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ABSTRACT

We propose an alternative scheme for the computation of the so-called ‘full non-LTE’ (non-local thermodynamic equilibrium)
radiative transfer problem, assuming coherent scattering in the atom’s frame. This generalized problem should explicitly deal
with the coupling between atomic velocities and the photon paths, thereby requiring the implementation of new numerical
strategies to solve it. Recently, Paletou et al., presented a numerical scheme, based on the A-iteration, to solve this problem;
however it needs to be initialized using the standard non-LTE solution with complete redistribution to achieve convergence.
Our new scheme is based on accelerated A-iteration (ALI), which is robust and insensitive to the choice of the initial guess
solution. After bench-marking our new iterative scheme against the previously developed A-iteration method, we demonstrate
its robustness by studying its convergence behaviour. This new iterative scheme has been coded in the Julia language, and its

main characteristics are hereafter described with some details.
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1 INTRODUCTION

Although the non-local thermodynamic equilibrium (hereafter non-
LTE) radiative transfer problem was first solved numerically during
the 60’s (see e.g. Hubeny & Mihalas 2014), most of this endeavour,
until recently, have avoided to consider possible departures of the
velocity distribution functions (VDFs) of the massive particles
constituting the astrophysical plasma, from Maxwellian. Paletou &
Peymirat (2021, hereafter PP21) opened again this case, which was
left aside in the astrophysical community since the mid-eighties (see
references in PP21). As stated by Hubeny, Oxenius & Simonneau
(1983), ‘[...] both the line profile coefficients of an atom and those of
a volume element of a gas can be determined only if one knows the
distribution functions of photons and particles, that is, if one solves
the entire problem of spectral line formation in a self-consistent man-
ner’. Hereafter we shall therefore deal with the so-called ‘full non—
LTE’ (FNLTE) problem, which aims at computing self-consistently
such VDFs with the radiation field in a stellar atmosphere. Recent
developments of the FNLTE approach to radiative transfer for the
case of naturally broadened upper level atoms (Sampoorna et al.
2024) and for multilevel atoms (Lagache, Paletou & Sampoorna
2025) make it possible to describe in greater detail the dynamical
state of massive particles in astrophysical atmospheres. Extending
this formalism to the calculations of electrons distribution would
also give access to a physical quantity that is critical for plasma
processes. FNLTE is also relevant for the transfer of polarized light
(see e.g. Landi Degl’Innocenti & Landolfi 2004, §13). In general,
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precise knowledge of the VDF’s would improve the coupling of the
non-LTE radiation transfer problem with (magneto-)hydrodynamic
simulations that could potentially affect any atmosphere that requires
constraints on these VDF’s.

The main difficulty of solving the standard non-LTE radiative
transfer come from the coupling between the radiation field and
matter properties described respectively by the specific intensity and
the source function. To calculate the source function, we need to
know the radiation field and vice versa. The radiative transfer is
indeed a ‘difficult problem’ (see e.g. Rutily & Chevallier 2006). An
iterative process such as the accelerated A-iteration (hereafter ALI)
with a diagonal operator, represents a method of choice since the
advent of Olson, Auer & Buchler (1986) and, opened-up a wide
range of applications, from multidimensional problems (e.g. Auer &
Paletou 1994), multi-level ones (Rybicki & Hummer 1991, 1992) to
complete and partial redistribution on frequency (hereafter CRD and
PRD) ones (Paletou 1995; Paletou & Auer 1995) or polarization (e.g.
Sampoorna, Nagendra & Stenflo 2013, and references therein) etc...
(see also Hubeny & Mihalas 2014, for a more comprehensive list of
applications). The numerical difficulties involved in solving the full
non-LTE problem are further escalated, as the scattering integral now
depends not only on the radiation field but also on the velocity of the
radiating atom. In other words the VDF of the excited level of the
radiating atom needs to be determined consistently with the radiation
field. Thus the ALI based methods need to be suitably generalized
to treat such problems.

In this paper, we propose a new ALI based iterative scheme
which provides an alternative and a more robust solution method,
as compared to the one first proposed by Paletou, Sampoorna &
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Peymirat (2023, hereafter PP23). Section 2 explains this new scheme,
for the case of coherent scattering in the atom’s frame. Then Section 3
provides classic benchmark results, validating the new approach.
Most important technical details are presented in Appendices A and
B. Conclusions are given in Section 4.

