’ 1is assumed to be the dominant or the
strongest mode and it is called the pump. Since the conservation
condition requires a = b+c the pump ls assumed to share its energy

with the other two modes. Therefore, let
A2 %> A% gl and A% 92> A% ¢° (4.29)
a a b b a a c ¢

For the triads (ax'b1’c1) i.e. for modes (1,1),(1,0) and (0,1)

_nZ A2 nz AZ

LI al - 0.8435 and b ¢ 2 = 0.8659

2 Az . nz 2

nal b1l al cl

We chovse |9 | = 107 and ln.| =|n. | = 8x 10° , so that the
al bl cl

pump approximation 1is valid. The expression on the RHS of
equatlon(4.27) has been averaged over a full cycle of 6.Flgure 4.1

is a plot of pressure (Pl-Po) as a function of LA for different
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Fig.4.1 Radlial Variation of the pressure P1 for
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81



values of axlal dlstance z'[z'=(z/L)x10]. Po iIs the value of
pressure at the origin.The plot indicates that the pressure or
temperature at any helght Increases along the radius towards the
surface. The radial variation of pressure 1s the maximum‘at the
foot points of the loop and‘it is minimum at the apex. This is in
conformity with the result of Levine and Withbroe(1977), who have

éstabllshed that the coronal loops undergoing dynamic changes

are characterized by a temperature structure in which there is a

cool core relative to the substantially hot surrounding sheath.

4.3.2: AXIAL VARIATION OF PRESSURE:

Figure 4.2 is a plot of pressure (P1—Po) against the axial
distance z' for varlous values of (yar). The plot indicates that
the axial variation,of the pressure 1is maximum at the axis and
minimum at the surface. The maximum value of the pressure is
attained near the apex for all values of (war).This is in agreement

with the results of Rosner et al.(1978).

4.3.3 RADIAL VARIATION OF PRESSURE AT DIFFERENT AZIMUTHAL ANGLES:

Figure 4.3 is the plot of radial variation of pressure for
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different azimuthal angles 0 = 0,n/4,n/2,and n when the pressure is
averaged over z. The pressure is found to increase uniformly for
all values of 7ars 2.0. The dependence of the pressure on the

azimuthal angle is significant for ,r > 2.

4.3.4 AZIMUTHAL VARIATION OF PRESSURE AT DIFFERENT RADIAL DISTANCES:

Figure 4.4 1is a plot of the azimuthal variation of the
pressure for different values of ¥ r > 2.0.The plot indicates that
the pressure exhibits an oscillatory behavior which is predominant

near the surface.

4..3.5 CONTOUR AND DENSITY PLOT:

Figure 4.5 is a contour plot of pressure as a function of
the radial distance yar and azimuthal distance z’ when the pressure

is averaged over 6..

Figure 4.6a and 4.6b are the density plots of the
pressure as a function of radial distance ¥T and azimuthal
dlstance z'when 0 ls averaged over a full cycle. In the plot the

darker shade squares correspond ‘to minimum pressure regions, while
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the 1lighter shade recglons correspond to maximum pressure.
Figure 4.6a corresponds to the case of nc1>nb1.1t is further
observed that the shades become lighter on nearing the apex

indicating that the region of maximum pressure exists there.

Figure 4.6b ls the denslity plot of the pressure as a

function of 7ar and z'when nbl > 7 As compared with the

c1’
previous case of L > nb1the region of maximum pressure is found
to have moved up. The density plot indicates that the region of

maximum pressure need not necessarily be at the apex.

CASE 2 PRESSURE STRUCTURE P? FOR THE TRIADS a, = (0,0).b2 = (1,1),

and c, = (-1,-1):

Consider the pair of triads a, = (0,0), b2 = (1,1),

c2 = (-1,-1),which represent the largest spatial scale and satisfy

the condition a = b + ¢ . The values | | = 2x107, [n | = 8x10° =
a2 b2

In obtained from the inequality (4.29) satisfy the condition

czl

for pump approximatlion
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4.4.1 RADIAL VARIATION:

Figure 4.7a is the plot of radial variation of pressure P2
for 6 = n/4 at different axial positions. Unlike the case of Pl
(Figure 4.1)where the maximum pressure was noticed at the foot
points, 1n this case the maximum pressure as well as the maximum

variation in pressure both are at z=L/4.

Figure 4.7b is the plot of radial variation of pressure P2
for 8 = 3n/4and for different axial distances z= 0, L/4, L/2 and L.
The maximum pressure as well as the maximum variation in pressure
is found to be at the foot points, in sharp contrast to the case for

@ = n/4.where it was found to be at one fourth the height of the

cylinder i.e.at z L/4

4.4.2 AXIAL VARIATION:

Figure 4.8 is a plot of the axial variation of pressure
P2 for the azimuthal angle 6=n/4 and for different radial distances
7ar = 0, 0.72, and 1.44 . The pressure shows an osclllatory
behavior at the axis of the loop more predominantly than near the

surface.
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Fig.4.7a. Radlial variation of pressure P2 for 6=n/4
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4.4.3 AZIMUTHAL VARIATION:

Flgure 4.9 is the azimuthal varlation of the pressure Pa
at the apex of the loop for different radial distances from the

axis. The behavior of pressure is oscillatory and the maximum value

1s attained at the boundary.

4.5 MODE STRENGTHS VARYING IN PROPORTION TO THEIR SPATIAL SCALES:

CASE 1: PRESSURE STRUCTURE PIFOR THE TRIADS a = (1,1), b1= (1,0)

and c = (0,1):

This 1s the second of the physical considerations in which
the mode strengths are assumed to vary in proportion to their
spatial scales. It is assumed that the mode with the largest
spatial scale may be the strongest. qu the set of triads chosen a
=(1,1),b =(1,0) the spatial scale in the z' direction is same and
is smaller than that of the mode ¢ = (O.i). In this case ‘a’ and
‘D’ are assumed to be of equal strength and less than the strength

of ‘c’. So that
Aznz - Aznz and lznz < Aznz
aa bb a a c c
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Choose |na| = 10" , |nb| = 8.4 x 10° and |nc| =1.6 x 10,

so that the conditions prescribed in equation (4.29) are satisfied.

4.5.1 RADIAL VARIATION:

Figure 4.10 is the radial variation of pressure for
different axial positions. The pressure and hence the temperature
at any height increases along the radius towards the surface. The
radial variation of pressure is maximum at the foot points of the
loop and is minimum at the apex, for z=0 and L. This result 1is
similar to the pump approximation case for the sanme
triads, (Ref.Figure4.1). However, for other values of 2’,the
préssure tends to decrease initlally and after a certain radial
distance, increases monotonically. This is contrary to the
pressure profile indicated in Figure4.1, where there 1is a

monotonic increase of pressure for all values of 2°.

4.5.2 AXIAL AND AZIMUTHAL VARIATION:

Figure 4.11 is a plot of the axial variation of pressure.

with axlal distances at different radial positions,and 4.12 is the
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radial variation of pressure for different azimuthal angles.
The results in both the cases are more or less comparable to that

obtalned in the pump approximatlion case (Figure 4.2 and 4.3).

CASE 2: PRESSURE STRUCTURE PzFOR THE TRIADS a, = (0,0), b2= (1,1)

and c,= (-1,-1):

In this case the mode a = (0,0) corresponds to the largest
spatial scale and therefore If thls is assumed to be stronger than
the other two modes. This leads to the conditlons A2n: > A’n.
and Ain: > Azni which are ldentlcal to the pump approximatlon
case for the triads (a,b,c). The pressure profile is therefore

similar to the one in Figures 4.7,4.8 and 4.9.

4.6 SUMMARY:

The represenlation of veloclty and magnetlc flelds by a
three mode Chandrasekhar-Kendall functions, brings out the three
dimenslonal features of Lhe pressure proflle. The cholce of the

triads representing the variations of velocity and magnetic flelds
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on the largest spatlal scales permitted by the system, provides a
fairly realistic description of the 1loop plasma. Though the
pressure structure is a slrong function of the relative amplltudes
of the modes, the trends, like an increase of pressure towards the
surface and the existence of maximum somewhere along the length of
the loop emerge as the general features. The superposition of C-XK
functions has produced results which are in general agreement with
the observed cool core and hot sheath features of the coronal
loops. However the discussion In this chapter were purely
restricted to the spatial variation of pressure. An attempt at the

study of temporal evolutlon has been made and the same is discussed

in the next chapter.
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5 TEMPORAL EVOLUTION OF PRESSURE IN SOLAR CORONAL LOQPS

5.1 INTRODUCTION:

As already mentioned coronal loops are dominant structures
in the higher levels of the solar atmosphere and they exhibit
stable and well configured geometry inspite of the magnetic and
velocity fleld fluctuations in plasma. Such a steady state is the
result of varlous manifestations of the balance'of inertial and
magnetic forces. The structure of the velocity and magnetic fields
plays a plivotal role in determining the heating, stablility and
evolution of the plasma in coronal loops (Athay and Klimchuk, 1987;
Priest,1982; Krishan, 1983 and 1985). In the previous chapter the
steady state structure of the pressure of the loop plasma was
delineated using Chandrasekhar-Kendall representation of the
velocity and magnetic fields. This was done under the steady state
assumption and therefore no information on the temporal behavior of

the fields and of the pressure could be derived.

In this chapter the study is extended to include time
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dependence of velocity, magnetic fleld and pressure and thereby
study their evolution. As before, the dynamics of the velocity and
magnetic filelds are studied wuslng .the MHD equations and
Chandrasekhar-Kendall representation. The complete dynamics 1is
described by a set of infinite coupled and nonlinear ordinary
differential equations which are of the first order in time for the
expansion coeffliclents of the velocity and magnetic fleld. Since
‘the evolution equatlons are coupled and nonlinear ,the dependence
of thelr solution on the initial condlitlons 1is expected to reveal
chaotic behavior. Towards this end, an investigation is done on
the existence of chaos in the evolutlon of pressure 1ln coronal
loops by studying the power spectrum of the data generated by the
solution of the MID equatlons and by evaluating the 1nvarlént
dimension especially the secoﬁd order correlation dimension of the

attractor D2 of the systen.

The representation of the fields by the superposition of
the three lowest order C-K functions reduces the system to a set of.
six equations, three for velocity and three for magnetic field.
Analyticﬁl solutions can be arrived at in two simplified cases:
(1)when the syslem 1is disturbed linearly from its state of
equilibrium, and,

(2) when one of the three modes has an amplitude much larger than

the other two, referred to as the pump approximation.
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In the first case,it is found that the disturbed fields undergo
"sinusoidal oscillations with a period which is a function of thé
equlllbrium amplitludes of Lhe three modes. Thls may be one of the
ways of explaining the quasi-periodic oscillations observed in the
X-ray, microwave and EUV emissions from the coronal loops

(Aschwanden, 1987; Svestka, 1994 and references therein).

In the second case, for special values of the initial
amplitudes, the system exhibits sinusoidal oscillations. However
under general initial conditions, the velocity and magnetic fields
go through perliods of growth, reversal,decay and saturation in an

apparently random manner.

In the most general case, with arbitrary initial
conditions, the set of six equationé can be solved numerically.
The velocity and magnetic fields show a rather complex temporal
structure which can be interpreted on the baslis of chaotic
phenomena. The evidence of chaos 1s established by evaluating the
invariant-dimension, especlally the second order correlation
dimension of the attractor D2 of the system. A fractal value forD2
indlcates the exlstence of determinlistic chaos. In evaluating the
invariant dimension the'following informations are obtained:

(a)Is there an attractor and if there exists one, is it regular or

strange?
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'(b)Is there only a single attractor or are there more than one?
(c)What is the embedding dimension so that in describing non
linear process characterised by the set of given equations, what
should be the dimensions of the phase .space to describe the
dynamics of the system.

The algorithm proposed by Grassberger and Proccacia (1983) has been

adopted 1n this chapter.

5.2. DERIVATION OF THE PRESSURE PROFILE:

As mentloned in the previous chapter the coronal loop
plasma is represented by a cylindrical column of length ‘L’ and
radlus ‘R'. The equatlons describing én incompressible ideal MHD
turbulent plasma in terms of fluid velocity V and the magnetic
field B are:(This section upto equation 5.21 has already been
discussed in chapter 4. However,for easy reference the same 1is

being repeated here).

<l
s+
Qi
x
w
>
w

1
Q
<

~~
=
<l
<
I

(5.1)

©
©
Q@
o+

106



~ 8B _
x(Vx B) - 5 = O (5.2)

where P is the mechanical pressure and p is the mass density. The
force due to gravity has been neglected. Equations (5.1) and

(5.2) preserve in time the constraints

V.VvVv=0 (5.3)

V.B=0 and (5.4)
P = nKT (5.5)

n is the number density of particles , K is the Boltzmann's
constant and T is the temperature. The equations (5.1) to (5.5)
form closed set of equations in B,V,p and T.

Using the identity

(V.U) V=(V V) xV+ 172 W2

equation (5.1) reduces to
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(VxB)xB

¥ (P/p + (1/2)V?] = [ 5 ov

- (Exv)xv] - (5.6)

In the steady state 48V/dt = 0 and for a force free representation

of the magnetic fleld and a Beltrami flow,l.e.,for VxB=aB and

VxV=aV , we find
VI[P +1/2V3] =0 - (5.7)

Equation (5.7) also holds good where there 1is an

equipartition of energy between velocity and magnetic fields,li.e.,:

vl = [Bl/e.

In cylindrical geometry, with a rigid perfectly
conducting, impenetrable wall at a radius r< = R, the boundary
conditions on B and V at r = R are Vr(r=R)=0 and Br(r=R)=0. A
periodic boundary condition with a period L iIn the z direction is
assumed. Identifying L with the major circumference of a torus
enables to include the case of a toroidal boundary with the
curvature neglectéd. The z or the axlal direction will be referred
as the "toroidal" direction and the 6 direction as the "poloidal"

direction.
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Followlng the procedure adopted by Montgomery et al(1978),
the velocity field V and magnetic field B in the loop plasma are
represented by the . superposition of Chandrasekhar-Kendall
functions. They are.eigenfunctions of the curl operator. They are
the solutions . of the eigenvalue problem V x a = Aad, where A
is real Individually they are force free fields although the sum
of two or more of them is not,in general,force free. The complete
dynamics can be described by a set of infinite coupled nonlinear
ordinary differential equations which are of first order in time
for the expansion coefflicients of velocity and magnetic fields and
it is a formlidable task to find solutions to these equations.
Hénce. the filelds are represented by the superposition of the three
lowest order C-K functions. Another Jjustification for doing so is

that these functions represent the largest spatial scales and

therefore may be the most suitable states for comparison with

observed phenomena.

