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A B S T R A C T 

We propose an alternative scheme for the computation of the so-called ‘full non-LTE’ (non-local thermodynamic equilibrium) 
radiative transfer problem, assuming coherent scattering in the atom’s frame. This generalized problem should explicitly deal 
with the coupling between atomic velocities and the photon paths, thereby requiring the implementation of new numerical 
strate gies to solv e it. Recently, P aletou et al., presented a numerical scheme, based on the � -iteration, to solve this problem; 
ho we ver it needs to be initialized using the standard non-LTE solution with complete redistribution to achieve convergence. 
Our new scheme is based on accelerated � -iteration (ALI), which is robust and insensitive to the choice of the initial guess 
solution. After bench-marking our ne w iterati ve scheme against the previously developed � -iteration method, we demonstrate 
its robustness by studying its convergence behaviour. This ne w iterati ve scheme has been coded in the Julia language, and its 
main characteristics are hereafter described with some details. 

K ey words: Radiati ve transfer – Line formation – Numerical methods. 

1

A
L
t  

u
v
c
P  

l
r  

(  

a  

d  

t
n
L
s
d
c
2
2  

s
t
a  

p  

(

�

p  

n
s
c

t
m
t  

k  

i  

i
w  

a  

r
P  

c
P  

S
(  

a
n
d  

r  

r
fi
t

 

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf023/8161679 by Indian Institute of Astrophysics user on 05 January 2026
 I N T RO D U C T I O N  

lthough the non-local thermodynamic equilibrium (hereafter non- 
TE) radiative transfer problem was first solved numerically during 
he 60’s (see e.g. Huben ́y & Mihalas 2014 ), most of this endea v our,
ntil recently, have avoided to consider possible departures of the 
elocity distribution functions (VDFs) of the massive particles 
onstituting the astrophysical plasma, from Maxwellian. Paletou & 

eymirat ( 2021 , hereafter PP21 ) opened again this case, which was
eft aside in the astrophysical community since the mid-eighties (see 
eferences in PP21 ). As stated by Huben ́y, Oxenius & Simonneau
 1983 ), ‘[...] both the line profile coefficients of an atom and those of
 volume element of a gas can be determined only if one knows the
istribution functions of photons and particles, that is, if one solves
he entire problem of spectral line formation in a self-consistent man- 
er’. Hereafter we shall therefore deal with the so-called ‘full non–
 TE’ (FNL TE) problem, which aims at computing self-consistently 
uch VDFs with the radiation field in a stellar atmosphere. Recent 
evelopments of the FNLTE approach to radiative transfer for the 
ase of naturally broadened upper level atoms (Sampoorna et al. 
024 ) and for multilevel atoms (Lagache, Paletou & Sampoorna 
025 ) make it possible to describe in greater detail the dynamical
tate of massive particles in astrophysical atmospheres. Extending 
his formalism to the calculations of electrons distribution would 
lso give access to a physical quantity that is critical for plasma
rocesses. FNLTE is also rele v ant for the transfer of polarized light
see e.g. Landi Degl’Innocenti & Landolfi 2004 , §13). In general, 
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recise knowledge of the VDF’s would impro v e the coupling of the
on-LTE radiation transfer problem with (magneto-)hydrodynamic 
imulations that could potentially affect any atmosphere that requires 
onstraints on these VDF’s. 

The main difficulty of solving the standard non-LTE radiative 
ransfer come from the coupling between the radiation field and 
atter properties described respectively by the specific intensity and 

he source function. To calculate the source function, we need to
now the radiation field and vice versa. The radiative transfer is
ndeed a ‘difficult problem’ (see e.g. Rutily & Che v allier 2006 ). An
terative process such as the accelerated � -iteration (hereafter ALI) 
ith a diagonal operator, represents a method of choice since the

dvent of Olson, Auer & Buchler ( 1986 ) and, opened-up a wide
ange of applications, from multidimensional problems (e.g. Auer & 

 aletou 1994 ), multi-lev el ones (Rybicki & Hummer 1991 , 1992 ) to
omplete and partial redistribution on frequency (hereafter CRD and 
RD) ones (P aletou 1995 ; P aletou & Auer 1995 ) or polarization (e.g.
ampoorna, Nagendra & Stenflo 2013 , and references therein) etc... 
see also Huben ́y & Mihalas 2014 , for a more comprehensive list of
pplications). The numerical difficulties involved in solving the full 
on-LTE problem are further escalated, as the scattering integral now 