2 VELOCITY-BY-VELOCITY METHOD

In this section we develop an ALI based velocity-by-velocity method
to solve the problem at hand. The concerned basic equations are
presented in detail in PP21 and PSP23. We refer the reader to
these articles. Here we focus directly on the new numerical method
of solution. We remark in passing that like in PP21 and PSP23,
the intensity and the source function are normalized to the Planck
function (specifically the Wien function, as we neglect stimulated
emission).

2.1 The iterative problem

When we examine each of the quantities presented in previous works
(PP21, PSP23; Sampoorna et al. 2024 ), the most critical quantity that
needs to be calculated is the partial scattering integral Ji,(u, 7). It is
directly related to the radiation field, which allows us to implement an
ALI-based method (see e.g. Hubeny & Mihalas 2014, and references
therein). Numerically, we compute the radiation field by performing
successive formal solutions of the radiative transfer equation. This
operation is expressed, using the so-called A, -operator! as:

Ixu = Axu[sx] s (1)

with S, the isotropic source function.

By injecting equation (1) into the definition of Jio(u, 7) given in
equations (6) and (1) of PSP23, we then have a problem expressed
in term of a velocity-dependent quantity :

+00
Jio(u, 1) _?{ % / S(x —ii - Q)AW[S Jdx , (2)

where Qu and Q are respectively the direction of the velocity of
the atoms and the direction of the light ray (note that here we use
the conventional ‘reduced frequency’, x, as well as the normalized
velocity of the atoms, u which was introduced by PP21).

Our aim is therefore to solve the FNLTE radiative transfer problem
working directly on velocities u, and avoiding the explicit use of
standard redistribution functions (Hummer 1962). Here, we propose
to write an iterative scheme working directly on Jio(u, 7). First, we
replace the source function S, by its expression, where ¢(x) and
¥ (x) are respectively the absorption and emission profiles in the
observer’s frame :

(x,7)
Sx,7)=[e+ (1 — &)l 4 ; 3)
@(x)
with 7y, the velocity-average of J, defined as :
T =4 / JiaCu, O fM u)du @
0
Here, we define the 1D Maxwellian distribution f™ (i) as:
1
M)y = ——e . )

N

The radiation field is axisymmetric in a planar atmosphere, so that it and
other quantities such as A depend only on the cosine of the angle made by
the ray with the atmospheric normal, namely jt.
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Using equation (5) of PSP23, we can rewrite equation (3) as :

S D =17 o e+ (1 = &)Jialu, O] uf (u)du
+ L er ol —— [T ufrew.  ©
1+¢ o) L
Since:
o (u)udu-w(x) S @)
Ix| 2 Jm

we can also write :
S(x, 1) = % [e+( —e)- oo jlz(u,f)ufM(u)du}

7 + . [e+1A—-e)Tnl. ®

By inserting this expression for the source function into equa-
tion (2) together with equation (4), we can express Jj, as a function
of itself, namely,

Jio(u, ) = ﬁI{AW [8 +(1—¢)-

(
X /00 T, ou' fMu )du]}
[x]

¢
+71+£I{ i {e—i—(] —¢)-4
<[ " Tt o ] } ©)
0
where Z describes the operation :
dQu +00
Tiwi=§ e o [ ot oo, (10)

The expression in equation (9) provides the mathematical statement
of the numerical problem that we intend to solve iteratively.

2.2 An approximate operator approach
As usual, we decompose the A, -operator :
AX}J, = A;H + (AX;/. - Ai#) s (] 1)

where A} is an approximate (diagonal) operator of Ay,,. Ata given
iteration, we update Jia by adding a small correction § Jio to the
previously calculated value J 112 :

Jn = j1T2+5f12- (12)

The key point is then to have an expression for the correction §J, at
every iteration. Combining these last two equations with equation (9),
we have, to first order:

il]; +8J1

BTSN [£+(175) ~ Jha r)u’fM(u’)du’H
¢ " o0 Sy T2

T {Am [s +(1—¢) .4/ Jha, r)u'sz(u')du'] }
T

{A* 1—g)- 2
o w(x)

T+ {At”(l s)<4/0 8j12(u’,f)u'2fM(u')du'}. (13)

-

%1
+1+

4| = ¥

+

e 8]]2(14 o MW ydu’ }

w~

If we look at these terms in detail, we can see that the first two
terms only depend on old quantities. Their sum can be interpreted
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as a formal solution i.e. the calculation of J;, with a source function
that depends only on ST :

1 4 ¢

. B o7t
Sl= g e 0—oll+ fp[era-ogh] . a9
with :