The eligen functions of the curl operator can be written as:

a(n-m.q) =V w(n_.m.q)x ez+ [ Vx Vxley ]] /

z (n,m,q) A(n,m,q)

(5.8)

where w(nm @ is a solution of the scalar wave equation
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2 2

(v= + A(numq)lwhnm,q) =0 (5.9)
w(n’mq) = Jm(wmqr) exp(ime + iknz) (5.9a)
Where
=+ (72 +k2 )1/2 (5.9b)
(n,m, q) nmq n
I—Ier'e,kn = 2nn/L, where n = 0,%1.%2,...,

The integer m takes on the values m = 0,1, 12,

anq > 0 and is determined as that solution which makes equation

(5.8) satlsfy the boundary conditions at r=R. Jm(a'nmqr) is the

Bessel function. written in detail equation (5.8) is:

, im ik \
a - e + n 8 "
(n,m, q) r{r )\(n Q) ar ) (n,m,q)
. ; V_ F) ) mkn \ v’
2] or ra ) " (nym,q)
\ (n,m,q) ,
2
~ ? )y kn )
+ e n.,m49q V] (5.10)
z| A ] "(nym,q)
(n,m,q)

For the lnequallty m2+n2>0, the condlition Rr= O at r= R, requires
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Rk ¥ J" (¥ R) + mA J(y R)=0 (5.11)
nmq m nmq

n (n,m,q) m nmq

The elgenvalues for m = n

0 are not determined by the

radial boundary condition, since R = 0 for n = m = 0. A is
r (0,0,q)

determined using the fact that for each individual (0,0,q) mode the

ratio of the toroidal magnetic flux wt to the poloidal flux wp is

ﬂ o - — 0,00 ! %0 oo (5.12)
wp L A(o,o,q) J (arooqR)
Since both wt and wp are constants of the motion, it ié
natural to determine A(o 0.q) from the equation (5.12) as :
JOI'JOOqu R M(O.O,q)I v)p
for all q = 1,2,3,...... .g=1 is the eigenmode corresponding to

the lowest |7\ The choice of equation (5.13) guarantees the

(0,0,0)l ‘
orthogonality of all pairs of modes For n2+m2>0, the modes occur
In palrs, so that iIf A is an elgen value -A 1s also one,

corresponding to the opposite sign of m or n.

is the normalized a such that,
(n,m,q) (n,m, q) .
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(5.14)

A ' 1, =
(n,m,q) (n,m,q ) nn® mm’ qq’

n ,m=nmn and q = q', and = 0 if

(<2}
]
[-2]
i
O
1]
-
[
H
=
il

n,m and q are not equal to n’,m’ and q’'respectively.

The normalizing constant that relates A to a
(n,m.q) (nln.q)

.
is given by

Aoma = Coma 2nma (5.15)
Using equation (5.14) in (5.15)
J&2 a .a dx =1 (5.16)

nm nm nm
In cylindrical coordinates

2 L]
CC =1/ a .a rdr do dz (5.17)

nm nm nm

The limits of integration are :r = 0 to R, 6 = 0 to 2n and

z=0 tolL.

The values of 7“R, 710R and 101R are 3.228998 ,3.85
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and 3.85. respectively.

And, that of A“R, AIOR and AOIR are 3.28956 3.85 and

3.85 respectively (Refer Chapter 4).

Using these values of A's and' y's the normalisation

constants are found to be :

C11 = 2.922 L

01 1.0198238 L
= 0.1278097 L .

10

The magnetic field B and the velocity field V can be expanded in

terms of the C-K function as:

B = E E(n:m,Q) A(n,m,q) A(n,m'q) (5.18)
nmq
= ‘1
V=l (n,m,q) A(n.m.q) A(n,m,q) (5 9)‘

nmq

where n's and £’s are the cxpanslon coefficlents and are functlions

of time. Since B and V are real, by symmetry condition the

expansion coefficlents E(nmq) and n(nmq) must be such that
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= so tha and
(n,m, q) E(-n.-m,-q) t €(o,o'q) n(o’o'q) are real

for all values of q. In the truncated triple mode system

<
"

Aana(t)Aa + Abnb(t)Ab + Acnc(t)Ac (5.20)

Aaia(t)Aa+ AbEb(t)Ab + AcEc(t)Ac (5.21)
n's and £’ s are in general complex.

The functions a_ satisfy V x a = Anma“m.
7nm have been determined from the boundary conditions for a
perfectly conducting and rigid boundary since the observations do
show very well defined loop structures aligned with the magnetic
fleld across which there is little or no transport. Thus the
radial cémponent of the velocity and the magnetic field vanish at

the surface r = R.

The dynamics can be described by taking the inner products
of curl of equations of (5.1) and (5.2) with A:m and integrating
over the volume, The resulting six complex,coupled, non-linear

ordinary differential equations are:
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5.2.1.DERIVATION OF THE DYNAMICAL EQUATIONS:

Equation (5.1) is, g—z + (V.V)V = -VP + (UxB)xB

Taking curl on both sides and rewriting,

x g‘—{ ==Ux (V.V)V - VxVP +Vx (VxB)xB (5.1a)

av a ' '
Ux T - Vx 3t [AanaAa + AhnbAb + AcncAcl
an an an
_i2  a 2 b 2 ¢ -
= Aa -aT Aa + Ab -a-—£— Ab Ac T Ac [Using VxA M]

Dot multiply by A: and integrate over the volume. Taking

IA‘. (Ab X Ac)dar I and using UxA = A A,

av *+ 3 2
I[Vx Efl.Aa dr a at— (5.1b)

]
>

(VxB)xB = [Vx()tmE&A‘i + AbﬁbAb + AcEcAc)]x

(AagaAa ¥ AbEbAb * hcecAc)
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Dot multiplying by A‘ and integrating over the volume

'I[(VxB)xB].A:d:’r =V x [A:Acgbgc - AzAbEbﬁc]I(Abec).A: d’r

2 2 * 3
Vx [NAEE - AAEEIS IAA dr

2 2 ¢« 3
[Abhcgbgc Achbgbec] 1 ha““a‘ Aa dr

v 3 _
I[(VxB)xBl.Aud r = Auhbkc [Ab—Ac] I EbEc (5.1c)

Using, (V.V)V = -V x (VxV) + 1/2W°

Taking the curl on both the sides WUx (V.V)V = ¥V x(-V x (VxV))

Vx (Vx (UxV)) =V x (AnA +AmA +2AnA)X
aaa b'b ccec

b

(Vx AanaAa * Ab.nbAb * AcncAc)

Dot multiplying with A: and integrating over the volume,

TIVx (UxV)1.Ar =aaann I -2a) (5.1d)
a abcbec c b
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Combining equations (5.1b),(5.1¢) and (5.1d) and using,

UxVP = 0

2 a'ﬂ. '

Ah W = Aahbxtz [Ab-Ac] I €bec * A.Abhc'ﬂb'ncl(hc N Ah)
ana AbA-c
at = A -[hb-Ac] 1 [gbgc— nb.ncl

Equation (5.1e) 1is same as (5.22).

(5.23) and (5.24) can be derived.

Q@

Equation (5.2) rewriten is, ——% =

'V x (Vx B)

(5.1e)

Similarly other equations

V x (V x B)

vx [AnnaAa * Abnb“b * Ac:.ne:Ac:-] X

[AagaAa * AbebAb * AtzgcAc]

v x[[“,*b"agb“a"*b) = A AN § (A xA )]+

AAE (A XA = A2 n € (AxA)]

A2 ME (A KAL) = A A g, (A XA )]]

117



Dot multiply by A: and integrate over the wvolume. Taking

IA..(Ab X Ab)dsr = ] and since, VxA = A A
» 3 _ _ .
[lvx (Vx B)I.A dr = Abhc[ ng - ng ] Al (5.2a)

Dot multiplying the LHS by A: and integrating

6B ,» 3 _ 0 + 3 *+ 3
fﬁ.A d'r = ¢ [J‘AagaAa.Aa d'r + J‘AbEbAb.Aa d’r +

o
Q,

¢ 3
JAEA A dTT]
i
= st A8 (5.2b)

combining equations (5.2a) and (5.2b)

6¢

at Abhc[ nbsc h ncgb ]I (5.2¢)

Equation (5.2c) 1s the same as equation (5.27). Similarly other
equations (5.28) and (5.29) can be derived.The p in the dynamical

equations can be absorbed by using £ = 4p/€’.

dna Abhc

dt = A (Ac - Ab) I [nhnc - 'EbEC/P] (5.22)
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dn AA

d.nc Aahb * L »

=5 A, -A) Ilnn - €¢€/pl (5.24)
df;'a

dt” = hblc I [nbec - ncgbl (5.25)
dgb L ] * L

dt~ = Acxa I [ncga - nagc] (5.26)
dgc » L »

ar = A T InE - mE,] (5.27)

where I = IA' .(Abx Ac) a’r

a

and,the (n,m) values of the modes (a,b,c) satisfy the condition
n=n+nand m=m+m Equation (5.6) with the representation
a b c a b c

of V and B as given by equation(5.20) and (5.21) can be manipulated

to yield:
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g (P 1
V(4 +T; gx‘Ajnan AA)

i1,j=a,b,c

Elﬁj
o) AMD, - AJ][ —5 - "1"1] (A XA )
i=a,b,c
J=b,c,a
6nl
- Z 3t AA, (5.28)

The expansion coefficlents niand Ei can be solved
numerically from the dynamical equations (5.22) to (5.27) which
when substituted in equation (5.28)determines the pressure as a

function of space and time.

5.3 DYNAMICAL ASPECTS:

The temporal evolution of the pressure for a
cylindrical column of plasma of length "L" and radius "R" and for a
toroidal to poloidal magnetic flux,lllt/\bp ratio of 1/10 is discussed
in this section. As mentloned ecarller,trlads a,b,c are chosen to

represent the largest possible spatlial scales and also satisfy the
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condition a =b+c ; a = (1,1), b = (1,0), c = (0,1).
The values of 71 and Al found from the boundary conditions as
mentioned earlier are:

TR

a

3.23, 7bR = 3.8S5, 7CR

3.85, and

AR

3.85

3.29, AR =3.90, AR
b c

The total energy of a loop plasma in a given configuration (a,b,c)

is given by :

Br L s
There is no obvious way of fixing the relative magnitudes
of the three modes even though we have some estimates of the total
energy of a typical loop. There are two physical situations under
which equations (5.22) to (5.27) can be solved analytically.

(1)The linear case, and, (2)The pump approximation.

S.4.THE LINEAR CASE:

In this case the time evolution of the small deviations of
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the velocity and magnetic flelds from thelr equilibrium values.

i.e.,when,

n = M, € = €°+El.and n1<< L §1<< §° for all modes are

-supposed. From the equation of state n,= EO.

Assuming both nl(t) and El(t) to have time dependence through eSt,
we can obtain a dispersion relation whose solutlon is:
Iz

_ = 2 3 -3 12 2 Y
- S =71 |I|[A A=A |7+ AT A A )

2 2 172
- 220 a8 1] (5.29)

Thus, the system exhibits marginal stability since the
perturbed quantities have sinusoidal oscillations with a perlod

which depends upon the equlllibrium values of the flelds.

5.4.1 TEMPORAL EVOLUTION OF PRESSURE:

Figure 5.1 is a plot of the temporal evolutlion of pressure

[P(t)] at an axial point of the coronal loop when the initial
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values of veloclty and magnetic field coefficients n, and El are

very nearly equal. The values of 1. and § chosen are :
i 1

3.0

In_|

€,

1.0, |n| = 2.0, |u]

11, €| = 2.1, |€|

3.1

Figure 5.2 1s a plot of power spectrum corresponding to
Figure 5.1. The plot is a discrete spectrum which clearly indicates
that the pressure profile has a finite number of frequencles when
the magnitude of the velocity and magnetic fields are approximately
equal initially.This marginal stability exists only for the time
scales for which the linearisation 1is valld. The skylab,UV and
microwave observations do indicate that the loops are in a state of

quasi periodic pulsations. (Aschwanden 1987)

5.5 PUMP APPROXIMATION:

In the pump approximation one of the three modes is taken
io be the strongest.For example,here,since the conservation
condition requires a.= b + ¢, we can take ‘a’to be the dominant
mode and call it the pump which shares its energy with the other

two modes.The time evolution of the two weaker modes does not
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Fig.5.1. Temporal evolution of pressure P(t) at an
axial point of the coronal loop when the initial
values of the velocity and magnetic field coeffi-

cinets are very nearly equal.
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produce any significant change in thé pump (stronger) mode and
hence, we can neglect all time variations,in(na,ga) and they remain
constant. The system of six equations (5.22) to (5.27) therefore
reduces to four(Equations (5.22) and (5.25) are automatically
satisfied wunder the pump approximation since both sides of the
equations are vanishingly small). With the additional assumption

na=£a and takes the following simplified form which can be solved

analytically.

2-23 = A°i: (A =) ‘I' [n: - E: In (5.30)
g;i = A;zb (A, -A) T (n, —‘E: In_ (5.31)
;gﬁ = A I'In: - €:lna (5.32)
gféﬁ = AN, 1'[s: - 'n:]na (5.33)

Derivative of (5.30) w.r.t t keeping na as constant, we get

dn® A *
n

b _ ca _ » _c_ _¢
2= Tx AT T, [ adT T at
dt b
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Complex conjugate of equations (5.31) and (5.33) gives

dn: AaA'b *

' TE = Ac (Ab - A‘) I [T)b - Eb ]na (5.34)
-

dEc .

H— = Aahb I [Eb - 'l')b]'lla , (5.35)

The difference between equation (5.34) and (5.35), gives

dnc dE: Ai:xhb .
aT It = Ac (,?\b - Aa + Ac) I na ['ﬂb - Eb ] (5.36)

Time derivative of equation 5.30 along with equation (5.36) can be

written as

d™m

b o_ 22 (11210 12¢y - _ _
il AT 1Py =A@, - A v a) () - €) (5.37)
where, II = |1]? and n xn_ = EXE
a a a
dz"c 2,12, |2
— =X, - )0, - s e g 598
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Equations (5.37) and (5.38) can be written as

> =Pm +P, (5.39)

C » ’
— = Plnc + PZ (5.40)

2 2 2
(Aa - Ab - Ac) IIl 'nal

~

-]
1}

2 2 2
haxb (Aa - Ab - Ac) IIl l.nal Ib

o
N-
[}

2 2 2
ALA A=A ) [T |

A
— b —
€b B ha - Ac)(nb Ib)

(A -2a)
Ly = My ~ ) €r0
b
Ac
ERCEE R
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- iP_t P t Pa
M =Ae 1 +Be 1 - (5.41)
1
3 . P, |
,=Qe 1" +Re Pt ‘ﬁa' (5.42)

where A,B,Q and R are to be determined by the initial conditions.
Equations (5.41) and (5.42) show that all the four field
coefficlents Ny Mo £b and Ec exhibit growing and decaying modes.
This is to be expected since there is an infinite capacity pump
mode n., Ea in the system at the expense of which LN §b, n and Ec
are growlng.Thus,In the case of pump approximation analytical

solutions to the system can be found.

5.6. THE NONLINEAR CASE:

Equations (5.22) to (5.27) are a set of six ordinary first
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ordef differential equations which are highly nonlinear. Also the
velocity field coefficient (nl)and magnetic fleld coefficient (&i)
components are both coupled which adds to the inherent nonlinearity
of the equations of motion, characteristic of MHD equatlons.These
equations 1n principle can be considered as equivalent to one
ordinary sixth order differential equation which wili manifest all
the ngﬁllnearltles and therefore may lead to chaotic dynamics. To
'"inQestigaté‘this aspegt we first determine the power spectrum of
'ihe system. A  broad band power spectrum (Fig 5.4) is a sure
indication of the existence of chaos 1n the dynamlcs. The lrregular
and unpredictable time evolution of many non linear systems has

been referred to .as ‘Chaos’. It occurs in mechanical oscilltors

such as a pendulum or vibrating objects iln rotating or hot fluids,

in Laser cavities and in some chemical reactions. Its central

characteristlé is that the system does not repeat its past behavior
(even approximately). Inspite of the lack of regularity chaotic
dynamical systems follow deterministic equatlons such as those

determined from Newton’'s second law.