epends not only on the radiation field but also on the velocity of the
adiating atom. In other words the VDF of the excited level of the
adiating atom needs to be determined consistently with the radiation 
eld. Thus the ALI based methods need to be suitably generalized 

o treat such problems. 
In this paper, we propose a new ALI based iterative scheme

hich provides an alternative and a more robust solution method, 
s compared to the one first proposed by Paletou, Sampoorna &
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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eymirat ( 2023 , hereafter PP23 ). Section 2 explains this new scheme,
or the case of coherent scattering in the atom’s frame. Then Section 3
rovides classic benchmark results, validating the new approach.
ost important technical details are presented in Appendices A and
. Conclusions are given in Section 4 . 

 VELOCITY  -BY  -VELOCITY  M E T H O D  

n this section we develop an ALI based v elocity-by-v elocity method
o solve the problem at hand. The concerned basic equations are
resented in detail in PP21 and PSP23. We refer the reader to
hese articles. Here we focus directly on the new numerical method
f solution. We remark in passing that like in PP21 and PSP23,
he intensity and the source function are normalized to the Planck
unction (specifically the Wien function, as we neglect stimulated
mission). 

.1 The iterati v e problem 

hen we examine each of the quantities presented in previous works
 PP21 , PSP23; Sampoorna et al. 2024 ), the most critical quantity that
eeds to be calculated is the partial scattering integral ˜ J 12 ( u, τ ). It is
irectly related to the radiation field, which allows us to implement an
LI-based method (see e.g. Huben ́y & Mihalas 2014 , and references

herein). Numerically, we compute the radiation field by performing
uccessive formal solutions of the radiative transfer equation. This
peration is expressed, using the so-called � xμ-operator 1 as : 

 xμ = � xμ[ S x ] , (1) 

ith S x the isotropic source function. 
By injecting equation ( 1 ) into the definition of ˜ J 12 ( u, τ ) given in

quations ( 6 ) and ( 1 ) of PSP23, we then have a problem expressed
n term of a velocity-dependent quantity : 

˜ 
 12 ( u, τ ) = 

∮ 

d �u 

4 π

∮ 

d �

4 π

∫ +∞ 

−∞ 

δ( x − � u · � �) � xμ[ S x ]d x , (2) 

here � �u and � � are respectively the direction of the velocity of
he atoms and the direction of the light ray (note that here we use
he conventional ‘reduced frequency’, x, as well as the normalized
elocity of the atoms, u which was introduced by PP21 ). 

Our aim is therefore to solve the FNLTE radiative transfer problem
orking directly on velocities u , and a v oiding the explicit use of

tandard redistribution functions (Hummer 1962 ). Here, we propose
o write an iterative scheme working directly on ˜ J 12 ( u, τ ). First, we
eplace the source function S x by its expression, where ϕ( x) and
( x) are respectively the absorption and emission profiles in the

bserver’s frame : 

 ( x , τ ) = [ ε + (1 − ε) J 12 ] 
ψ( x, τ ) 

ϕ( x) 
, (3) 

ith J 12 the v elocity-av erage of ˜ J 12 defined as : 

 12 = 4 
∫ ∞ 

0 

˜ J 12 ( u, τ ) u 

2 f M ( u )d u . (4) 

ere, we define the 1D Maxwellian distribution f M ( u ) as : 

 

M ( u ) = 

1 √ 

π
e −u 2 . (5) 
ASTI 4, 1–6 (2025) 

 The radiation field is axisymmetric in a planar atmosphere, so that it and 
ther quantities such as � depend only on the cosine of the angle made by 
he ray with the atmospheric normal, namely μ. 

