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Abstract

Although frequently reported in observations, the definitive confirmation of high-mass prestellar cores has
remained elusive, presenting a persistent challenge in star formation studies. Using two-band observational data
from the 3 mm ATOMS and 1.3 mm QUARKS surveys, we report a high-mass prestellar core candidate, C2,
located on the side of the bright-rimmed cloud IRAS 18290-0924. The C2 core identified from the 3 mm
continuum data of the ATOMS survey (∼2″, ∼10,000 au at 5.3 kpc) has a mass ranging from 27 to 68M⊙ for
temperatures 10–22 K within a radius of ∼2800 au. The highest-resolution (∼0.3, ∼1500 au) observations of this
source presented to date from the QUARKS survey reveal no evidence of further fragmentation. Further analysis
of a total ∼10 GHz bandwidth of molecular line survey does not find star formation activity (e.g., outflows and
ionized gas) associated with the core, with a few molecular lines of cold gas detected only. Additionally, virial
analysis indicates the C2 core is gravitationally bound (αvir ∼ 0.1−0.3) and thus could be undergoing collapse
toward star formation. These results strongly establish a candidate for a high-mass prestellar core, contributing to
the very limited number of such sources known to date.

Unified Astronomy Thesaurus concepts: Dust continuum emission (412); Interstellar medium (847); Sub-
millimeter astronomy (1647); Molecular clouds (1072); Star forming regions (1565); Massive stars (732)

1. Introduction

Understanding star formation requires tracing the evolution
of molecular gas from its earliest prestellar phase to the for-
mation of protostars (P. Andre et al. 2000). For high-mass
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stars, which typically form in clusters, their far distances, short
evolutionary timescales, and intense stellar feedback make it
particularly challenging to directly observe the formation
process (C. J. Lada & E. A. Lada 2003; Q. Zhang et al. 2009).
Despite extensive observational and theoretical research over
the past few decades, the exact mechanisms driving high-mass
star formation remain uncertain (F. Motte et al. 2018).
Currently, the two widely accepted models of high-mass

star formation are the “turbulent core accretion” model
(C. F. McKee & J. C. Tan 2003) and the “competitive accre-
tion” model (I. A. Bonnell et al. 2001). The former posits the
existence of a preassembled massive gas reservoir within a
clump, which contains the final mass required to form a high-
mass star. This structure, referred to as a massive prestellar core,
maintains stability against collapse due to support mechanisms
that include turbulence and magnetic fields. In contrast, in the
“competitive accretion” model, the massive gas clumps initially
fragment into thermal-Jeans-like low-mass cores. Subsequently,
these cores competitively accrete gas from the clump-scale
reservoir. Here, the more massive cores located deeper in the
gravitational potential well of the clump exhibit larger accretion
efficiency and accelerated mass growth. Furthermore, accretion
flows from filamentary structures associated with hub-filament
systems enable additional gas mass flow into the cores from
larger scales (>1 pc), facilitating the more efficient and rapid
formation of massive stars in the central hubs (e.g., N. Peretto
et al. 2013; E. Vázquez-Semadeni et al. 2019; P. Padoan et al.
2020; D. Yang et al. 2023; S. R. Das et al. 2024).
Extensive observational investigations from the Submillimeter

Array (SMA), Northern Extended Millimater Array (NOEMA),
and Atacama Large Millimeter/submillimeter Array (ALMA)
revealed that massive gas clumps predominantly fragment into
low-mass cores, which subsequently accrete gas and grow mass
to form massive stars (Q. Zhang et al. 2015; H. Beuther et al.
2018; P. Sanhueza et al. 2019; B. E. Svoboda et al. 2019;
S. Zhang et al. 2021; K. Morii et al. 2024; A. Coletta et al. 2025).
In comparison, case studies as well as large-sample statistical
analysis have not found conclusive evidence for the existence of
massive prestellar cores (e.g., F. Motte et al. 2007; S. Bontemps
et al. 2010; J. C. Tan et al. 2013; F. Louvet et al. 2019; W. Jiao
et al. 2023; K. Morii et al. 2023).
Based on numerous observational results, F. Motte et al.