The unique character of chaotic dynamics can be understood
by imagining a system to be started twice, but from slightly
different initlal condition. This small initial difference can be
thought of as resulting from ﬁeasurement error,

For non chaotic

system thls uncertalnty leads only to an error in prediction that
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grows llinearly with time. For chaotic systems, the error grows

exponentially in time, so that the state of the system 1is

essentlally unknown after a very short time. This phenomenon,

which occurs only when the governing equations are nonlinear, is

known as sensitivity to .Initial conditions. According to Henri

Poincare,"it may happen that small differences in the initial
conditions produce very great ones in the final phenomena. A small
error in the former will produce an enormous error in the latter;
prediction becomes lmpossible. If prédlctlon becomes impossible, it
is evident that a chaotic system can resemble a stochastic system
(a system subject to random external forces). However, the source
of irregularity is quite different. For chaos, the irregularity is

part of the intrinsic dynamics of the system, not unpredictable

outside influences.

Chaotic motion 1is not a rare phenomena. Consider a
dynamical syslem described by a set of flrst order differentlal
equations. The conditions necessary for chaotic motion are that
(1) the system has at least three independent dynamical varlables;
and (2) the equations of motion contain a nonlinear term, that
couples several of the variables. The phase space is suff icient to -
allow for (a) divergence of the trajectories (b) confinement of the
motlon to a finite reglon of the phase space of the dynamical

variables, and (c) uniqueness of the trajectory. The nonlinearity
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condition 1is valid because solutions to 1linear differential
equations can always be expressed as a linear superposition of
periodic functions, once initlal transients have decayed. The
effect of a nonlinear term is often to render a periodic solution
unstable for certain parameter choices. These conditions though do

not guarantee chaos, they make.its exlstence possible.

The addition of a damping term to the equation for an

undamped pendulum resulls in an attractor at the origin where sin@

R

6. Further attractors are added at 8 = * ntr, v = 0. This is
evident by setting the phase velocity equal to zero and solving for
the stationary values of ® and w . These attractors are points
where phase velocity goes to zero. The critical point will reveal
whether these trajectories tend to go back to these critical points
if slightly perturbed, and will their stability depend upon the

direction of the perturbation?

An insight into chaotic system can be obtained by
determining the lnvarliant parameters such as correlation dimensions
D‘,Kolmogorov entropies Kl,Lyapunov exponents etc which are all
infinite in number. However it has been shown that of the infinite
number of the correlation dimensions and Kolmogorov information
entroples, the second order quantities are the most significant ones

and hence the need to determine D? in the present analysis. The

132



algorithm followed in this chapter is that proposed by Grassberger
and Proccacia (1983) and later developed by Atmanspacher and

Schinegraber (1986) and Abraham et al(1986).

Let {Xo(t)} be the original time series with the data
being taken at constant interval. These data set can be rearranged

so as to get (d-1) additional data sets as

Xo(t1) ................... xo(tN)
Xo(t1+AL) ................ XO(LN+AL)
Xo(t1+dAt) ............... Xo(tN+dAt)

The transpose of the above malrix can be considered as conslsting
of N vectors having d components in a d dimensional space. The
general vector can be written as

Kl=(x (t)eeeeonn... Xo(tl+dAt))

where,1 = 1...N and 21 is a point in the constructed d dimensional

space. With this the correlation function can be evaluated.
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1
C(r) =Lt — e(r - |X X |)
d N-o N2 Z.j=1.n b

where 6 1s the Heaviside function defined as 6(x) = 0 for x < 0 and
uniiy for x >0. This implies that if the absolute value of the
vector differenée |x‘-xJ| is less than r,it is counted as unity and
is zero if 1t 1is greater than r. Small boxes of side r are
constructed in the phase space.and the vector tips that lie in this

box are counted. This is referred to as box counting. It 1is seen

that as r becomes smaller Cd(r) ~ Y , S0 that
log Cd(r) ~v logr

As r —>0 and d —>w, v takes a definite value which 1s called the

second order correlation dimension. 1i.e.

log C (r)
D, = lim <
2 log (r)
r-> 0 )
d®

The correlation integral C(r) is calculated for several

values of r with respect to each particular dimension d of the

constructed phase space. For each dimension d a curve of log Cd(r)

Vs. log (r) is drawn. The slope v of the linear part of the curve
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is obtained using least square fit. The finite value to which v
converges for hlgher values of d 1Is denoted by D2 An integer value
for D2 indicates that the system is regular and a fractal value

that the system 1is chaotlic.

The equations (5.22) to (5.27) have been numerlcally
solved for arbitrary initial values of the field coefficients.'The
time evolution of pressure at an axial point of the loop for

initial values

|n_| = 4.0, |n,| =7.0, |n]| =10.0,
and,
€| = 8.0, |§ | =11.0,[§ | = 14.0

is shown in Figure 5.3. The time variation is found to be highly
complex. The corresponding power spectrum is shown in Figure 5.4.
The power spectrum is found to be fluctuating and has a broad band
indlcafing the presence of chaos. A set of 500 data points
corresponding to this chaotic evolution of pressure was used to
evaluate the information dimension D2 by the box counting method

described above.

Figure 5.5 illustrates the converging and from which the

value of D2 is found to be 1.732. For the same initial conditions
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'Fig.5.3.. The variation of pressure at an axial
point of the 'loop when the initial values of the
fieldcoefficients na,nb,nc are much different from

those of Ea»gb and Ec respectively.
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least-squares fits are plotted against the dimension
d of the constructed phase space.The two asymptotic
values of the slopes are 1.39 and 1.73.This |is
corresponding to the chaotic evolution of pressure

at an axial point of the loop,
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when D2 is evaluated at a surface point, the slope does not seem to
converge to a limiting value (Figure5.6). The fractal value of

D2 is clear evidence for the existence of deterministic chaos.

In a chaotic regime the system can elther dissipate to an
attractor stage or can follow a stochgstic(random) flow. As the
dimension d of the constructed phase space 1increases thg slope v
may converge to a limiting value.In thls case the flow will be
confined to a geometrical object called attractor. The converging
value of the slope is the dimension D2 of the attractor.The
dimension of the attractor méasures the minimum number of
independent parameters needed to describe the system dynamics. In
other words 1if D2 exists, tﬂere 1s a properly defined dynamical
system. The steady increase of.slope v with d (Figure 5.6)evidently
shows that 1t cannot converge and consequently the number of
degrees of freedom of the system is lncreasing.Then the complexity
of the system increases and it tends to a more disordered state

indicating that system behavior is stochastlc.

5.7 SUMMARY:

In the equilibri = = =
q rium state n, &a ' Eb,nc €c. When the
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system is slightly disturbed from the equilibrium state, the time
evolution for small departure from equilibrium condition reveals
that the system exhiblts sinusoidal oscillation with a period which
depends upon the initial. values of the field coefficients. In other
words, when the system is perturbed from a state where the magnetic
energy Bz/4n and the kinetic energy (1/2)mv2 are nearly equal.lt_
exhibits marginal stability. The microwave and ' X-ray observations
of coronal loops show quasi periodic oscillations with time scales
ranging from a fractlon of a second to tens of minutes. (Aschwanden
1987,Svestka 1994 and references therein). These oscillations are
usually interpreted in terms of magnetohydrodynamic waves in loop
plasma. (Roberts,Edwip and Benz 1984). The observed power spectrum
of pulsations actually exhibits a more complex behavior(e.g.fig.1d
of Svestka 1994) which appears quasi periodic only if we ignore
finer variations. Thus, quasi periodic behavior 1s expected only
near equilibrium as is shown in the above study and the linear wave
analysis studles. Under large departures from the equillibrium,a
loop shows a complex temporal structure which can only be described
in terms of objects with fractal dimensions in the phase space of
the velocity and magnetic field. Coronal loops being continuously
subjected to external forcing through thelir foot points and through
their interaction with neighboring regions are most likely to be in
a chaotic state of pressure fluctuations. Therefore ,when there are

large deviations from equilibrium i.e., for 1initial values of
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LR N much different from those of ga.gb.gc respectively, the
system is nonlinear and so is the corresponding time evolution of
the pressure. In this case each 1nd1v1dua1 ~mode  becomes
distinct, stronger and mode—modg interaction can take place. In the
pump approximation case since the variation of the strongest mode
is negligible when compared with other modes, the interaction is
between less number of modes of osclllations and the system showed
‘oscillatory behavior,whereas the chaotic behavior 1is caused by the
superposition of more than two modes of oscillation and due to
strong nonlinear coupling between them as is indicated in the
nonlinear case above. This fact is evident in the evaluation of Dz'
Figure 5.5 shows the determination of D2 ap an axial point.. It is
interesting to note that there are two asymptotic values, one at
1.39 and the other at 1.73. This could be interpreted as the
existence of two strange attractors with embedding space of
dimension 7 and 18 and the LraJectory'can land up on elther of
these attractors. The fact that these are strange attractors
(because of fractal dimension) the trajectories could jump from one
to the other. This clearly shows the complexity of the sltuation.
The curve of slope v vs dimension d at r=R does not show any
saturation and that the curve is more or less centered on the 45°
line showing the presence of randomness or white noise as shown in
Figure 5.6. Thus, as we proceed from the axis towards the surface

the dynamics show the development of strange attractors ending up
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in complete randomness.

In figure 5.5 and 5.6 even though the 1initlial wvalues
of £'s and 7n's are the same, those of pressure P at (r=0,t=0) and at
(r=R, t=0) are not same. This difference in Figure 5.5 and 5.6 is
due to the different 1nitial vaiues of pressure at axial and
surface points. The translition from a strange attractor state to
randomness requires a much fliner analysis. In conclusion the time.
scale over which the system 1s stable or otherwise can be inferred
only by evaluating the Lyapunov constants which are sensitive to
the initial conditions. Inverting the problem by specifying the
lyapunov constants,one can possibly evaluate the class of initial

states which can give the observed life time of the loops.
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6 VLASOV MAXWELL-EQUILIBRIA OF SOLAR CORONAL LOOPS

6.1 INTRODUCTION:

The fluid theory that has been used so far in the previous
chapters is the simplest description of a plasma. This approximat-
tion is sufficiently accurate to describe the majority of observed
phenomena. However, there are some phenomena for which a fluid
treatment 1s inadequate. For such cases we need to consider the
velocity distribution function f(v) for each specles. This
treatment is called Kinetic theory. In fluid theory, the dependent
variables are functions of only four independent variables:
X,¥,2- and t. This is possible because velocity distribution of
specles is assumed to be Maxwellian everywhere and can therefore be
uniquely specified by only one number, the temperature T. Since
collisions can be rare in high temperature plasmas,deviations from

thermal equilibrium can be maintained for relatively long times.

Exact nonlinear solutions to coupled field theories are

generally rare. For the Vlasov-Maxwell system describing a
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collision less plasma the list of reported exact solutions are: (1)
the electrostatic solutions of the Bernstein-Green-Kruskal (BGK)
type (2)the magnetic solutions of the type obtained by
Pfirsch,Laval,Pellat and Vulllemln,_Marx and Harrls. The magnetic
solutions were constructed to model the behavior of laboratory
plasma containment devices. It was assumed that only the plasma
density was a function of space while plaéma temperature and
current are taken to be spatially uniform. The process leads to
the well known Bennet pinch density: profiles in the cylindrical
geometry, and to the strongly locallsed sechzx/a (where & 1s some
appropriate length) profiles in the slab model. A more realistic
description of the current laboratory plasmas, however, would
require the 1inclusion of the temperature as Qell as the current
gradients (i.e., gradients 1h current which are in addition to the
automatic gradients resulting from the density dependence of
current). It 1s with this idea that 1in this chapter a
vlasov-Maxwell description of the ubiquitous solar coronal
structures is discussed. It is found that an equilibrium plasma
configuration can 1live with spatial gradients 1in density,
temperature, current and drift speeds of the charged particles.
The stability study is carrled over this inhomogeneous equilibrium
state. The Vlasov description admits the investigation of kinetic
processes like heating and radiation and wunlike a fluid

description, it does not require an equation of state to determine
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the individual variations of temperature and density.

6.2 DERIVATION OF THE VLASOV EQUATION:

A kinetic equation 1s any equation of the form

oa| (Y]
o T
-

=M [F ] (6.1)

where M is a known functional that maps F1 onto functions of

(p,x,t;Fi).The generic form for all kinetic equations is,

oF p. OF
1, _1
at m ax1

6
6p1

1
v J dZG12 FZ(I.Z) (6.2)

in dimensional form. To obtain a kinetic equation from this
equation some approximate form must be Iinserted for Fa’ or
equivalently, F2 must be expressed as some known functional of Ff

F2 = F2(1,2;F1) (6.3)

Inserting equation (6.3) into (6.2) gives the kinetic equation
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8F
L+

at

oF a

1 1
5;: v ——51 J dZG12 F2(1.2,F1) (6.4)

P
m

The equation that emerges for F1 in an expansion about vanishing
correlation is (dimensional notation).
oF P, oF

1
3t ' m

o
6p1

<{=

1 Y -
= Jd2G  F (1)F (2) =0 (6.5)

-

This equation is known as Vlasov equation. The vlasov equation may
be put in a more conventional form using the fact that the number

density n(%,t) can Be expressed in terms of F1 as

n(x,t) = — [ F, dp (6.6)
v 1 ‘

If the mean force G(x) at the point x is defined as

G(xl) = [ n(xz) Gn(xl,xz)dx2 (6.7)

then, the integral in equation (6.5) may be written in terms of G

and F :
. 1
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F_(2)

a 3 .3 1 _ 0 c .
551 Jd X, d sz1z(x1'xa) F1(1) —— = 55: Fi(l) Jd x2G1zn(xz)
=2 F(1).6x) (6.8)
ap1 I 1 '

Equation (6.5) is equivalent to

oF p 8F oF _ -

ﬁ +T. 5; + -a-;. G=0 (6-9)
- 3

G(xl) 2 [ zetxx'xz) n(xz) d X, (6.10)
_ 3

vn(xz) =T F1(2) d P, (6.11)

Vlasov equation represents the dynamics of a single

particle influenced by a smeared out or average force fleld. This

average force field is the average of the two particle interaction

over the density of remalning particles. The G In the vlasov

equation is a functional of F through the equations (6.10) and

(6.11).
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6.3 THE MEANING OF f(v):

In kinetic description the density is a function of four
scalar variables n = n(r,t). When velocity distribution 1is
considered there are seven independent variables: f = f(r,v,t).
This implies the number of particles per maat the position r and at
time t with velocity components between vx and v, + dvx, vy and vy.

+dv, and v and v + dv . is
y z z z

f(x,y,z,v,v,v ,t)dv dv dv..
X y =z x y z

Theintegral of this can be written in any one of the ways as

shown below.

[+ [+ 4] [¢+4] 00
nir,t) =fdv Jfdv [Jdv f(r,v,t) = [ f(r,v,t)d3v
-00 x -0 y -0 z -0
00
= [ f(r,v,t)dv (6.12)
-

dv is not a vector; but it represents a three dimensional volume

element in velocity space. If f is normalized so that
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(]

I f(r.v,t)dv =1 (6.13)

f is called the probability distribution function.

So that £(r,v,t) = n(r, t)f(r,v,t) (6.14)

f Is stlll a function of seven varlables, since the shape of the
distribution, as well as the density, can change with space and

time.