 

t  
sing equation ( 5 ) of PSP23, we can rewrite equation ( 3 ) as : 

 ( x , τ ) = 

1 

1 + ζ
· 2 

ϕ( x) 

∫ ∞ 

| x| 

[
ε + (1 − ε) ̃  J 12 ( u, τ ) 

]
uf M ( u )d u 

+ 

ζ

1 + ζ
[ ε + (1 − ε) J 12 ] · 2 

ϕ( x) 

∫ ∞ 

| x| 
uf M ( u )d u . (6) 

ince: ∫ ∞ 

| x| 
f M ( u ) u d u = 

1 

2 
ϕ( x) = 

1 

2 
· 1 √ 

π
e −x 2 , (7) 

e can also write : 

 ( x , τ ) = 

1 

1 + ζ

[
ε + (1 − ε) · 2 

ϕ( x) 

∫ ∞ 

| x| 
˜ J 12 ( u, τ ) uf M ( u )d u 

]

+ 

ζ

1 + ζ
[ ε + (1 − ε) J 12 ] . (8) 

By inserting this expression for the source function into equa-
ion ( 2 ) together with equation ( 4 ), we can express ˜ J 12 as a function
f itself , namely, 

˜ 
 12 ( u, τ ) = 

1 

1 + ζ
I 

{
� xμ

[
ε + (1 − ε) · 2 

ϕ( x) 

×
∫ ∞ 

| x| 
˜ J 12 ( u 

′ , τ ) u 

′ f M ( u 

′ )d u 

′ 
]}

+ 

ζ

1 + ζ
I 

{
� xμ

[
ε + (1 − ε) · 4 

×
∫ ∞ 

0 

˜ J 12 ( u 

′ , τ ) u 

′ 2 f M ( u 

′ )d u 

′ 
]}

, (9) 

here I describes the operation : 

{ f ( x) } = 

∮ 

d �u 

4 π

∮ 

d �

4 π

∫ +∞ 

−∞ 

δ( x − � u · � �) f ( x)d x . (10) 

he expression in equation ( 9 ) provides the mathematical statement
f the numerical problem that we intend to solve iteratively. 

.2 An approximate operator approach 

s usual, we decompose the � xμ-operator : 

 xμ = � 

∗
xμ + ( � xμ − � 

∗
xμ) , (11) 

here � 

∗
xμ is an approximate (diagonal) operator of � xμ. At a given

teration, we update ˜ J 12 by adding a small correction δ ˜ J 12 to the
reviously calculated value ˜ J 

† 
12 : 

˜ 
 12 = 

˜ J 
† 
12 + δ ˜ J 12 . (12) 

he key point is then to have an expression for the correction δ ˜ J 12 at
very iteration. Combining these last two equations with equation ( 9 ),
e have, to first order : 

˜ J 
† 
12 + δ ˜ J 12 

≈ 1 

1 + ζ
I 

{
� xμ

[
ε + (1 − ε) · 2 

ϕ( x) 

∫ ∞ 

| x| 
˜ J 
† 
12 ( u 

′ , τ ) u ′ f M ( u ′ )d u ′ 
]}

+ 

ζ

1 + ζ
I 

{
� xμ

[
ε + (1 − ε) · 4 

∫ ∞ 

0 

˜ J 
† 
12 ( u 

′ , τ ) u ′ 2 f M ( u ′ )d u ′ 
]}

+ 

1 

1 + ζ
I 

{
� 

∗
xμ(1 − ε) · 2 

ϕ( x) 

∫ ∞ 

| x| 
δ ˜ J 12 ( u 

′ , τ ) u ′ f M ( u ′ )d u ′ 
}

+ 

ζ

1 + ζ
I 

{
� 

∗
xμ(1 − ε) · 4 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) u ′ 2 f M ( u ′ )d u ′ 
}

. (13) 

If we look at these terms in detail, we can see that the first two
erms only depend on old quantities. Their sum can be interpreted
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s a formal solution i.e. the calculation of ˜ J 12 with a source function
hat depends only on S † x : 

 

† 
x = 

1 

1 + ζ

[
ε + (1 − ε) ̄J † x 

] + 

ζ

1 + ζ

[ 
ε + (1 − ε) J 

† 
12 

] 
, (14) 

ith : 

 ̄

† 
x = 

2 

ϕ( x) 

∫ ∞ 

| x| 
˜ J 
† 
12 ( u 

′ , τ ) u 

′ f M ( u 

′ )d u 

′ . (15) 

efining : 

 1 = I{ � 

∗
xμ · 2 

ϕ( x) 

∫ ∞ 

| x| 
δ ˜ J 12 ( u 

′ , τ ) u 

′ f M ( u 

′ )d u 

′ } , (16) 

nd, 

 2 = I{ � 

∗
xμ · 4 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) u 

′ 2 f M ( u 

′ )d u 

′ } , (17) 

quation ( 13 ) can be summarized, by writing 

 

{
� xμ[ S † x ] 