T 2 *© T ’ ’ ’ ’

= o) S Tha!, o M w)du' (15)
Defining :
L =T{A}, - —— 8, oo’ fM (u'ydu'} (16)

©(x) Jx
and,
L =1T(A}, -4 / ST, Dy M uydu'}, a7
0

Equation (13) can be summarized, by writing
T{Aw IS} = AuLSTI,

as:

8, —1_8(1 +¢h) = AJST1— T (18)
-_— = u _— =ru7
12 T 1+¢h N 12

where r, can be interpreted as the residual between the formal
solution A,[ST]and J1,, calculated at velocity u. Because I; and I
are both integrals on § Jin(u)), the previous equation can be rewritten
in a matrix form. We therefore introduce the matrix A(u, u’, 7)
defined at all velocities # and u’, and all optical depths 7 :

A-8J,=F. (19)

By inverting matrix A, we can compute, at a given iteration 81
and thus update the current value of Jj,. Indeed integrals 7, and I,
can be rewritten, by discretizing (i for u; j for u’), as:

Il :ZC,‘js.iljz(T), (20)
J
and,
L=Y Dy, 1)
J
where :
ALx=0) .
- {2 w(xj=0) Wi fiu; ifi=1 22)
= i *
inijuj I w/t;)dx elsewhere

! (23)

AN = W, fMu? ifi =1
ij 2w, i [ A*dx elsewhere

(detailed calculation are presented in Appendix A).

In the above equations, # = min(u;, u;), and W; denotes the j-
th integration weights; f jM is the Maxwellian velocity distribution
corresponding to u’, and A¥ results from the angular integration of

® .
Ay,

* 1 *
AL = E AmdQ. (24)
Now, we can discretize equation (18) as:
ijz_(l—S)ZBiﬂSfljz=ri, (25)

J
where :
¢

B,=7C, 7D, 26

J 1+§ J + 1+§ J ( )

Comparing equation (19) with equation (18), we can identify the
left hand-side of equation (25) as the sum:

> A,
J
wherein the elements of A at each depth are :

Aij =68 — (1 —¢)Byj, 27
with §;; the Kronecker delta function.

The form of matrix A given above is very similar to that obtained
by Paletou & Auer (1995) for the ‘frequency by frequency’ (FBF)
scheme they developed in order to solve the two-level atom with
standard PRD problem. We propose to call this new method as UBU
(velocity by velocity). It can be described as:

(i) Step O: at each optical depth, compute A;; coefficients (only
once) and initialize a first value of the partial scattering integral
Jio(u, 7);

(ii) Step 1: compute scattering integral Jﬁz(r) from equation (4);

(iii) Step 2: compute excited atoms velocity distribution function
sz (u, t) from equation (3) of PSP23;

(iv) Step 3: compute emission profile ¥ (x, 7) from equation (4)
of PSP23;

(v) Step 4: compute source function Sj (t) from equation (3);

(vi) Step 5: compute a formal solution A,,[S;r 1;

(vii) Step 6: compute the residual r, = Au[S;r 11— flfz;

(viii) Step 7: solve A - §J1, = 7 to obtain the correction 8 J;,;

(ix) Step 8: update Jn = JNIT2 +8J, and go back to Step (1).

Our UBU method has been coded in Julia because of the significant
gain in computation time (& 13 times faster than Python to solve the
FNLTE problem).

2.3 Numerical implementation

In practice, the computation of quantities such as the partial scattering
integral, the velocity distribution of excited atoms, the emission
profile, and source function remain unchanged, as compared to
PSP23. To implement an approximated operator method such as
UBU, we only need to compute matrix A, and solve the system in
equation (19). Care must be taken when computing A;; coefficients
to ensure normalization of critical quantities such as emission profile
or velocity distributions. With the FBF scheme, we use normalized
frequency redistribution functions given a priori. The quantities
to be normalized are therefore obvious. In contrast, looking at
equations (22) and (23), normalization is a problem by itself. Here,
we propose to check the following relation (for more details, see
Appendix B):

ZCU:ZDU:%/HA;M%N% (28)
j j -

Therefore the normalization procedure is :

(i) Step 0: calculate C;; and D;; using equations (22) and (23),
then calculate Y ; C;j and 3 ; Dyj;

(i1) Step 1: calculate N; and deduce the ratio @« = N;/ Z_,‘ Cij =
Ni/>; Dij;

(iii) Step 2: at each depth, normalize by writing C;7" = aC;; and
similarly for D;;.