A particuiarly important distribution function is the

maxwellian:

372

*:... = (m2n K1) Zexp(~v/v2 ) (6.15)

h

2 2 )1/2 172

where v= (v2 + v+ v and v = (2KT/m)
X y z h

X (6.16)

For an isotropic distribution like a maxwelllian, another function

g(v) which is a function of the scalar magnitude of v such that

00 -
I glv) dv = § £(v)dv (6.17)

(o} -0

can be defined.
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For a maxwellian the function g(v) will be of the form.

glv) = dnn (m/2nKT) Y2 2 exp(—vz/vih) (6.18)

6.4 EQUATIONS OF KINETIC THEORY:

The fundamental equation which f(r,v,t) has to satisfy is

the Boltzmann equation:

of -.  F of _(of
VI Do '[ﬁ]c (6.19)

F is the force acting on the particles, and (af/at)c is the time
rate of change of f due to collislons. V represents the gradient in

(x,y,z) space. The symbol 8/38v or Vv stands for the gradient in

velocity space:

~ 3 _~ a3 ~ 3
-a—‘;—xaT “‘y-a-v—"'Z'é-\;- (6.20)
x y z

In a sufficiently hot plasma, collisions can be neglected. Further

the force F is entirely electromagnetic and hence, the equation
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(6.19) takes the form and if E and B are self consistent fields,

of q af  _
TV Vf + n (E + v x B) . v =0 (6.21)

This 1s Vliasov equation.

6.5 VLASOV-MAXWELL EQUILIBRIA:

The coronal - loop plasma will be represented by a
cylindrical column with current density Jz along the axis of the
cylinder and with no gravity. The actual geometry of a coronal
loop consists of the two ends (the foét points) of a cylindrical
plasma embedded 1ﬁ a sub phoiospherlc reglion. A small twisting
motion of the foot polnts may introduce a small amount of azimuthal
current J0 which 1s neglected for th; present. The subphotospheric
region contalns a high-B plasma, where B 1ls the ratio of gas
kinetic pressure to magnetic pressure. As a result the magnetic
field lines move on a time scale much longer than the coronal
time-scales. This 1line tying reduces the region of unstable

excitations, especially those of long wavelength. The neglect of

gravity reduces the coronal loop to an essentially horizontal
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cylinder. While studying the stability of an equilibrium, the end

effects, gravity and curvature are to be properly taken into

account.

The particle density n, the temperature T and the particle
drift speeds u are in general, spatially varying quantities. All
spatlal varlatlons are allowed only in the radial direction as
there is observational evidence in subport of it. The plasma is
assumed to be embedded }n a uniform magnetic fleld Bo' The relevant
equation for an equilibrium system (wlth‘a/at = 0), i.e., Boltzman
equation for electron and ions describing the conservation of

particles in phase space of position and momenta are:

afe e v ~ afe .~

R R LI RTLE L .22
of, v .

Vr—a—F— + - (E + p x (B + ezBO). W =0 (6.23)

Equations (6.22) and (6.23) are Vlasov equations which are valid at

high temperatures when Coulomb collislons are neglected.

In addition,the fully 1lonized plasma 1is assumed to

experlence only electromagnetic forces. All non electromagnetic
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forces such as gravity are neglected. For loops of smaller length
than the density scale height,axial dependence of particle density

is also neglected.

Ampere’s law is:

E

VxB-= 0

J | (6.24)

O
ol®

and for the case (8748t

0)

VxB=—1J (6.25)

Writing in cylindrical co-ordinates:

oB JB
1 z 0 in
(V x B)r = = 30- az" = —c- Jr (6.26)
aBr BBz 4n
(V x B)B = 3z - ar = s JB (6.27)
dB
210 gy 1B an
(V x B)z = I3 (TBB) ;76 s . (6.28)
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(V x B)r = 0 and (V x B]e= 0 implies that the self consistent
magnetic field has only 6 component. For this to be true Brshould

be zero, Bz = constant. Hence, the axial component of Ampere’s law

will be:
1 @ 4n
EF I'Be = ——C' Jz (6-29)

Poisson’s ecquation is:

V.E = 4np (6.30)

In equilibrium study the charge separation occurs over
extremely short time scales. Hence, it is justifiable to assume
zero charge separation. Under such a condition

VE=0 (6.31)

Faraday’s law is:

VXE-=-

(o] B
Q)lQJ
i o

(6.32)

For steady state fields the equation reduces to
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VUxE=0 (6.33)

The plasma current density Jz in terms of the particle distribution

function for the electron and ion is
Jz=-eJd¥ v (£ -1) (6.34)
z e i ]

Let a displaced Maxwellian of the form

n

= 0 . (v _ <&1Y2, .2
fe,l B 32,3 Exp [-(V u ) /Ve,i] g(r) (6.35)

e,l

be the distributlon function for the particles providing a self
consistent solutions for the equations (6.22), (6.23), (6.29), (6.31)
(6.33) and (6.34). Where,

n is the ambient density,

V = [2T_ /m is the thermal speed,
el e, eo,1

]1/2

and u:i is the drift speéd,

Te | is the temperature,

mo is the mass and
g(r) is the density profile factor, which is the same for electrons

and ions under conditlons of no charge separation.
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6.5.1 DETERMINATION OF DENSITY AND MAGNETIC FIELD PROFILES:

Let g(r) describe the entire spatial variation of density.
The denslty profile can be found'assumlng fe_tp be a function of

g(r).

L4

Equation (6.35) can be written as:
fe = keg(r) and f1= klg(r) | | (6.36)

%

e, 1 372 3
b v
e, !l

e,1,2,62
where k exp [-(V - ur ) ]

e, |

Hence,
af° 2k°g(r) .
G'R == 5 lV-uz] (6.37)
v
e
v R of 2k g(r)
-x(B+eB). —= —2 [ uv B, ] (6.38)
c z 0 2 z r 0
av v ¢
afe Zkeg(r)
—_— = = —_ .3
E . TV 2 IEr vr] (6.39)
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of ag(r)

5;_ = ko—ar—- (6-40)

Substituting equation (6.38),(6.39) and (6.40) in equation (6.22)

1 dg [-u® B_]
2 e z 6 _
E a—r: + - vz P =0 (6.41)
]
dg
or gar - Te S u Be =b (6.42)
euz B0
where b = =T (6.43)

where,e is the charge on the electron and ¢ is the speed of light.

From equation (6.29)
4n an

1 48 _ = _ Anm e _ i
~ g TBg= — J_ = = eno[geu; gluz] (6.44)

Making use of equation (6.43), this reduces to

(6.45)

e R
Q
e ="
—
(13
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1
u

using 8,588, K =2 and, Te=(pe)mev: in equation (6.45)

5 8 (6.46)

where 6° is the characteristic length scale in the solutions of the
Vlasov-Maxwell system which wlll be estimated using the parameters

chosen from Hollweg(1981), and

o = .—2— —_— (6.47)

and , the electron plasma frequency

211/2
4nn
© = [ °} (6.48)
m

The self consistent solutions for equations (6.22),(6.23),
(6.29),(6.31),(6.33) and (6.35) when g(r) describes the entire

spatial variation are found to be

159



-2
2
g(r) = 1+ fz (6.49)
43

Figure 6.1 is a plot of density profile function g(r)
versus x = r/6° -The graph shows that the density profile 1is peaked
at the axis with a characteristic length scale aeand a sharp fall
in density away from the axis is obtained. This is reminiscent of
the condensations often observed at the axis of the loop.

Using equation (6.49) in (6.42), we obtain

— 2 (6.50)
52 [1 R ]
e 2

2 -1
or, bd = - (r/s )[1 TR ] | (6.51)
e e 2
43
[

Figure 6.2 is a plot of the variation of the magnetic
field profile function (b6e) verses x = r/ae corresponding to the
above equation. This graph also indicates the magnetic field
profile peaking at the axis similar to the density profile case.

Thus, from these two graphs it is found that the current density is

maximum on the axis.
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6.5.2 ESTIMATION OF CHARACTERISTIC LENGTH 5°=

Coronal loops, a bipolar structure 1s characterized by an

electron density n, ~ 10'°- loizcm-a; “a temperature range varylng

from a few tens of thousands to a couple of million K, a radius of
108—-" 109, and a length of 109to 101°cm with an axlal magnetic
fileld of a_few gauss. The current flows essentially along the
axis of the cylindrical plasma column and produces an azimuthal
component Be of the magnetic fleld. Observations in the: EUV
fegion shows that the loops of different temperatures are coaxial
and this has led to the identification of cool core and hot sheath
type loops (Foukal 1978; Krishan 1983,198S). The X-ray
observations has further reinforced the inhomogeneous nature of the
underlyling heating mechanismsf According to Hollweg (1981), the
resonance absorption of surface“MHD waves, as well as the jJoule
dissipation of high density current. sheets 1in addition to the
ubiquitous mini magnetic reconnections are some of the factors

responsible for the heating of the solar corona in general,and

coronal loops in particular. Assuming typlcal parameters from

Hollweg Se is estimated as follows:

Electron density in the sheath n, = 109cm_1-

Electron temperature in the sheath T = 2.5 x 10'K;
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Electron thermal speed V° =2.7x%x 10" ems %,

Electron drift velocity u_ > sound speed = 4.5 x 107cn s

The magnetic field B9 produced by the current density Jz is 10 G,
and the thickness (AR) of the current sheet turns out to be ~ 10°

cm.

The characteristic length scale which is

Vv
5, = “: : (1 + \/’I‘l/To)
pc e

workg out to be = 1.04 x 1030m for T’ » Tl. and,

= 0.9 x 103 cm for T° = 9T1'

Thus, we find that current profile of small widths are the outcome

of exact solutions of the Vlasov-Maxwell system.

6.5.3 VARIATION OF MAGNETIC FIELD PROFILE WHEN TEMPERATURE

VARIATION IS ALLOWED IN ADDITION TO DENSITY VARIATION:

In this case in addition to the density gradient; spatial
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variation of temperature is also allowed. The drift speeds u:’i
are still homogeneous. MahaJan[1§89) has shown that a serles
representation for the distribution function gives a valid solution
of the inhomogeneous Vlasov-Maxwell system. The expansion parameter
for the series being (u/v), the ratio of drift and thermal.speeds.
This 1s very much appropriate for the consideration in the coronal

loop. Using the smallness of (u/v), the_dlstribution function is

written in the form

n g(r) —_— ‘2, —_
fe,l = 372 3 e,lw )3 Exp - (V e,\l, w )2
T ( 0 e,l —_— 0] e,/ —
-_ e, | -
2uz i ( vz )n ( v )Zm (
1+ —= T ¥ ¢ 6.52)
vl wlimeor ™™ ve! vl oy
— 0 0 [¢] e, ~

where we describes the spatial variatlon of electron temperature
and V; the thermal speed on the axis (r=0). Since the equilibrium
solutions are of interest it is assumed that we = wl = ¥ and Be =
Bx’ i.e., the electrons and 1ions have identical temperature
profiles. Since'the density variation 1s generally steeper than
temperature varlatlion Be = Bl = -3, where c10 = 1 and c11 = -B.

This equation converts Vlasov equations into ordinary differential

equations in g and ¥, In addition to providing relatlions that
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determine all C in terms of the plasma parameters. ¢

n
(uo/vo) .

Using uo/vo« 1 which 1is true for high temperature
laboratory fusion plasma, the series is truncated keeping terms

only to order uo/vo. Thus a simplified distribution function is

obtained.
n g u 2
£ = ° [1+2°°‘ v{1+;3(————V )}]
« 22y ) P V2 z by oy
o o oa o "a
. 2
_y2 ug
x Exp { > 2} + 0 { } - (6.53)
Vo Y v

Since plasma has current only in the Z direction the self magnetic
field has only the Be componenf. The equilibrium Vlasov equation

is :

@
=
g1 .0

B
[Vxe—g].a—f-=0 (6.54)
6 c

All variations are allowed only in the radial direction. For f as

defined in equation (6.52).
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of _ -
5 =V, +eF (6.55)

Using this in equation (6.54)

vi§+f_(Vx;B—°)[VF+;F]=o (6.56)
r ar e c °° 1 z :
or
q
ar
Vo +—— VB F=0 (6.57)

Using equation (6.52) , 3f/0r and F are calculated as follows:

~—
-
+
N
o B
o
o~
(e |
50
—
<
N
N
-]
—N
<
N’
)
8
[

° n=1 m=0 v0 VOw
© o —
2 & I Te )t (L) e (6.58)
v lI13 nm v Vo ¥y dr '
0 n=1 m=0 (o} 0

167



@ ©
2u

g 0 V n-1 \') 2m
n=1 m=0 . 0 o)

Substituting for 8f/8r and F in equation(6.57), for n=1and m=0

I
N N
|

g g Vv
v v

[\Y)
|
W

o

— 2 ’
2uo q 8 Vz Zuo g V- 2 dy \Iz
1+ — =5 =5 %o Yt T2 3 10 *
_ Vo ] Vo Vo 17 Vv 0 Y~ dr v 0
T q g 2u :
B, — — ¢ =0 (6.60)
mc 0 3,2 10
vy v
— o S—
Equating the terms independent of Vz
3 c—— —
L g q 8 2u
g dr (_3] * ne B 33 S| =0 (6.61)
& v v v
And for n=1, 1 we get
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d_[f_] g[v]zj“"’ , “Bi""oc[v
dr ¢3 wa Vow ¥ dr mc 9 ¢3 Vz 11 V°¢
ﬂif_c[vz)[v]z - 0
Vo dr W3 11 Vo Vow
v )2
Equating the coceffliclenls of [_Vﬁw_
0
g 2dy q g 2u0
ST Tt 3z B tO
v oy d v Ve
3
vy 24 u . 4d
From(6.61) — d | = =-2%% B
g dr ¢3 Taoc e
o
where T = 1/2mv> and ¢, =1
a0 0 10

The above equation on simplificatlion yields

U S s
g dr Y, T,C ©
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Using equation (6.63) and c, = -8

2 dwa u_q

- _ oo'a

v i - s BB Ba (6.65)
a0

combining equation (6.64) and (6.65)

(-2/8, + 3]

g=yY (6.66)

using the value of é from (6.49) the profile function ¢ and g are

-(ZBa)/(SBa— 2)

2
Y = [ 1+ rz (6.67)
460!‘!‘
. - 2(38 - 2)/(5B - 2)
g = [ 1+ rz (6.68)
4aeff
-1 r/d
bs = {—§E— -1} : (*73,c0) (6.69)
eff 2

2 2
l1+ r /46°rr]
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where 8 = (260/5{3 - 2)

The temperature

2 - -4B/58 - 2
Tay = [1 +r /46e"] : (6.70)
The current density
2 2 -2
J ogy” = [1 +r /46°“] (6.71)
The pressure
2 2 2 |
P o gy’ = [1 +r /450“_] (6.72)

‘'The plot of variation of density profile g(r), magnetic
field profile function b6e and temperature profile function wz
versus xv = r/ae for 3 = 6‘5.0.8 and 0.2 are shown 1ln Flgures
6.3,6.4,6.5;6.6,6.7,6.8 and 6.9,6.10 and 6.11_respect1ve1y. The
graphs indicate that depending on the B value the radial variation
can be positive or negative. Thus for B > 2/3, both density and

temperature fall away from the axis as in Figure 6.9 and 6.11.
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Whereas for 2/3 > 3 > 2/5 the dénslty increases and temperature
decreases away from the axis as in Figure 6.6 and 6.8. For B < 2/5
the temperature increases towards the surface as in Figure 6.11.
This 1s very much reminiscent of the cool core and hot sheath type
loops observed by Foukal (1978) and Krieger, de Feiter & Valana
(1976) and modelled through variational principle in MHD by Krishan
(1983, 1985). The parameter Gewhlc-h‘» characterises the spatial
varlations s related to the skin depth, The measure of 80
determines the steepness and the extent of the current density
profile. This satisfies the requirements laid down by the = joule

heating of the loop, plasma.