} = � u [ S 
† 
x ] , 

s : 

˜ J 12 − 1 − ε 

1 + ζ
( I 1 + ζ I 2 ) = � u [ S 

† 
x ] − ˜ J 

† 
12 = r u , (18) 

here r u can be interpreted as the residual between the formal 
olution � u [ S † x ] and ˜ J 

† 
12 , calculated at velocity u . Because I 1 and I 2 

re both integrals on δ ˜ J 12 ( u 

′ ), the previous equation can be rewritten
n a matrix form. We therefore introduce the matrix A ( u, u 

′ , τ )
efined at all velocities u and u 

′ , and all optical depths τ : 

 · δ ˜ J 12 = � r . (19) 

By inverting matrix A , we can compute, at a given iteration δ ˜ J 12 

nd thus update the current value of ˜ J 12 . Indeed integrals I 1 and I 2 
an be rewritten, by discretizing ( i for u ; j for u 

′ ), as : 

 1 = 

∑ 

j 

C ij δ ˜ J 
j 

12 ( τ ) , (20) 

nd, 

 2 = 

∑ 

j 

D ij δ ˜ J 
j 

12 ( τ ) , (21) 

here : 

 ij = 

{ 

2 � 

∗
x ( x= 0) 

ϕ( x= 0) W j f 
M 

j u j if i = 1 
1 
u i 

W j f 
M 

j u j 

∫ ū 
−ū 

� 

∗
x 

ϕ( x) d x elsewhere 
(22) 

 ij = 

{ 

4 � 

∗
x ( x = 0) W j f 

M 

j u 

2 
j if i = 1 

2 
u i 

W j f 
M 

j u 

2 
j 

∫ ū 
−ū 

� 

∗
x d x elsewhere 

(23) 

detailed calculation are presented in Appendix A ). 
In the abo v e equations, ū = min ( u i , u j ), and W j denotes the j -

h integration weights; f M 

j is the Maxwellian velocity distribution 
orresponding to u 

′ , and � 

∗
x results from the angular integration of

 

∗
xμ : 

 

∗
x = 

1 

4 π

∮ 

� 

∗
xμd � . (24) 

ow, we can discretize equation ( 18 ) as : 

˜ J i 12 − (1 − ε) 
∑ 

j 

B ij δ ˜ J 
j 

12 = r i , (25) 

here : 

 ij = 

1 

1 + ζ
C ij + 

ζ

1 + ζ
D ij . (26) 
Comparing equation ( 19 ) with equation ( 18 ), we can identify the
eft hand-side of equation ( 25 ) as the sum : ∑ 

j 

A ij δ ˜ J 
j 

12 , 

herein the elements of A at each depth are : 

 ij = δij − (1 − ε) B ij , (27) 

ith δij the Kronecker delta function. 
The form of matrix A given above is very similar to that obtained

y Paletou & Auer ( 1995 ) for the ‘frequency by frequency’ (FBF)
cheme the y dev eloped in order to solv e the two-lev el atom with
tandard PRD problem. We propose to call this new method as UBU
velocity by velocity). It can be described as: 

(i) Step 0: at each optical depth, compute A ij coefficients (only 
nce) and initialize a first value of the partial scattering integral
˜ 
 12 ( u, τ ); 
(ii) Step 1: compute scattering integral J 

† 
12 ( τ ) from equation ( 4 ); 

(iii) Step 2: compute excited atoms velocity distribution function 
 

† 
2 ( u, τ ) from equation ( 3 ) of PSP23; 
(iv) Step 3: compute emission profile ψ 

† ( x, τ ) from equation ( 4 )
f PSP23; 
(v) Step 4: compute source function S † x ( τ ) from equation ( 3 ); 
(vi) Step 5: compute a formal solution � u [ S † x ]; 
(vii) Step 6: compute the residual r u = � u [ S † x ] − ˜ J 

† 
12 ; 

(viii) Step 7: solve A · δ ˜ J 12 = � r to obtain the correction δ ˜ J 12 ; 
(ix) Step 8: update ˜ J 12 = 

˜ J 
† 
12 + δ ˜ J 12 and go back to Step (1). 

Our UBU method has been coded in Julia because of the significant 
ain in computation time ( ≈ 13 times faster than Python to solve the
NLTE problem). 