RASTI 4, 1-6 (2025)
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100 C T T T T T

Figure 1. Frequency variation of normalized source function at different
optical depth t. Horizontal black dashed lines show CRD solutions for 7 =
0,1, 10, 100, 103, 10*. We compare UBU results with ‘standard” PRD results
(black open circle). CRD and PRD solutions are computed using the ALI
and FBF methods, respectively. Clearly we recover the results presented in
fig. 1(c) of Hummer (1969) and fig. 1 of PSP23.

3 RESULTS

PSP23 have shown that, in the case where velocity-changing colli-
sions are negligible (¢ = 0), we have an equivalence between FNLTE
and standard PRD, thereby providing a valuable benchmark. For our
new scheme, we then compare our results with standard PRD results
obtained using the FBF method. We compute the source function
S(x, ) for an 1D semi-infinite and plan parallel atmosphere of
total optical thickness Ty = 10°, with ¢ =0 and & = 107*. We
sample the optical thickness with a logarithmic grid using 5 points
per decade. We perform angular integration with (i) a 6 points Gauss-
Legendre quadrature for  integration and (ii) a 10 points rectangular
quadrature for the azimuths ¢ € [0, 27]. Reduced frequencies, x,
and normalized velocities u grids are identical; they span from 0
t0 Xmax, Umax = O With a step size of 0.1. Frequency and velocity
integrations are performed using a trapezoidal quadrature. We use
the Wien function )y, as the initial guess for the partial scattering
integral Ji». We run the UBU method for 75 iterations [for this case,
there is no need to go beyond as the error term defined in equation (29)
becomes constant at around 60 iterations].

RASTI 4, 1-6 (2025)
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Figure 2. Maximum relative error to FBF reference solution in three cases :
Initialization of source function to CRD solution for PSP23 method (dashed
line) and our new UBU method (full line); initialization of source function to
Wien function By for PSP23 method (dash-dotted line). These solutions are
calculated under the same conditions as Fig. 1.

The UBU solution for the source function is shown in Fig. 1,
where we also compare it to the standard PRD results obtained with
FBE. Our UBU method clearly reproduces accurately the benchmark
result of Hummer (1969), and also that of PSP23 thereby validating
our alternative scheme. For a more quantitative comparison we show
in Fig. 2 the maximum relative error E, between the UBU source
function, S, and from the standard PRD source function, STB¥, where
E .. is defined as:

S — SFBF

E. = max
T,X

Both the UBU and PSP23 method were initialized with an ALI-
CRD solution. In Fig. 2, we also show as dash-dotted black line
the maximum relative error to FBF for the PSP23 method, when it
was initialized with the Wien function S = Byy. Clearly, we see that
a Wien initialization is very unsatisfactory for the PSP23 scheme,
while the UBU method presented in this paper converges well, under
the same conditions, as we have already seen in Fig. 1. This is
expected, as the PSP23 scheme is based on a mere lambda iteration-
like numerical scheme, while our UBU method is another ALI-based
iterative technique. Also, under the same conditions, our new UBU
method is significantly faster than PSP23’s method, with a gain of
about 20 iterations to achieve the solution with the same precision
(Er ~ 3 percent).

However, regardless of the scheme used, it seems difficult to obtain
a solution that reproduces the FBF solution with an accuracy better
than E & 3 per cent. This can be explained by the radically different
methods used in our FNLTE approach.

As already noted above, when compared to the PSP23 method,
our new UBU method is less sensitive to initial conditions. This
behaviour is illustrated in Fig. 3 where we compute a normalized
source function using the UBU method initialized using S = yBy
with y between 0 and 1 (namely, a fraction of the Wien function).
Here we chose to show the source function at T = 1, and at the line
centre x = 0. To compare these solutions, we also showed the FBF
reference solution S™BF(x = 0, T = 1). From this figure, we see that
our new method is also quite insensitive to the choice of the initial
source function.
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Figure 3. Normalized source function S(x,t)/Bw computed via UBU
method and displayed at x = 0 and t = 1 for an initialization at Sini¢/Bw =
0,0.25,0.5,0.75, 1 (coloured full lines). As a reference for the convergence
evaluation, we use the solution computed using the FBF method (dashed
black line).