6.5.4 VARIATION OF CURRENT DENSITY IN THE PRESENCE OF DENSITY AND

DRIFT SPEED GRADIENTS:

In this case gradients in density and drift speeds are
also allowed in addition to g. The drift speeds of the particles
become a function of the radius r, i.e..qu uzo¢e(r).where ¢e(r)
1s the proflile of the electron, and uzols the drift speed at the
center. The temperature Teis kept 1independent of r. The
Maxwellian of the form given by equation (6.35) with ue'idep;endent
on r will not allow a solution in the velocity space because

Vr(af/ar) has additlonal terms, which are quadratic in the velocity
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variables, which cannot be compensated by the force term.The
compensating term 1is generated by introducing a temperature
anisotropy: the particles have different temperatures 1in the
direction along the current(Tz).and perpendicular to the current
(T not equal to Tz). This allows the distribution function to be

assumed as:

2 2 e, 1 2
n g(r) ve v v -u (r)
0?; r 0 ( z 0z ¢e )
f = — Exp |- - (6.73)
o 372 2 e,l 2 ‘ e, 1,2
vt v v (v'?)
e,1 z e

Equation (6.73) rebresents a neutral plasma (g°= g,= g) carrying
a current in the z direction. Here it has been assumed that ¢e= ¢1=
¢ with ¢(r=0)=1, and g(r=0)=1. Substituting equation (6.73) in the
equilibrium Vlasov equation (8/8t=0), and carrying out the usual

algebra, the following set of coupléd nonlinear ordinary

differential equatlons in the varlables g and ¢ are obtalned.

2
1 a[a¢]__zx [[UOz](z_ ]
—_ = Ir === = — exp [ 1) (6.74)
r ar ar a2 Ve
(-] z
u; 2 ‘
g(r) = exp [ [ ez ] (¢~ - 1)] (6.75)
v
F 4
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where,

. T -T N
A= (vE-vi2w) = 2% - 2 = (6.76)
e z 0z e 2 e 2
m (u” ) 2T (u_ )
e Oz . e 0z

The numerical solutloﬁ of the equation (6.74) yields a
rich variety of profiles as A is varied. Since the spatial behavior
of the density,the magnetic fleld and the current density are
essentially a function of the dimensionless paranmeter ‘X, there

is need only to provide appropriate normalization. For coronal

loops, the anisotropy parameter

2

ATe v° 3 AT°
= 1.8 x 10 ,
2T (u® ) T
e 0z e
AT _
For A =5 —2 =2.7 x10% which is reasonably small.
T

A plot of the variation of the density (Ref.Mahajan, 1989)
profile function g(r) versus x = r/6e.1nd1cates that indicates that
g decreases monotonically with x,starting from zero, raises to
a maximum at x=2 and then slowly goes to zero. For larger values of.

A, g becomes oscillai.ry with the wavelength of the oscillations
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decreasing with A The fact that denSity becomes less and less
peaked indicates loés_of confinement, a direct consequence of the

fact that the confining magnetic field (oscillatory) becomes

considerably smaller than its A = 0 value.

A plot of the variation of the current profile function
(gue) versus x = r/5. The profiles indicate that the current
density appegrs in the form multisheaths for large values of the
anisotropy parameter (for )=5)A.wﬁilé the corresponding density

profile is almost flat. (Ref Mahajan,1989).

SUMMARY:

A Vlasov-Maxwell descpiption of coronal loop plasma admits
a variety of equilibrium spatial profiles of mass denéify. current
density, the temperatﬁre.and the magnetic field depending upon the
type of lnhomogenelties'allowed. The profliles vary from being flat
to spiky and resemble the ones derlved.from EUV and X-ray coronal
observations. Thelcurrent froflle of small widths are the outcome
of tﬂe exact solufions of Vlasov-Maxwell éystem.The multisheath
current prpfiles der}ved in . this 'chapter‘ complement the

magnetohydr¢odynamic study of current sheet formation well. Further
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from the above discussion it 1is found thét the Vlasov description
allows the determination of density and temperature profiles
individually unlike in the fluid description where equatioh of
state is required to study the separate variat1§ns of density and

temperature from the pressure profile.
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7 SUMMARY OF THE RESEARCH

7.1.STEADY STATE STRUCTURE:

The loop or arch like configurations of the solar active
regions have been seen in the emissions at UV,EUV and X-ray
wavelengths, (Foukal, 1978). The current carrying plasma in the loop
supports a helical form of the magnetic fluid. The steady state
pressure structure of a solar coronal loop was studled using the
theory of MHD turbulence in cylindrical geometry. The magnetic and
velocity fields were expanded in terms of C-K functions using the
MHD equations assuming the plasma as a incompressible fluid. In
chapter 4, the studylwas confined to the steady state solutions to
the pressure i.e., 8/8t(n,€) = 0 and n =§, where n and § are the
expansion coefflecients. The pressure profile was dilscussed under
two considerations:
1)Pump approximation; where one of the three modes was considered
as the strongest, as compared to the other two, and
2)The mode strength varying in proportion to their spatial scales.

The plasma was assumed to be a cylindrical column of length L and
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radius R.

The analysis of the ‘results indicate that the radial
varlation of pressure is found to be maximum at the foot points of
the loop and 1s minimum at the apex (See fig.4.1). This result is
in conformity with the results of Levine and Withbroe(1977),
wherein they have Iindicated that the coronal loops undergoiné
dynamic changes are characterised by a temperature structure in

which there 1is a cool core relative to the substantially hot

surrounding sheath.

The axial variation of pressure indicates, that the
maximum values of pressure is attained near the apei for all radlal
positions(see fig.4.2). This is fn agreement with the results of
Rosner et al (1978). The pressure is found to increase uniformly
for all values of the radial dlstance 'at different azlmuthal
angles(see fig.4.3). The azimuthal variation of pressure for
different radial distances indicate osclillatory behavior, which is

predominant near the surface.

The density plots fig 4.6a and 4.6b indicate that the
reglon of maximum pressure is not necessarily at the apex. Further
it is also an indication of the observed cool core and hot sheath

features of the coronal loops.
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Even when the mode strengths is assumed to vary in
proportion to their spatial scales, the results like an increase of
pressure towards the surface and the eiistence of maximum somewhere
along the length of the loop emergé as the general features of the
loop. In all cases it was found that the rebresentation of thel
velocity and magnetic fields by a three mode C-K functions bring
out the three dimensional features of the pressure profile. The
cholice of the trlads representing the varlatibn of velocity and
magnetic fields on the largest spatial scales permitted by the

system, provides a fairly reallistic description of the loop plasma.

7.2. TEMPORAL EVOLUTION OF PRESSURE:

In chapter 5, the wvelocity and magnetic flelds were
allowed time dependence to facilitate the study of their evolution.
The complete dynamics was described by a set of infinite coupled
and non linear ordinary differential equations which are of the"
first order in time for the expanslon coeffliclents of velocity and
magnetic fields. Since the evolution equations are coupled and
nonlinear, the dependence of their solution on the initial
condition was expeﬁted to reveal chaotic behavior. An important

tool in the investigatlon of Lhis was the study of power spectrum
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of the data generated by the solution of the MHD equations and to
evaluate the Iinvariant dimensions especially the second order

correlation dimension of the attractor D2 of the system.

The analysis of the results indicate that when the values
of velocity and magnetic field coefficients 7’s and £'s are very
nearly equal, the spectrum is discrete indicating that the pressure
profile has a finlte number of frequencles. The marginal stability
exists only for the time scales for which the lin?arisation is
valid. Though microwave and X-ray reglons observation show a
quasl periodic os¢illations, the observed power spectrum of
pulsations actually exhibits a more complex behavior if finer
variations are ignored. The quasli periodic behavior 1is expected

only near equilibrium.

Under large deparlures {rom the equilibrium ,a loop shows
a complex temporal structure which can‘only be described in terms
of objects with fractal dimensions in the phase space of the
velocity and magnetic field. Coronal loops being continuously
subjected to external forcing through their foot polnts and through
interaction with neighboring regions are likely to be in a chaotic
state of pressure fluctuatlons. Hence, when there are large

deviations from equilibrium the system and the time evolution of

the pressure is non llncar.

189



In the pump approximation case, since the varliations of the
strongest mode 1is negligible when compared with other modes the
interaction is between less number of modes of oscillations and the

system shows 'oscillatory behavior, unlike the non linear case
where chaotic behavior was exhibited by the superposition of more
than two modes of oscillations and due to strong nonlinear coupling
between them. This fact 1s evident in the evaluation of Ik(see
f1g.5.5). As one proceeds from the axls towards the surface, the
dynamics shows the development of strange attractors ending up in
complete randomness(see fig.5.6). :This requires a finer analysis.
Thus the time scale over which the system 1ls stable or otherwise
can be inferred only by evaluating the|Lyapunov constants which are
sensitive to the initial conditions. Inverting the problen,by
specifying the Lyapunov constants, it m;y be possible to evaluate
the class of initial states which can give the observed life time

of the loops.

7.3.VLASOV-MAXWELL EQUILIBRIA:

Vlasov-Maxwell equilibria of solar coronal loops was
discussed in Chapter 6. The results of the study indicate a

complex type of radial variatlion profile of density,magnetic fleld
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and temperature. Temperature profiles are found to increase

towards the surface reminiscent of the cool core and hot sheath
features in the coronal loops. The current profile of small widths
are the outcome of the exact solutions of the Vlasov-Maxwell system
as is evident from the discussion in chapter 6. Further, it is found
that a Vlasoy—Maxwell description of coronal loop plasma admits a
variety of equlilibrium spatial profiles of mass density, current
denslity, temperature and magnetic fleld depending bon the
inhomogeneities allowed. Also this description alloys the
. determination of the density and temperature profiles
individually, in contrast to the fluid deécriptlon where the
equations of state is required to extract the separate variations

of density and temperature from the pressure profile.
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SUMMARY

A Vliasov-Maxwell description of the ubiquitous solar coronal structures is
presented. It is found that an equilibrium plasma configuration can live with spatial
gradients in density, temperature, current and drift speeds of the charged particles.
Any stability study must be carried over this inhomogeneous equilibrium state. In
addition, the Vlasov description admits the investigation of kinctic processes like
heating and radiation and unlike a fluid description, it does not require an equation of
state to determine the individual variations of temperature and density.

1 INTRODUCTION

Solar coronal loops have been studied conventionally
through magnetohydrodynamic processes, since their shapes
betray the underlying magnetic fields. Coronal loops are
especially favoured for their ability to pick up energy from
the convection zone and deposit it in the corona. The foot
points of the loops suffer continuous turning and twisting,
producing complex magnetic geometry in which current
sheets have been shown to form. One believes that ohmic
dissipation of current in these sheets can maintain a ~ 100K
coronia. Attempts to show the formation of extremely small-
scale current sheets have been carried out by Parker (1983,
[987 Low (1987 ) Low & Wollw 1 1988). Van Ballegooijen
LTOBS, 19860), Karpen, Antiochos & De Vove (1990) and
many more. The ML equilibria of coronal loops have been
investigated by Priest (198 1), Hood & Pricst (1979), Vaiana
& Rosner (1978), Tsinganos (1982), Krishan (1983, 1985)
and Krishan, Berger & Priest (1988). In this paper, we
explore a Viasov-Maxwell treatment of a current-carrying
cylindrical plasm: In this description, it is possible to derive
the spatial profiles of equilibrium plasma parameters and the
exact  particle  velocity  distributions  without  invoking,
equations of state and the exact particle velocity distribution
functions. It is found that the system develops strongly-
peaked current density profiles under very commonly
occurring conditions. It is perhaps the disturbance of these
current density configurations that leads to the heating and
acceleration of particles in coronal loops.

2 VLASOV-MAXWELL EQUILIBRIA

We will closely follow the recent work of Mahajan (1989)
on Viasov-Maxwell cquilibria for several systems, the

exemplary cases being Z pinches and Tokamaks. A coronal
loop will be represented by a cylindrical column of plasma
with current density J, along the axis of the cylinder and with
no gravity. The actual geometry of a coronal loop consists of
the two ends (the foot prints) of the cylindrical plasma
embedded in a sub-photospheric region. A small twisting
motion of the foot points may introduce a small amount of
azimuthal current J, which we neglect at present. The sub-
photospheric region contains a high-§ plasma where f is the
rau. of gas kinetic pressure to magnetic pressure. As a result
the. magnetic ficld lines move on a time-scale much longer
than the coronal time-scales, This line tving reduces the
region of unstable excitations, especially those of long wave-
length. The neglect of gravity reduces the coronal loop to an
cssentially horizontal cylinder. Of course. while studving the
stability of an equilibrium, the end effecis. gravity and curva-
turc must be properly taken into account. The particle den-
sity n, the temperature 7, and the particle drift speeds ware
in general, spatially varying quantities. Here we allow all
spatial variations only in the radial dircction since there is
observational evidence for such variations, The plasma is
embedded in a uniform axial magnetic ficld, £,,. The retevant
equations for an equilibrium system (with d/dr= () are

U e ¥ s mesp] 2

o m, [E+ . X (B+ ezB(,)] ar 0 (1)
d,.e g Y 5 of

v, ar+mi [E+ CX(B'FezB(,)] 5 0 (2)

14 4n

’ar(rB,) J. (3)
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where f, . are the single particle distribution functions, (£, B) .

are the self consistent ficlds. Lguations (1) and (2) are col-
lisionless Boltzman equations for clectrons and ions deserib-
ing the conservation of particles in phase space of positions
and momenta, These are also known as Viasov equations
which are valid at high temperatures when Coulomb colli-
sions can be neglected. In addition the fully ionized plasma

. considered here experiences only electromagnctic forees, All
non-clectromagnetic forces, such as gravity, are neglected.
Further, the axial dependence of particle density is neglected.
This is valid Tor loops of length smaller than the density scale
height. Equation (3) is the axial component of Ampere’s law
describing steady staie ficlds. Equation (4) is Poisson’s equa-
tion under the condition of zero charge separation which is
justified for an equilibrium swudy since charge separation
occurs over extremely short time-scales such as those of
clectron plasma oscillation. Equation (5) is Faraday's Law
for steady ficlds. Equation (6) defines current in terms of the
particle distribution function for electrons and ions. Let a
displaced Maxwellian of the form

: no S enr 2
fo= i expl = (V=P e, lgto

(7
()

provide asell-consistent solution for equations ( 1)-(6). Here
n, is the ambient density, ¢3;=27T,./m,; and u% are,
respectively. the thermal speed and the drift speed, 7, ; and
m,, are the temperature and mass and g(#) is the density pro-
file factor which is same for electrons and ions under the
assumption of no charge scparation.