.3 Numerical implementation 

n practice, the computation of quantities such as the partial scattering 
nte gral, the v elocity distribution of e xcited atoms, the emission
rofile, and source function remain unchanged, as compared to 
SP23. To implement an approximated operator method such as 
BU, we only need to compute matrix A , and solve the system in

quation ( 19 ). Care must be taken when computing A ij coefficients
o ensure normalization of critical quantities such as emission profile 
r velocity distributions. With the FBF scheme, we use normalized 
requency redistribution functions given a priori. The quantities 
o be normalized are therefore obvious. In contrast, looking at 
quations ( 22 ) and ( 23 ), normalization is a problem by itself. Here,
e propose to check the following relation (for more details, see
ppendix B ) : 

∑ 

j 

C ij = 

∑ 

j 

D ij = 

1 

2 u 

∫ u 

−u 

� 

∗
x d x � N i . (28) 

herefore the normalization procedure is : 

(i) Step 0: calculate C ij and D ij using equations ( 22 ) and ( 23 ),
hen calculate 

∑ 

j C ij and 
∑ 

j D ij ; 
(ii) Step 1: calculate N i and deduce the ratio α = N i / 

∑ 

j C ij =
 i / 

∑ 

j D ij ; 
(iii) Step 2: at each depth, normalize by writing C 

new 
ij = αC ij and

imilarly for D ij . 
RASTI 4, 1–6 (2025) 
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R

Figure 1. Frequency variation of normalized source function at different 
optical depth τ . Horizontal black dashed lines show CRD solutions for τ = 

0 , 1 , 10 , 100 , 10 3 , 10 4 . We compare UBU results with ‘standard’ PRD results 
(black open circle). CRD and PRD solutions are computed using the ALI 
and FBF methods, respectively. Clearly we recover the results presented in 
fig. 1(c) of Hummer ( 1969 ) and fig. 1 of PSP23. 

3

P  

s  

a  

n  

o  

S  

t  

s  

p  

L  

q  

a  

t  

i  

t  

i  

t  

b

Figure 2. Maximum relative error to FBF reference solution in three cases : 
Initialization of source function to CRD solution for PSP23 method (dashed 
line) and our new UBU method (full line); initialization of source function to 
Wien function B W 

for PSP23 method (dash-dotted line). These solutions are 
calculated under the same conditions as Fig. 1 . 
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 RESU LTS  

SP23 have shown that, in the case where velocity-changing colli-
ions are negligible ( ζ = 0), we have an equi v alence between FNLTE
nd standard PRD, thereby providing a valuable benchmark. For our
ew scheme, we then compare our results with standard PRD results
btained using the FBF method. We compute the source function
 ( x , τ ) for an 1D semi-infinite and plan parallel atmosphere of

otal optical thickness τmax = 10 6 , with ζ = 0 and ε = 10 −4 . We
ample the optical thickness with a logarithmic grid using 5 points
er decade. We perform angular integration with (i) a 6 points Gauss-
egendre quadrature for μ integration and (ii) a 10 points rectangular
uadrature for the azimuths ϕ ∈ [0 , 2 π ]. Reduced frequencies, x,
nd normalized velocities u grids are identical; they span from 0
o x max , u max = 6 with a step size of 0.1. Frequency and velocity
ntegrations are performed using a trapezoidal quadrature. We use
he Wien function B W 

as the initial guess for the partial scattering
ntegral ˜ J 12 . We run the UBU method for 75 iterations [for this case,
here is no need to go beyond as the error term defined in equation ( 29 )
ecomes constant at around 60 iterations]. 
ASTI 4, 1–6 (2025) 
The UBU solution for the source function is shown in Fig. 1 ,
here we also compare it to the standard PRD results obtained with
BF. Our UBU method clearly reproduces accurately the benchmark
esult of Hummer ( 1969 ), and also that of PSP23 thereby validating
ur alternativ e scheme. F or a more quantitativ e comparison we show
n Fig. 2 the maximum relative error E rel between the UBU source
unction, S, and from the standard PRD source function, S FBF , where
 rel is defined as: 

 rel = max 
τ,x 

∣∣∣∣S − S FBF 

S FBF 

∣∣∣∣ . (29) 

oth the UBU and PSP23 method were initialized with an ALI-
RD solution. In Fig. 2 , we also show as dash-dotted black line

he maximum relative error to FBF for the PSP23 method, when it
as initialized with the Wien function S = B W 

. Clearly, we see that
 Wien initialization is very unsatisfactory for the PSP23 scheme,
hile the UBU method presented in this paper converges well, under

he same conditions, as we have already seen in Fig. 1 . This is
xpected, as the PSP23 scheme is based on a mere lambda iteration-
ike numerical scheme, while our UBU method is another ALI-based
terative technique. Also, under the same conditions, our new UBU

ethod is significantly faster than PSP23’s method, with a gain of
bout 20 iterations to achieve the solution with the same precision
 E rel ≈ 3 per cent). 