4 CONCLUSIONS

We have shown that our new UBU scheme is significantly more
robust than the method previously developed by Paletou et al. (2023).
In particular, we looked at the convergence of these two schemes and
showed that the UBU scheme was quite insensitive to the choice of
the initial guess. We also show that fewer iterations were needed to
achieve the same level of accuracy. These two elements are important
advantages when it comes, in our future work, to dealing with more
complex and more realistic cases (natural broadening, multi-level
atoms) where the computation time will be more demanding and for
which a proper initialization may be an issue.
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DATA AVAILABILITY

The validation of the above-described results uses numerical solu-
tions obtained with the FBF scheme originally described in Paletou
& Auer (1995), and using the standard redistribution functions of
Hummer (1962). The latter results were not numerized, to the best
of our knowledge. However, a Julia version of the FBF numerical
code will be available to the public via the HAL (https://hal.science/)
platform in the coming months, enabling to reproduce easily the main
reference results used for Fig. 1.
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APPENDIX A: DERIVATION OF THE MATRIX
COEFFICIENTS C;; AND D;;

To obtain an expression for matrix A appearing in equation (19), in

particular for the C;; and D;; coefficients, we need to start from the

definition of integrals /; and I, expressed in equations (16) and (17).
Using for u # 0,

N 2 2
%B(x —i-Q)dQ, = “—H(u — |x]), (Al
u

where H is the Heaviside function, we can rewrite the operator Z
as:

1 dQ [t
T{fw)= 5. 7{ [ remE = (A2)

In the definitions of /; and I, we have Iy = Z{fi(x)} and I, =
Z{ fo(x)} with:

[y =A%, - —— [ 8T, o) M u'd (A3)
©(x) Jix)
and
frx)=A;, -4 / 8T, o) M yudu’ . (A4)
0

*

Since only the approximate operator AY,

direction of the ray (via w), using :

is dependent on the

1
— @ AT dQ = AT, A5
e f AudR = s
we obtain :
1 e A;kc « T / Mo oINS /
I, =— H(u —|x]) SJp', t) f7 (u')u'du’dx ,
U .J @(x) x|
(A6)
and,
2 oo * © s / My oy, 72 /
L =— Hu — |x|)AY SJp', ) f7 (u)u"du'dx .
—o0 0
(A7)
By writing :
/ gu)du' = / H@' — |x])g")du’, (AB)
[x| 0
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it can be shown that :

+00 A* it A*
Hu — |xDHW — |x])—= dxz/ *dx, (A9)
—o0 @(x) —i ¢(x)
where i1 = min(u, u’).
Finally, by reversing the order of integration between u’ and x and
using the previous equation, we get:

1 © s / Mo o IN, ! A: /
I =— SJip', ) (u)u dxdu’, (A10)
uJo —q p(x)
and,
_ % © s ’ Mo N, 72 ! * ’
L= 8T, ) M (' )u Atdxdu’ . (A1)
u Jo —u

These last result are only valid if # # 0. When u = 0, the Dirac
distribution forces x = 0, which in this case is equivalent to:

I = 2A;(0) h ST, ) M yu'du’ (A12)
»0) Jo

L, = 4A%(0) / ST, ) MW udu’ . (A13)
0

By discretizing the integration over u’ with the index j and
introducing an analogous index i for u, we have:

L=> Cysl,
J

A¥O = i
2% Wi s Ty ifi =1 Al
a2 Wi Sy [ (p%)dx -8}, else.
and,
L = Z D,,8J~{2
J
RO W, fMu2s g, ifi =1 a1s)
l. W, fMu? “"A*,dx-éjj else.
uizj JVj T —up Thx 12

By identifying equations (A14) and (A15) with, respectively,
equations (A12) and (A13), we find the expression for C;; and D;;
given in equations (22) and (23).

APPENDIX B: DERIVATION OF THE
NORMALIZATION RELATIONSHIP

The aim here is to obtain an analytical expression for the sums :
> Cij and Y D (B1)
J J

These sums can be calculated by injecting 8.J;, = 1 into the integrals
I, and I,. In u # 0, we then have, using equations (A6) and (A11):

! i A; = My oINS T,
ZCU:* H(u — |x]) Y Hu'du'dx (B2)
J UJ-co o) Jix
and,
2 +o00 u
Z D;; = - fM(u/)u/z/ A*dxdu’. (B3)
J —00 —u
Using:

%) 1 00 1
M u'du’ = E(p(x) and / M u*du’ = 7
0

x|

we have :
1 +00
Y Ci=> D= o H(u — |x[)A*dx
j j -
1 u . ~
= — [ Adx2 N (B4)
2u J_,
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