Cuse |
The sell-consistent solutions of equations (1)-(7) for the case

when g(r), dcsmhmg, the entire spatial variation are found
1o be

gir)=1+4 3400 (8)

and’

ho, = ~ (:) (14408 9)

0,

where
" 2 - !

h=f'_'f3'.l:”.%‘; §l== 2 Vel '“) (10)
', W e ...(u )

and

= (et ful)

Here ¢is the charge. ¢ is the speed of light and o, = (47ne?/
m ) s the electron plasma fn.quuncy Thus one obtains a
dunmty profile peaked at the axis with a characteristic length
scale &, which will be estimated in a later section,

Cuse 11
Here, in addition to density gradient, the spatial variation of
temperature s also allowed. The drift speeds «$! are still
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homogeneous. It has been shown (Mahajan 1989) that o
series representation for the distribution functions pives a
valid solution of the inhomogencous Viasov-Maxwell
system, the expansion paramcter for the series being (u/e),
the ratio of drift and thermal speeds. This is appropriate for
the considerations in coronal loops as discussed later. Using

the smallness of (ufr), we write for the distribution function
as

__ mg(r) { 2’ l
f 3’2( !Pa..)’ o p (vll wv.) .

1 Bt
V) nwlmeo vyl \vi'val

where y, describes the spatial variation of clectron tempera-
ture and v/§ is the thermal speced on the axis (r=0). Since
we are interested in equilibrium solutions. we assume
Y. =y;=yand §,= g, ic. the clectrons and ions have iden-
tical temperature profiles. With the assumption that density
variation is generally steeper than temperature variation, one
cantake B, = fB,= -, wherc C'\p= 1 and €, = .

Using equation (11), and retaining terms only up to (u/r),
one finds the profile functions as

(1

Pe=(1+r2[48 3,) 2502 (12)

g=(1+rf4d%) 23 -2usp-2 (13)
5 -1 rld. .

siam(§ 1) &

where

8 =(26,/56—2).

The temperature

Tocylm(1+472/403,)4H5h-2 (15)

The current density

J:ocgw‘l-(l +r34d,)? (16)

The pressure

poecgy=(1+ri4dd,) 2 (17)

One observes that, depending upon the value of f3, the
radial variation can be positive or negative. Thus for f32> 5,
both density and temperature fall away from the axis,
whereas for > B> 4, the dénsity increases and temperature
decreases away from the axis. For $<3i thc temperature
increases towards the surface and this is very much remi-
niscent of the cool-core- and hot-sheath-type loops abserved
by Foukal (1978) and Krieger, de Feiter & Vaiana (1976), and
modelled through variational principle in MHD by Krishan
(1983, 1985). The other parameter, d,, which characterizes
the spatial variations, is related to the skin depth. We shall
see ina later section that the measure of é,, which determines
the steepness and cxtent of the current density profile is com-
mensurate with the requirements laid down by the joule
heating of the loop plasma.

Case 11

Here, :we allow gradicnts in density and drift speed. It is
found that the presence of temperature anisotropy permits a
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. . . i .
displaced Maxwellian solution of the system where the dis-
tribution functions are given by

, pr)F ]

el i (s |

Here, we have taken ¢u=¢i=¢ with ¢(r=0)=1, and
gr=0)=1,The cqumions_ relating the density profilc. g(r),
and the drift speed profile, g, are found to be

(18)

g | elvel e ud
' L CXp Y= e = ek
1

l._(z 2@ __2)' . "(c).:2 2
r(?r(' 61')_ o2 exP[(E (¢~ 1) (19)
and
glry=exp (t:,“) (¢"—l)] (20)
where

Cy a ew T-T. AT, v}
A:(y;—y‘_' 2 '_"=—-"———-—e",=—-—r——.°—,’

TR = R T AT ey 2

Equation (19) has been solved numerically and here we will
reproduce some of the figures from Mahajan (1989), since
the spatial behaviour of the density, the magnetic field and
the current density are essentially a function of the dimen-
sionless parameter . ‘

Coronul loops

Coronal loop, a bipolar structure is characterized by an elec-
tron density 7,~ 10'%-10!2 ecm~% a temperature varying
from a few tens of thousands to a couple of million K, a
length of 10-10" em and a radius of [108-10° cm with an
axial magnetic ficlds of a few Gauss, The current flows essen-
tinlly along the axis of the eylindrical plasma column and
produces an azimuthal component B, of the magnetic ficld.
Observations in /U1 has shown that loops of different tem-
peratures are coaxial and this has led to the identification of
cool-core and hot-sheath-type loops, (Foukal 1978; Krishan
1983, 1985). ‘The X-ray observations further reinforce the
inhomogencous nature of the underlying heating mechan-
isms. Resonance absorption of surface MHD waves, as well
as the joule dissipation of high-density current sheets (in
addition to the ubiquitous mini magnetic reconnections) are
some of the favoured candidates for heating of the solar
corona in general, and coronal loops in particular (Hollweg
1981). Here we find that the exact solution of a Vlasov-
Maxwell system naturally admits the peaked spatial profiles
of current density and magnetic field, and we believe it is this
cquilibrium configuration, which when disturbed, gives rise
to sporadic flaring phenomena, acceleration and heating. It
has been shown by Rosner et al. (1978) and Hollweg (1981)
that for the joule dissipation to provide enough heating to
balance the radiation losses for the typical conditions of elec-
tron density, magnetic field and temperature, the current
sheath must have a thickness of a few hundred to a thousand
cm, and anomalous instead of the collisional resistivity must
be operative. The latter gives us a clue to the relative elec-
tron-ion drift velocity.that must exist to excite ion-acoustic
turbulence which may be responsible for anomalous resis-

tivity. The typical parameters in this scenario are chosen
from Hollweg (1981):.

clectron density in the siath-n,= 10% cm

clectron temperature in the sheath-7,= 2,5 < 107 K;
clectron thermal speed-V, =27 x 10V em s !y

electron drift velocity 1, > sound speed-=4.5x 1) ecm s !

The magnetic ficld B, produced by the current density J. is
10 G, and the thickness (AR) of the current sheet turns out to
be ~10% ecm. We recall from the previous section that 8, is
the characteristic length-scale in the solutions of the
Vlasov-Maxwell system. Let us estimate it:

8= Yo (14 T2

Wpe M,

=104 x 10 cmfor T,» T3,
=09%x10*cmfor 7,=9 7,.

1.00 T
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Figure 1. Variation ol density profile function gir versus x = /4,
for case 1 (equation 8).
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@ ﬁ =0.8 Thus we find that current profile of small widths are the
1.00 < - - - r outcome of the exact solutions of the Viasov-Maxwell
\ system. Here we present a few examples of spatial variations
of plasma paramcters. The variations of density and
0.84 1 magnetic-ficld profile factors (g and b, respectively) for case
] I, where only the density is space dependent, are given by
N . . [3
equations (8) and (9) and shown in Figs (1) and (2). A sharp
0.68 Y 1 fall in density away from the axis is obtained. This is remi-
o ] " niscent of the condensations often observed at the axis of a
0.52) _ loop. The current density is therefore found to be maximum
-~ N 1 ‘on the axis. The spatial profiles for case 11 allowing tempera-
1 ture variation are given by equations (12), (13) and (14), and
0.361 - | are shown in Figs (3), (4) and (5) for three values of the
- _ paramecter £, In this case the temperature increase (equation
\ 1 15) away from the axi¥ for g<2/5. Case Il gives very inter-
0.20 . . . N esting profiles where the current density appears in the form
0.00 3.00 6.00 9.0 12,00 15.00 of multisheaths (Fig. 6) for large values of the anisotropy
' X parameter; the corresponding density .profile (Fig. 7) is
Figure 4 - continued almost ﬂa.t. These prof.ilc:s' are reproduced frun} Mahajan
{1989). Since all functions, as well as the variables, are
{a) B - (b) ﬁ .
8.63 e v 0.00 ; T r
7.10 ‘ 1 -0.20}
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~ ] Y
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Figure 5. Variation of temperature profile function ¥ versus x = r/d, for #=0.2. (b) Variation of magnetic-ficld profile function {hd;) versus
x=r[d, lor f#=0.2.(c) Variation of density profile function g(r) versus x = r/d,for #=0.2.
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Figure 6. Variation of current profile function (gue) versus x=r/d,
showing formation of multisheaths for large values of temperature
anisotropy parameter 4 (from Mahajan 1989),
appropriate normalization, For coronal loops, the anisotropy
parameter
AT,V :
A==t —fi= 18X 10" 5
T. 2u;

reasonably small.

Thus for 45 one tinds (AT./7,)+2.7% 10 Y, which is

CONCLUSIONS

A Viasov-Maxwell deseription of coronal loop plasma
admits a variety of equilibrium spatial profiles of mass
density, current density, the temperature, and the magnetic
licld depending upon the type of inhomogencitics allowed,
The profiles vary from being flat to spiky and resemble the
ones derived trom EUV and X-ray coronal obscrvations.
The multisheath current profiles derived here complement
the magnetohydrodynamic study of current shect formation
especially well. In addition, the Viasov description allows the
determination of density and temperature profiles indi-
vidually, in contrast to the fluid description where equation

of state is required to extract the separate variations of
density and temperature from the pressure profile.

expressed in dimensionless forms, we only need to provide

Mahajan 1989).
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Abstract, The theory of ideal magnetohydrodynamic turbulence in cylindrical gcometry is used to study the
steady-state structure of a coronal loop. The pressure profile is derived from MHD equations by represent-
ing the velocity and magnetic ficlds as the superposition of Chandrasekhar-Kendall functions, Such a
representation brings out the three-dimensional structure of the pressure in the coronal loop. The radial,
azimuthal, and axial variations of the pressure for a constant density loop are discussed in detail. The
pressure has an oscillatory behavior for different azimuthal angles at some radial positions. This study
predicts more features in pressure than can be compared with the presently available observations.

1. Introduction

Itis well known that the solar corona is highly structured. The basic structural com-
ponent of the solar corona is the coronal loop. These loops or arch-like structures of
the active regions of the Sun have been observed in the emission at the UV, FUYV, and
X-ray wavelengths (Foukal, 1978 Levine and Withbroe, 1977; Vaiana and Rosner,
1978) The theory of radio pulsations in coronal loops has been discussed by
Aschwanden (1957). '

Coronal loop plasma is believed to carry currents which result in a helical form of
the maguetic field (Levine and Altschuler, 1974 Poletto et al., 1975; Krieger, de Feiter,
and Vaiana, 1970 Priest, 1978, Hood and Priest, 1979). The MHD equilibria of coronal
loops have been investigated by Priest (1981) and Tsinganos (1982).

In spite of the continuous pumping of magnetic and velocity field fluctuations into
the coronal plasma, the loops exhibit a fairly stable and well configured geometry. The
steady-state pressure structure is the result of the various manifestations of the balance
of the inertinl and magnetic forees. Krishan (1983a, b) discussed a steady-state model
of active region coronal loops using the statistical theory of incompressible magneto-
hydrodynamic turbulence described by Montgomery, Turner, and Vahala (1978). The
main features of the theory consists of using the MHD equations for an incompressible
fluid. The magnetic and velocity fields are expanded in terms of Chandrasekhar—K endall
(hereafter referred o as C=K) functions for which, the completeness has been proved
by Yoshida and Giga (1990), The pressure profile is derived as a function of the velocity
and magnetic fields in the form of Poisson cquation. The spatial profiles of lines in active
region loaps were also studied. The statistical mechanics of velocity and magnetic ficlds
in solar active regions was discussed by Krishan (1985). Krishan, Berger, and Priest

* Permanent address: Department of Physics, Mount Carmel College Bangalore, 560 052, India.

Salur Physics 142: 249264, 1992,
€ 1992 Kluwer Academic Publishers. Printed in Belgium.
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(1988) discussed the dynamics of velocity and magnetic fields in coronal loops. Recently
Krishan, Sreedharan, and Mahajan (1991) have also presented a Vlasov-Maxwell
description of coronal loops which is a preparation for the study of kinetic processes
related to heating and acceleration of plasma particles.

The force-free magnetic fields (V x B = aB) and the Beltrami flows (V x ¥ = aV)
represent the minimum energy state of a magnetofiuid. A single C=K function represents
these configurations of the magnetic and velocity fields. The magnetofluid in the coronal
loop is belicved to be in an approximate state of the force-free fields with small
departures from the current-free ficlds of the photospheric fluid. Now, it is ‘quite
reasonable 1o expect the coronal loop ficlds and {lows to have departures from the-
strictly force-free configuration. By representing the fields by the superposition of the
C-K functions we can manocuvre these departures in a systematic and quantitative
manner.

We extend the carlier work on the steady-state structure of the pressure in coronal
loops, by representing the velocity and magnetic ficlds as the superposition of three
Chandrasckar—Kendall functions. This brings in the three-dimensional spatial variation
(r, 0, =) in the plasma pressure and the state is not force-free, although individually the
C-K functions represent a force-free state. The motivation behind the choice of three
(C=K) functions for velocity and magnetic ficlds is to extend this study to include the
time-dependence of pressure in coronal loops. The three-mode representation admits
the temporal behavioral of the ficlds in its most basic form. Besides a three-mode
representation also in principle exhibits chaotic behavior. The evolution of the resistive
magnctohydrodynamic equillibria is being studicd in order to understand the emergence
of preferred structures, if any, by Shan, Montgomery, and Chen (1991). A truncated
three-mode configuration has been explored by Chen, Shan, and Montgomery (1990)
and their results qualitatively agree with the predictions of the minimum dissipation
theory (Montgomery, Phillips, and Theobald, 1989) as well as with the computations
obtained using the numerical code (Dahlburg er «f., 1986, 1987, 1988 and Theobald
e al., 1989). We however plan to study the three-mode ideal system in order to qualify
the variations of the velocity and magnetic ficlds in the solar atmosphere, in terms of
nonlinear or stochastic fluctuations. In this paper we discuss only the three-dimensional
spatial pressure structure of coronal loops. '

In the next section, we present the MHD cquations for an incompressible fluid and

outline the pressure profile. Section 3 deals with a discussion of the results obtained in
this study.

2. Derivation of the Pressure Profile N

The coronal loop plasma is represented by a cylindrical column of length ‘L’ and radius
*R’. The mechanical pressure P is expressed as a function of velocity ¥ and magnetic
ficld B using the MHD equations '
= TR E — . &
W _OxBxE_ oy | )
p p . a
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- . (B ' e
Vxx B - Tau S 0kae 7 Cawkng s (1b)
ct
where pis the mass density and the force due to gravity has been neglected.
Using the identity (37 V)F = (V x 1) x ¥ + (1/2)7¥2, Equation (1a) becomes

VP + (1212 = [‘V “BYXB _ g pyx T/} i 2
) P &

Following Montgomery, Turner, and Vahala (1978), the velocity ficld ¥ and
magnetic ficld B in the loop plasma are represented by the superposition of Chandra-
sckhar=-Kendall functions. The complete dynamics can be described by a set of infinite
caupled nonlinear ordinary dilferential equations which are of first order in time for the
expansion coctlicients of veloeity and magnetic fields and it is a formidable task to find
solutions o these equations. Hencee, here we choose to represent the fickds by the
superposition of the three lowest order C-K functions. Another justification for doing
s0 is that these functions represent the largest spatial scales and thercefore may be the
most suitable states for comparison with observed phenomena.