Ho we v er, re gardless of the scheme used, it seems difficult to obtain
 solution that reproduces the FBF solution with an accuracy better
han E rel ≈ 3 per cent. This can be explained by the radically different

ethods used in our FNLTE approach. 
As already noted abo v e, when compared to the PSP23 method,

ur new UBU method is less sensitive to initial conditions. This
ehaviour is illustrated in Fig. 3 where we compute a normalized
ource function using the UBU method initialized using S = yB W 

ith y between 0 and 1 (namely, a fraction of the Wien function).
ere we chose to show the source function at τ = 1, and at the line

entre x = 0. To compare these solutions, we also showed the FBF
eference solution S FBF ( x = 0 , τ = 1). From this figure, we see that
ur new method is also quite insensitive to the choice of the initial
ource function. 

art/rzaf023_f1.eps
art/rzaf023_f2.eps
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Figure 3. Normalized source function S ( x , τ ) / B W 

computed via UBU 

method and displayed at x = 0 and τ = 1 for an initialization at S init / B W 

= 

0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 (coloured full lines). As a reference for the convergence 
e v aluation, we use the solution computed using the FBF method (dashed 
black line). 
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 C O N C L U S I O N S  

e have shown that our new UBU scheme is significantly more 
obust than the method previously developed by Paletou et al. ( 2023 ).
n particular, we looked at the convergence of these two schemes and
howed that the UB U scheme w as quite insensitive to the choice of
he initial guess. We also show that fewer iterations were needed to
chieve the same level of accuracy. These two elements are important 
dvantages when it comes, in our future work, to dealing with more
omplex and more realistic cases (natural broadening, multi-level 
toms) where the computation time will be more demanding and for
hich a proper initialization may be an issue. 
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he validation of the abo v e-described results uses numerical solu-
ions obtained with the FBF scheme originally described in Paletou 
 Auer ( 1995 ), and using the standard redistribution functions of
ummer ( 1962 ). The latter results were not numerized, to the best
f our kno wledge. Ho we ver, a Julia version of the FBF numerical
ode will be available to the public via the HAL ( https:// hal.science/ )
latform in the coming months, enabling to reproduce easily the main 
eference results used for Fig. 1 . 
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PPENDI X  A :  D E R I VAT I O N  O F  T H E  MATRIX  

OEFFI CI ENTS  C i j A N D  D i j 

o obtain an expression for matrix A appearing in equation ( 19 ), in
articular for the C ij and D ij coefficients, we need to start from the
efinition of integrals I 1 and I 2 expressed in equations ( 16 ) and ( 17 ).
Using for u 	= 0, ∮ 

δ( x − � u · � �)d �u = 

2 π

u 

H ( u − | x| ) , (A1) 

here H is the Heaviside function, we can rewrite the operator I 
s : 

 { f ( x) } = 

1 

2 u 

∮ 

d �

4 π

∫ +∞ 

−∞ 

f ( x) H ( u − | x| )d x . (A2) 

n the definitions of I 1 and I 2 , we have I 1 = I{ f 1 ( x) } and I 2 =
{ f 2 ( x) } with : 

 1 ( x) = � 

∗
xμ · 2 

ϕ( x) 

∫ ∞ 

| x| 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ d u 

′ , (A3) 

nd 

 2 ( x) = � 

∗
xμ · 4 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ 2 d u 

′ . (A4) 

ince only the approximate operator � 

∗
xμ is dependent on the 

irection of the ray (via μ), using : 

1 

4 π

∮ 

� 

∗
xμd � = � 

∗
x , (A5) 

e obtain : 

 1 = 

1 

u 

∫ +∞ 

−∞ 

H ( u − | x | ) � 

∗
x 

ϕ( x ) 

∫ ∞ 

| x| 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ d u 

′ d x , 

(A6) 

nd, 

 2 = 

2 

u 

∫ +∞ 

−∞ 

H ( u − | x| ) � 

∗
x 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ 2 d u 

′ d x . 