150
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Frg Lo Radeal variation of the pressure 2, for different axial distances, Z.
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In the triple-mode system,

7 = }‘u"a(’)zu + )'hr’h(r);ih + }‘rnv(’)zg- ’ (3)
B =L 04, + MEWMA, + AL (A, . )
- im ik, 0 & mk
Apn\r) = ér — e 4 -t hum T+
( [ £ ﬂ] v [ o ra,,,.,] y
12 - k.‘! ‘
+ €, S nem 5
-[ lnm ]‘Il ©)

where .
lp’"" = Jl"(‘)’ll"lr) cxp (i"' () + i kll:)’ .

n=0,F1,F2,...,

A’nm =F 2m + k:‘: 1/2’ k,, =2mn L,
o ) 3 f m=0,F1,F2,...,

— v - .
A""l = (IUH(’H'U(') M

s and &s are in general complex.
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112
R ' 323 _
o~
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>t _
' .
£ sef 200
28— -
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r=0.0
1 1 L { 1 1 JY°1 1
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Fig. 2. Axial variation of the pressure £, for different radial distances, r.
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The functions d,,, satisty V< a,,, = Apptlym- om €an be determined from the
boundary conditions for a perfectly conducting and rigid boundary since the observa-

tions do show very well-defined loop structures aligned with the magnetic ficld across
which there is little or no transport. Thus the radial component of the velocits and the
magnetic feld \':mish at the surface r = R, ie

R I\u I um™ nr( IIIIIIR) t ’”}nm m(lumR) = 0 . (h)
However, for the (0 0 - m) mode, ¥, B, - 0, and the 3y, is determined from the
constaney of the ratio of the toroidal and poloidal magnetic fluxes as

v, - 'l('|(7'(}()R) R Yoo |

: 7
l/I/l ' 'l(l(;'()(lle) I' )"(Hl ' )

|
10 15 20
(Ya1 1)
Fig. 5. Contour plot of the pressure Py as a function of 3,,r and Z’

when s averaged. Each unit of the
axes corresponds 1o 3, ¢ = 0.1 and Z* = 0.3, rt.spct.uvnly
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C,,,p is the normalizing constant which rddlub A,,,,, da,,, by

mamn'

o ' =
A nm ( wmtn ‘lnd j."!z'm' Aum d r= 6nn' O
The dynamices can be described by taking the inner products of the curl of Equations
(1a) and (1b) with 4%, and integrating over the volume. The resulting six comples,

coupled nonlinear ordinary differential equations are

M, An,

«f . ()'-' - )'II)I[ Nl — :l!t‘('/p] Al . (H)
v “
~ \ .). .
U Ao G = 23, = £, 101, )
¥ b
on. /1 \
-\Ifl " ; (Alr - lu)l*[ ,’u’lll él;.‘fu/p] ’ (l())
¢ .
]
i
[} .

» . ) - " 3
(';',,|")

Fig. 6a. 'Density plot of the pressure Py as a function of y,,» and Z'.
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aécl

2= ApAd (& = 0l
ot

(1)

'.\E
(%h = )'(‘At;l* [r’(* éu - ,’Né(".‘] M (l:)
0t

¢,
= A G - ] (13)
ot

where 7 - [ A% (4, x A.) d*r and the (n, m) values of the modes (a, b, ¢) satisty the
conditions n, = n, + n,and m, = m, + m,.
It can be shown that

(VNxBYx B Y AA&EA, - A) A, x A, (1

e by
2 bhyeou
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Vxxpy- ¥ 20 = A) A, x A, (15)
i a, b, ¢ '
so that Poheou

. £E ) "l:'
VPIp + (/202 = % 2404, - 4) (-?-'-*! - n,.n,)A,x 4" (o)
’ NP ) ' ¢t

o b, ¢
2 oboe

In this paper we confine our study o the st

cady-state solution to the pressure. For the
steady-state & [, F -0

<and henee, we find from Equations (8) 1o (13)
= P e 'Y and n.= & ph?,
Fquation (10) reduces to
V(Pip o+ (1,1 0.

e Pop 121 constant,

I the value of 2 at the origin (r -0, z=0)is P, then
& b}

Pip=Pofpv (12015 - (1/2) 12, (17)

where B, is the velocity at the origin (r - 0, = = 0).

3. Discussion

The spatial variation of pressure is presented for a cylindrical column of plasma for
which the ratio of the radius R (o length L has been taken to be RIL =} and the
ratio of the toroidal 1o poloidal flux Yl = 0.1,
Wehave chosen two triads o, b, ¢ such that they represent the largest possible spatial
scales, as well as satisfy the condition « = b+ ¢ These are:
ap =L, 1), h =(1,0). and e, =(0,1);
ay = (0,0), by = (1,1). and G=(~-1, -1
The corresponding values of! s and A's are found to be (from Equations (6) and (7))
TR o~ 3.23, PR = 385, yaR = 3.85,
AR 320, IR 390, 2 R = 3.85,

and

raaR 1, iR 3,23, YR = 3,23,
/.‘.‘,_?R = 1-44. ).,,:..R = 3.29. .)u'.zR = 3.29 o
The total energy F of the loop plasma in

XX A2 Though we have
there is no obvious w

a given configuration (. b, ¢) is given by
some estimate of the total energy of a typical loop
ay of fixing the relative magnitudes of the three
tl considerations we can use
maodes, as is usually done whenever three

modes. However,
to fix the relative strengths of the three -
mode interactions arc involved.

there are two physic:
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3.1. Cask 1

The first is the pump approximation under which one of the three modes is taken to he
the strongest. For example, here since the conservation conditions give a = b + ¢, we
can take ‘¢’ to be the dominant mode and call it the pump which shares its energy with

the other two modes. This will become evident in the time-dependent description.
T refore, let

AAn2>Azn: and 23> 2920 (1%)

AL Pressure () Structure in the Configuration (ay, by, ¢,)

For the trind (¢, by, ¢y)

’hrl/”ﬂl < lcll /lhl = (0.8435 and "I.-l/’hl < AMI/’I:'I = 0'8658'

We choose

[Hatl = 107, [Ny ] = 8 x 10° = (Ml

so that the pump approximation is valid. The expression on the right-hand side of
Equation (17) has been averaged over a full cyele of 0 and pressure (P, - P,) is plotied
as a function of 3, r for different values of =* (= = (z/L) x 10)in Figure 1. It can be seen
that the pressure (or temperature) at any height increases along the radius towards the
surface. The radial variation of pressure is the maximum at the foot points of the loop
and it is minimum at the apex. This is in confirmation with the result of Levine and
Withhroe (1977) who showed that the coronal foops undergoing dynamic changes are

80'00 T

33-00

6-00

-21-u0}-

{ PZ—PO)XIOO

-48-00[—

~75:00 ;
0-00 2:00 4-00 6-00 8-00 10-00

g, 8. Axial variation of the pressure P, for 00 = n/4 and different radial distances.
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characterized by a temperature structure in which there is a cool core relative to the
substantially hot surrounding sheath.

In Figure 2, (P, — P,) is plotted against z’ for various values of (y,,r). The axial
variation of the pressure is maximum at the axis and minimum at the surface. The
maximum value of the pressure is attained near the apex for all values of (y,,7). This
is in agrecement with the results of Rosner, Tucker, and Vaiana (1978).

Figure 3 presents the radial variation of the pressure for 0 = 0, x/4, 7/2, and n when
the pressure is averaged over z. The pressure increases unifofmly for all values of .
Yur? < 2.0. However, for y,,7 > 2 the dependence of the pressure on the azimuthal angle
is significant.

Figure 4 shows the azimuthal variation of the pressure for different values of
T.17 > 2.0. The pressure exhibits an oscillatory behavior predominantly near the surface.

Figurc 5 depicts the contour plot of pressurc as functions of y,,r and =’ when the
pressure is averaged over 0.

Figure 6(a) is the density plot of the pressure. The darkest region corresponds to the
minimum pressure. As we proceed towards the apex, the shades hecome lighter and the
region of maximum pressure is reached. Figure 6(b) is the density plot of the pressure
when 17, >'5,.,. It is seen that the region of the maximum pressure has moved up.
However, when 1., > 1,,,, the region of the maximum pressure has shifted down. Thus
the region of maximum pressure need not necessarily be at the apex.

45-00 T
21-00f | =
144

- 3-00

-27-00

(Pz- PO)XIOO

-51-00

y
YG =0-0 7
2
~75-00 ! 1 L1 ] J‘—l/l !

0-00 0-62 1-24  1-86 2-48 3.10
J

Fig. 9. Azimuthal variation of the pressure P, for Z = 1./2 and different radial distances.
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3.1.2. ‘Pressure (Py) Structure in the Configuration (dg. b, ¢4)

For the triad «, = (0. 0), by = (1, 1) ;= (-1, - 1), using the incquality (18) and the
values 1,20 =2 x 107, 15,21 = 8 x 10° = | p.a|, we arrive at the following results:

Figure 7(at) presents the radial variation of the pressure for 0 = nn/4 and for dillerent
axial positions. In this case the maximum pressure as well as the maximum variation
in pressure is found at'z = L/4. '

Figure 7(b) shows the radial variation of pressure for § = 3n/4 and for z = 0, L/4, L/2.
and L. Here, the maximum pressure as well as the maximum variation in pressure is
at the foot points, in contrast to the case for 0 = /4.

The axial variation of pressure for 0 = n/4 and y,,r = 0, 0.72, and 1.44 is given in
Figure (8). The pressure shows an oscillatory behavior at the axis of the loop more
predominantly than towards the surface.

Figure 9 depicets the azimuthal variation of the pressure at the apex of the loop for
ditferent radial distance from the axis. In this case also the oscillatory nature of pressure
is evident., The maximum value is attained at the boundary.

3.2, Case 1l

kX

[ 3S)

o Pressure (P)) Structure in the Configuration (a,, by, ¢,)

The second physical consideration that can guide us is that the mode strengths vary in
proportion to their spatial scales. The mode with the largest spatial scale may be the
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Fig. 10. Same as in Figure | for 5., > n,,.
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strongest. Here since «, = (1. 1) and b, =(1,0) have the same spatial scale in the

='=direction and this spatiul scale is smaller than that of the mode ¢, = (0, 1), we can
assume ‘«," and A" to be of equal strength and less than the strength of ‘¢’ i.e.,

PRI S B ETLINP E e g
Aol = At Ao <AL

we chose 0= 107, [yt = 8.4 x 109 and [5,,] = 1.6 x 107 so that the above condi-
tions are satisfied. The radial pressure variation is presented in Figure 10 for different
axial positions. The maximum variation of the pressure is at the foot points as in
Figure 1. However, for other values of Z', the pressure tends to decrease initially and
then inereases monotonically after a certain radial distance, contrary to the pressure
profile given in Figure 1, where one sees a monotonically increasing pressure for all
vilues of Z'.

The axial and azimuthal variations of the pressure are given in Figures 11 and 12,
respectively. The trend is very similar to that presented in Figures 2 and 3.

3.2.2, Pressure (Py) Structure in the Configuration (ay, by, ¢3)

In this case the mode a4 = (0, 0) corresponds to the largest spatial scale and thercfore
if this is stronger than the other two we arrive at the conditions 42,12, > 347, and
A2an3s > AZ,n3, which are identical to the pump casc for the triad (ay, ba, ¢2) und the
pressure profiles have already been discussed.

3.3 CONCLUSION

In conclusion, the representation of velocity and magnetic ficlds by a three-mode
Chandrasckhar-Kendall functions brings out the three-dimensional features of the
pressure profile. We believe that the choice of the triads representing the variations of
veloevy and magnetic fields on the largest spatial scales permitted by the system,
provides a lairly realistic description of the loop plasma. Though the pressure structure
is a strong function of the relative amplitudes of the modes, the trends, like an increase
of pressure towards the surface and the existence of maximum somewhere along the
length of the loop, emerge as the genceral features. The temporal evolution of the pressure
is being considered and will be reported shortly.
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Abstract. The temporal evolution of pressure in solar coronal loops is studied using the ideal theory
of magnetohydrodynamic turbulence in cylindrical geometry. The velocity and the magnetic fields are
expanded in terms of the Chandrasekhar~Kendall (C-K) functions. The three mode representation
of the velocity and the magnetic fields submits to the investigation of chaos. When the initial
values of the velocity and the magnetic field coefficients are very nearly equal ,the system shows
periodicities. For randomly chosen initial value}of these parameters the evolution of the velocity and
the magnetic fields is nonlinear and chaotic. The consequent plasma pressure is determined in the
linear and nonlinear regimes. The evidence for the existence of chaos is established by evaluating the

invariant correlation dimension of the attractor-D;, a fractal value of which indicates the existence
of deterministic chaos.

1. Introduction

It is well known that loops are the dominant structures in the higher levels of
the solar atmosphere. Even though our knowledge of loops has greatly enhanced
in recent years as a result of observations in UV, EUV, and X-ray wavelengths
(Foukal, 1978; Levine and Withbroe, 1977; Vaiana and Rosner, 1978), we have
little empirical knowledge of the nature of the coronal magnetic field. Therefore a
discussion of the relationship between coronal loops and coronal magnetic fields
depend heavily on theoretical models.

Coronal loops exhibit a fairly stable and well-configured geometry in spite of
the magnetic and velocity field fluctuations in the plasma.Such a steady state is the
result of various manifestations of the balance of inertial and magnetic forces. Using
statistical theory of incompressible magnetohydrodynamic turbulence discussed
by Montgomery, Turner, and Vahala (1978), a steady-state model of active region
coronal loops was discussed by Krishan (1983a, b), Krishan (1985)/ Krishan,
Sreedharan, and Mahajan (1988) discussed the dynamics of velocity and magnetic
fields in coronal loops. A Vlasov—Maxwell description of coronal loops deriving
particle velocity distribution functions in an inhomogeneous plasma has been given
by Krishan, Shreedharan, and Mahajan (1991).

Recently Sreedharan er al. (1992) have studied the steady state structure of
the pressure in coronal loops, by representing the velocity and magnetic fields as
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2 K. SASIDHARAN ET AL.
the superposition of three (C—K) functions. They discussed in detail the threc-
dimensional spatial variation (r, 6, z) of the plasma pressure in coronal loops.

Inthis paper we extend the results obtained by Sreedharan et al. (1992) to include
the time dependence of velocity, magnetic field and pressure and study their evo-
lution. Since the evolution equations are coupled and nonlinear, the dependence
of their solutions on the initial conditions is expected to reveal chaotic behavior.
Towards this end,we investigate in this paper the existence of chaos in the evo-
lution of pressure in coronal loops by studying the power spectrum of the data
gencrated by the solution of the MHD equations and by evaluating the invariant-
dimension, especially the second order correlation dimension of the attractor 1),
of the syster: . , .

In the next section we derive the pressure profile for an incompressible fluid
using MHD equations. In Section 3 we give a discussion of the various aspects
of dynamics of the system by taking (i) the linear case, (ii) the pump approxi-
mation, and (iii) the full set of nonlinear coupled equations and the existence of
deterministic chaos by evaluating the second-order correlation dimension which
is an invariant parameter of the chaotic system. In this evaluation, we obtain the
following informations: (a) Is there an attractor and if there exists one,is it regular
or strange? (b) Is there only a single attractor or are there more than one? (c) What
is the embedding dimension so that in describing nonlinear processes characterized
by the set of given equations, what should be the dimensions of the phase space
to describe the dynamics of the system. We follow the algorithm that has been
proposed by Grassberger and Proccacia (1983). Section 4 deals with the discussion
of results of the temporal variations and chaotic behavior of the pressure profile.

2. The Pressure Profile

The pressure profile for an incompressible fluid can be expressed as a function of
velocity V and magnetic field B using MHD equations

VP (VxB)xB ,— = OV

= (V. - 1:
. > (V.-V)v 5 (1a)
— — = 8B
Vx(V xB) - 5 =0, b)

V.V=0 and P=nkT, (Ic)
where P is the mechanical pressure, n is the number density of particles, k& is
Boltzmann’s constant, and T is the temperature. The loop plasma is represented
by a cylindrical column of length L and radius R. p is the mass density and the
force due to gravity is neglected. The set of Eequations (1a), (1b), and (1c) form a
closed set of equations in the variables (V, B, p, and T").

Equation (1a) can be manipulated to yield
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The velocity field V' and magnetic field B can be represented as a superposition of
the Chandrasekhar-Kendall functions following Montgomery, Turner, and Vahala

(1978). In this_study we consider atriple-mode system for the velocity V' and
magnetic field B written as

T o= Z M)A (3)
" i=a,b.c,
B= Y \N&G@)A, 4)
© i=mabe, '
Enm = Cr'lmanmr) ) (4a)

Cnm is the normalizing constant [ 4, - A, d*F = 8pn, Emm, Where

_ _ . [im | ik, 6] . [_2 mkn]
Gnm(r) = é; [ - + A OF PYnm = €9 3 Thum Ynm+
2 32
+é, [________Anm kn] Ynm (4b)
Anm

Ynm = Jm(YamT) exp(im8 + ik, 2) ,
Anm = i(vim + l“%)l/z ) kn = 27”7‘/L1
n=0,Fl, F2,..., m =0, F1, F2, ... .

The functions @nm, satisfy V x @ = AnmGnm * Tnm can be determined from the
boundary conditions (Sreedharan er al., 1992). n; and ¢; are in general complex.

The dynamics can be described by taking the inner products of curl of Equations
(1a) and 1(b) with X,',m and integrating over the volume. The resulting six complex,
coupled, nonlinear ordinary differential equations are

dne _ Mo

” = -Ta—-(/\c i /\b)I[nbnc - €b§C/p] ) (%)
dnb _ AcAa _ [ _» »

dt Ap (Ae AT [nc"ﬂ - & f"/p] ! ()
dne  AaA siods o |
T =200 - Inams ~ &56a/0) ™
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Ej.{g = ’\b bl A(I[”}E = 1), éb] ¢ . (8)
dt S

df.‘ wl » -

—ds-té = Ae — A" [n2€a — Ma€7) ®
d ¢ *[ ok *

Tjét' = Aa = NI [n2& — npéa) 1o

where I = [ Ay (4, x A;)d?r and the (n, m) values of the modes (a, b, ¢)
satisfy the condition ng, = np + n. and m, = my + m.. Equation (2) with the

representation of V and B given in Equatlons (3) and (4) can be manipulated to
yield

= (P 1 T .7
v(; +,-2- z Z )\i)\jﬂinin'Aj) = Z (A= = Aj)%

i=a,b,cj=a,b,c

(6—’5—1 —nm;) (Aix4)~ Y On ;. (11)

i=a,ble

The expansion coefficients 7; and €; can be solved numerically from the dynamical

equations (5)—(10) which when substituted in Equation (11) determine pressure as
a function of space and time.

3. Dynamical Aspects

The temporal evolution of the pressure is presented for a cylindrical plasma column
of length ‘L’ and radlus ‘R’. The ratio of the toroidal to poloidal magnetic flux,
W(t)/¢(p) is taken as -3 We have chosen the triads a, b, c to represent the largest
possible spatial scales and also satisfy the conditiona = b+¢, asa = (1, 1),
b= (1, 0), ¢ = (0, 1). Corresponding values of ~; and ); are found to be 7, R =
3.23, 7R = 3.85, 7R = 3.85, voR = 3.29, \p,R = 3.90, A R = 3.85 for rigid
boundary as described in Sreedharan er al. (1992). The total energy E of the loop
plasma in a given configuration (a, b, ¢) is given by

E=2 5 MNmn+é).

i=a,b,c

There is no obvious way of fixing the relative magnitudes of the three modes even
though we have some estimates of the total energy of a typical loop.

There are two physical situations under which Equations (5)-(10) can be solved
analytically. (i) The linear case, (ii) the pump approximation.
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Fig. 1. Temporal evolution of pressure [P(t)} at an axial point of the coronal loop when the initial
values of the velocity and magnetic field coefficients are very nearly equal.

(i) THE LINEAR CASE

Here we study the time evolution of the small deviations of the velocity and
magnetic fields from their equilibrium valtes, i.e., we assume 1 = 19 + 1, € =

So b Srandthat g - o andapy oo g, £~ o for all modes, Assuming, both ) (1)

and ¢ (t) have time dependence through e*, we can obtain a dispersion relation
whose solution is

s =Fi I[N = Ac = Aa)? Imol* + W2(Ae = Ao = X)? Ine0 >~
=22(Aa = X = Ac)? maol?] /2.
Thus the system exhibits marginal stability since the perturbed quantities have

sinusoidal oscillations with a period which depends upon the equilibrium values
of the fields.

Figure 1 shows time variation of pressure for the initial values of 7; as follows

Imal =1.0,  |m| =20, |n =30,

Gal =11, J&l=21, |&]=31,
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Fig.2. The power spectrum [S(w) — (constant) limr— e T | foT ™t P(t) dt|?] corresponding to
the time variation of pressurc shown in Figure 1.

The corres|- nding power spectrum is shown in Figure 2. This discrete spectrum
clearly indicates that the pressure profile has a finite number of frequencies when
the magnitude of the velocity and magnetic fields are approximately equal initially.
This marginal stability exists only for the time scales for which the linearisation is
valid. The Skylab, UV and microwave observations do indicate that the loops are

.in a state of quasi periodic pulsations (Aschwanden, 1987).

(ii) THE PUMP APPROXIMATION

In the pump approximation one of the three modes is taken to be the strongest. For
example here since the conservation condition gives a = b + ¢, we can take ‘a’ to
be the dominant mode and call jt the pump which shares its energy with the other
two modes. The time evolution of the two modes does not produce any significant
change in the pump mode and hence we can neglect all time variations in (7, £,).
The system of six equations ((5)—(10)) therefore reduces to four (Equations (5)
and (8) are automatically satisfied under the pump approximation since both sides
of the equations are vanishingly small) with the additional assumption 7, = &, and
takes the following simplified form which can be solved analytically

d AcA

R S R | a2)
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e = 222 (0 — 2 In - e (1)
dc » » w

_(_;_b= )\a Ad [77c - 5:]% ) (14)
d .

__€_c_ = A XI [fb - "Ib]'ﬂa . (15)

‘Complex conjugatcs of Equation (13) and (15) gives

d?]: )\ )‘b

s P OUUBEN 16
dg; - |
at = nb]na a”n

and the differencc'of Equations (16) and (17) gives

== - 18
Gt ,\c NalXs — et Al (M6 = &) - (18)
A time derivation of Equation (12) can be written as

dnp
T AU 700 = Ae) (% = ha +30) (1= 65 19)

We have used Equation (18) in writing (19). In a similar manner we can write the

equation for d?n./dt.

One can therefore write these equations as

2
Sk = P+ Py, (20)
d?g

dtzc =P1'77c+P2', (2])

where
Ap Ao —
£b= I\a"Ac(nb.—Ob)’ Ib=nw~( a)‘ C)Eboy
AC (Ab - Aa)

€e O — )\b) (me = I) I.=n0+ » 3 ]

Py= A5 (Aa = X = A 1 [naf?,

P = /\i/\b(/\a s ) IIlz lﬂalz I,
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Iﬁ =P,

13‘.: = /\i/\c(’\a - )\b - )\c) I”l Inalzlc .

Integrating Equations (20) and (21) we get

nb=_46m+B€m—£2', E‘)—a‘t
n
C
. - ‘
77C=Qe‘</’m+ReV7"-‘—2£‘i, ,J i
‘ m

where 4, B, Q, R are to be determined by the initial conditions. This shows that
all the four field coefficients, n, €b, 7, &, exhibit growing and decaying modes.
This is understandable since there is an infinite capacity pump mode 7, &, in the

system at the expense of which 7, €, 7, & are growing. Thus in the case of pump
. approximation analytical solutions to the system can be found.

(ii1))CHAOS IN THE SYSTEM

Equations (5)—(10) are a set-of six ordinary first-order differential equations which
are highly nonlinear. It may further be realized that the velocity (7;) and magnetic
field (§;) components are both coupled which adds to the inherent nonlinearity
of the equations of motion - characteristic of MHD equations. These equations
in principle can be seen as equivalent to one ordinary sixth order differential
equation which will manifest all the nonlinearities and therefore may lead to chaotic
dynamics. To investigate this aspect we first determine the power spectrum of the
system.A broad band power spectrum is a sure indication of the existence of chaos
in the dynamics. An insight into chaotic system can be obtained by determining
the invariant parameters such as correlation dimensions D;, Kolmogorov entropics
K, Lyapunov exponents etc which are all infinite in number. However it has been
shown that of the infinite number of the correlation dimensions and Kolmogorov
information entropies, the second-order quantities are the most significant ones
and hence we shall determine D in the present analysis. We shall postpone the
determination of K; and Lyapunov exponents for a later occasion. We follow in
this the algorithm which was first proposed by Grassberger and Proccacia (1983)
and later developed by Atmanspacher and Schinegraber (1986) and Abraham er al.
(1986).

Let {Xo(t)} be the original time series with the data being taken at constant
interval. These data set can be rearranged so as to get (d -- 1) additional data sets

as

Xo(t). ..., Xo(tn),

Xo(t + At), ..., Xo(tn + At),
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Xo(ty + dAL), ... ,n Xo(ty + dAL)

we can consider the transpose of the above matrix as consisting of IV vectors having
d components in a d dimensional space. The general vector can be written as

Xi=(Xo(t1), --s Xo(t; + dAL)), t

wherei=1,..., Nand X;isa point in the constructed d-dimensional space. We
now evaluate the correlation function

. 1 -~ =
Ca(r) = Jim = Y. 6(r = X=X,
i7=1N

where @ is the Heaviside function defined as 6(z) = 0 for z < 0 and unity for
x > 0. This implies that if the absolute value of the vector difference | X; — X ;| is
less than r, we count it as unity and is zero if it is greater than r. We then construct
the small boxes of side  in the phase space and count the vector tips that lie in this
box. This counting. It is shown that as r becomes smaller Cy(r) ~ ¥ so that

log Cy(r) ~ vlogr.

Asr — 0 and d — oo, v takes a definite value which is called the second-order
correlation dimension and we get

Dy = lim 985d0)
o log(r)
d—oo

The correlation integral C(r) has to be calculated for several values of = with
respect to each particular dimension d of the constructed phase space. For cach
dimension d one wbtains log Cy(r) vs log(r) curve and the slope ¥ of the lincar
part of the curve can be obtained using least-ssquare fit. If the slope v converges
towards a finite value for higher values of d, this value is denoted by D>. When D»
is an integer, the system is regular and when it is a fractal the system is chaotic.

We have numerically solved Equations (5)-(10) for arbitrary initial values of
the field coefficients. The time evolution of pressure at an axial point of the loop
for initial values (|7o| = 4.0, |m| = 7.0, || = 10.0, &, = 8.0, |&| = 11.0,
|| = 14.0) is shown in Figure 3. The time variation is highly complex. The
corresponding power spectrum is shown in Figure 4. The spectrum is fluctuating and
broad band indicating the presence of chaos.A data set of 500 points corresponding
to this chaotic evolution of pressure is used to evaluate the information dimension-
D>-by the method described above. In Figure 5, we illustrate the converging slope
and the value of D5 is found to be 1.732. With the same initial conditions D, was
evaluated at a surface point and the slope does not seem to converge to a limiting
value. This is shown in Figure 6. The fractal value of D, evidences the existence
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Fig. 3. Time variation of pressure at an axial point of the loop when the initial values of the ficld
cocfficients 7a, T, 7 are much different from those of £a, &b, &e. respectively.
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Fig. 4. Power spectrum [.S(w)] corresponding to the time variation of pressure shown in Figure 3.
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of deterministic chaos. In a chaotic regime the system can either dissipate to an
attractor stage or can follow a stochastic (random) flow. As the dimension d of the
constructed phase space increases the slope v may converge to a limiting value.
In this case the flow will be confined to a geometrical object called attractor. The
converging value of the slope is the dimension D, of the attractor. The dimension of
the attractor measures the minimum number of independent parameters needed to
describe the system dynamics. In other words if D exists, there is a properly defined
dynamical system. The steady increase of slope v with d (Figure 6) evidently shows
that it cannot converge and consequently the number of degrees of freedom of the
system is increasing. Then the complexity of the system increases and it tends to a
more disordered state indicating that system behavior is stochastic.

4. Conclusion

In the equilibrium state 7, = £q, Mp = &b, Ne = & We disturb the system slightly
from the equilibrium state and study the time evolution for small departure from
equilibrium. In this case the system is shown to exhibit sinusoidal oscillation with
a period which depends upon the initial values of the field coefficients. In oth-
er words, when the system is perturbed from a state where the magnetic energy
B? /4 and the kinetic energy ( Ymu? are nearly equal, it exhibits marginal stabil-
ity. The microwave and X-ray observat:ons of coronal loops show quasi-periodic
oscillations with time scales ranging from a fraction of a second to tens of minutes
(Aschwanden, 1987, Svestka, 1994, and references therein). These oscillations
are usually interpreted in terms of magnetohydrodynamic waves in loop plasma
(Roberts, Edwin, and Benz, 1984). The observed power spectrum of pulsations
actually exhibits a more complex behaviour (e.g., Figure 1(d) of Svestka, 1994)
which appears quasi-periodic only if we ignore finer variations. Thus quasi-periodic
behaviour is expected only near cquilibrium as is shown in our studies and the lin-
car wave analysis studies, Under large departures from the equilibrium, a loop will
show a complex temporal structure which can only be described in terms of objects
with fractal dimensions in the phase space of the velocity and magnctic ficld.
Coronal loops being continuously subjected to external forcing through their foot
points and through their interaction with neighbouring regions are most likely to
be in a chaotic state of pressure fluctuations. Therefore, when there are large devi-
ations from equilibrium, i.e., for initial values of 74, 7, 7, much different from
those of &q, &b, &, respectively, the system is nonlinear and so is corresponding
time evolution of the pressure. In this case each individual mode becomes distinct,
stronger and mode-mode interaction can take place. In the pump approximation
case since the variation of the strongest mode is negligible when compared with
other modes, the interaction is between less number of modes of oscillations and
the system showed oscillatory behavior,wheréas the chaotic behaviour is caused
by the superposition of more than two modes of oscillation and due to strong
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nonlinear coupling between them as is indicated in the nonlinear case above. This
fact is evident in the evaluation of D,. Figure 5 shows the determination of Da
at an axial point. It is interesting to note that we get two asymptotic values one at
1.39 and the other at 1.73. It could be interpreted as the existence of two strange
attractors with embedding space of dimension 7 and 18 and the trajectory can land
up on either of these attractors. The fact that these are strange attractors (because
of fractal dimension) the trajectories could jump from one to the other. This clearly
shows the complexity of the situation. The curve of slope v vs dimension d at
r == IR does not show any saturation and that the curve is more or less centered
on the 45° line showing the presence of randomness or white noise as shown in
Figure 6. Thus as we proceed from the axis towards the surface the dynamics show
the development of strange attractors ending up in complete randomness.

In Figures 5 and 6 even though the initial values of £, and 7, are the same,those
of pressure P at (r = 0,¢ = Q) and at (r = R, t = 0) are not same. This difference
in Figures 5 and 6 is due to the different initial values of pressure at axial and
surface points. The transition from a strange attractor state to randomness requires
a much finer analysis which will be investigated on a future occasion. In conclusion
the time scale over which the system is stable or otherwise can be inferred only
by evaluating the Lyapunov constants which are sensitive to the initial conditions.
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Fig. 6. Corresponding to the chaotic time evolution of pressure at a surface point of the loop,the

slopes (v) of the linear part of the log Ca(r) vs log(r) curves are plotted against the dimension d.
The slopes do not converge to any limiting values.

Inverting the problem, by specifying the Lyapunov constants, one can possibly

evaluate the class of initial states which can give the observed life time of the
loops. '
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