(A7) 

By writing : ∫ ∞ 

| x| 
g ( u 

′ )d u 

′ = 

∫ ∞ 

0 
H ( u 

′ − | x| ) g ( u 

′ )d u 

′ , (A8) 
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t can be shown that : ∫ +∞ 

−∞ 

H ( u − | x| ) H ( u 

′ − | x | ) � 

∗
x 

ϕ( x ) 
d x = 

∫ ū 

−ū 

� 

∗
x 

ϕ( x ) 
d x , (A9) 

here ū = min ( u, u 

′ ). 
Finally, by reversing the order of integration between u 

′ and x and
sing the previous equation, we get: 

 1 = 

1 

u 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ 
∫ ū 

−ū 

� 

∗
x 

ϕ( x) 
d xd u 

′ , (A10) 

nd, 

 2 = 

2 

u 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ 2 
∫ u 

−u 

� 

∗
x d xd u 

′ . (A11) 

hese last result are only valid if u 	= 0. When u = 0, the Dirac
istribution forces x = 0, which in this case is equi v alent to: 

 1 = 2 
� 

∗
x (0) 

ϕ(0) 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ d u 

′ ; (A12) 

 2 = 4 � 

∗
x (0) 

∫ ∞ 

0 
δ ˜ J 12 ( u 

′ , τ ) f M ( u 

′ ) u 

′ 2 d u 

′ . (A13) 

By discretizing the integration over u 

′ with the index j and
ntroducing an analogous index i for u , we have: 

 1 = 

∑ 

j 

C ij δ ˜ J 
j 

12 

= 

{ 

2 � 

∗
x (0) 

ϕ(0) 

∑ 

j W j f 
M 

j u j δ ˜ J 
j 

12 if i = 1 
1 
u i 

∑ 

j W j f 
M 

j u j 

∫ ū 
−ū 

� 

∗
x 

ϕ( x) d x · δ ˜ J 
j 

12 else. 
(A14) 

nd, 

 2 = 

∑ 

j 

D ij δ ˜ J 
j 

12 

= 

{ 

4 � 

∗
x (0) 

∑ 

j W j f 
M 

j u 

2 
j δ

˜ J 
j 

12 if i = 1 
2 
u 

∑ 

j W j f 
M 

j u 

2 
j 

∫ u i 
−u 

� 

∗
x d x · δ ˜ J 

j 

12 else. 
(A15) 
ASTI 4, 1–6 (2025) 
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By identifying equations ( A14 ) and ( A15 ) with, respectively,
quations ( A12 ) and ( A13 ), we find the expression for C ij and D ij 

iven in equations ( 22 ) and ( 23 ). 

PPENDI X  B:  D E R I VAT I O N  O F  T H E  

O R M A L I Z A  T I O N  RELA  TI ONSHI P  

he aim here is to obtain an analytical expression for the sums : ∑ 

j 

C ij and 
∑ 

j 

D ij . (B1) 

hese sums can be calculated by injecting δ ˜ J 12 = 1 into the integrals
 1 and I 2 . In u 	= 0, we then have, using equations ( A6 ) and ( A11 ): 

∑ 

j 

C ij = 

1 

u 

∫ +∞ 

−∞ 

H ( u − | x | ) � 

∗
x 

ϕ( x ) 

∫ ∞ 

| x| 
f M ( u 

′ ) u 

′ d u 

′ d x , (B2) 

nd, ∑ 

j 

D ij = 

2 

u 

∫ +∞ 

−∞ 

f M ( u 

′ ) u 

′ 2 
∫ u 

−u 

� 

∗
x d xd u 

′ . (B3) 

sing: ∫ ∞ 

| x| 
f M ( u 

′ ) u 

′ d u 

′ = 

1 

2 
ϕ( x) and 

∫ ∞ 

0 
f M ( u 

′ ) u 

′ 2 d u 

′ = 

1 

4 
, 

e have : ∑ 

j 

C ij = 

∑ 

j 

D ij = 

1 

2 u 

∫ +∞ 

−∞ 

H ( u − | x| ) � 

∗
x d x 

= 

1 

2 u 

∫ u 

−u 

� 

∗
x d x � N i . (B4) 
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