(2018) proposed an evolutionary scenario for massive star
formation that excludes such high-mass prestellar cores.
However, the detection of a limited number of massive pre-
stellar core candidates (≳16M⊙; e.g., A. Duarte-Cabral et al.
2013; C. J. Cyganowski et al. 2014; K. Wang et al. 2014;
A. T. Barnes et al. 2023; X. Mai et al. 2024; F. Xu et al. 2024a;
M. Valeille-Manet et al. 2025) continues to sustain the debate
about massive star formation mechanisms. The detection of
specific molecular lines distinguishes the prestellar or proto-
stellar nature of dense cores (e.g., P. Sanhueza et al. 2019;
D. Yang et al. 2025), as star formation activity within proto-
stellar cores increases the ambient temperature, thus releasing
complex organic molecules (COMs; e.g., CH3OH) from grain
mantles into the gas phase, which then become observable
(T. Gerner et al. 2014). Reliable identification of high-mass
prestellar cores is challenging without a broad frequency range
survey of molecular lines (e.g., A. Duarte-Cabral et al. 2013;
K. Wang et al. 2014; T. Nony et al. 2018; J. Molet et al. 2019;
M. Valeille-Manet et al. 2025). In addition, their interpretation
is further complicated by the ambiguous absence of outflows

and the observed presence of fragmentation (A. Duarte-Cabral
et al. 2013; X. Mai et al. 2024).
The search for high-mass prestellar cores has primarily

focused on infrared-dark environments, as only these regions are
believed to harbor massive cloud cores in their earliest evolu-
tionary stages (e.g., J. C. Tan et al. 2013; P. Sanhueza et al. 2017;
F. Motte et al. 2018). However, recent studies suggest that
massive prestellar cores may also exist within infrared-bright
environments (e.g., P. Sanhueza et al. 2019; F. Xu et al. 2024a).
This is likely due to elevated temperatures and heightened tur-
bulence in these regions. The increased temperature raises the
Jeans mass, which in turn facilitates the formation of high-mass
prestellar cores, particularly when combined with the additional
support provided by magnetic fields.
Bright-rimmed clouds (BRCs) constitute a distinct class of

infrared-bright star-forming environments (K. Sugitani et al.
1991; K. Sugitani & K. Ogura 1994). They are characterized
by an ionized surface on one side, created by intense ultra-
violet radiation from nearby OB stars, which forms an over-
pressured ionized boundary layer. This boundary layer can be
traced via free–free emission or radio recombination lines.
Investigations of massive star formation in BRCs, particularly
those focusing on embedded high-mass prestellar cores,
remain scarce. Thus, identifying such cores within BRCs is
crucial for constraining models of massive star formation.
The target of this study is a massive star formation region

associated with the BRC, IRAS 18290-0924 (hereafter I18290;
see Figure 1) with estimated clump mass ∼1500M⊙ and
luminosity ∼104 L⊙ (J. S. Urquhart et al. 2018; T. Liu et al.
2020). Located at a kinematic distance of ∼5.34± 0.5 kpc
(X. Lu et al. 2014; J. S. Urquhart et al. 2018; P. Mège et al.
2021), this region hosts dense cores that display a small-scale
(<1 pc) age sequence aligned with the direction of ionization,
indicative of subsequent star formation triggered by radiation-
driven implosion (S. Zhang et al. 2023). Among them, the C2
core, situated farthest from the bright rim, has been proposed
as a high-mass prestellar core candidate (S. Zhang et al. 2023).
In this work, we utilize ALMA two-band observations (see
Section 2) to perform a comprehensive analysis of the C2 core
with the aim of assessing its evolutionary stage and evaluating
its candidacy as a high-mass prestellar core.

2. Observations

The I18290 region has been observed both in the ALMA
Three-millimeter Observations of Massive Star-forming
regions (ATOMS; Project ID: 2019.1.00685.S; T. Liu et al.
2020; H.-L. Liu et al. 2021) survey and the Querying Under-
lying mechanisms of massive star formation with ALMA-
Resolved gas Kinematics and Structures (QUARKS; Project
ID: 2021.1.00095.S; X. Liu et al. 2024; F. Xu et al. 2024b;
D. Yang et al. 2025) survey.
Observations for the ATOMS survey were conducted using

ALMA 7m Atacama Compact Array (ACA) and the 12m arrays
at Band 3 (∼3mm), targeting 146 massive star-forming proto-
cluster clumps. Further details regarding the ATOMS survey are
available in T. Liu et al. (2020). ACA and 12m array data from
the ATOMS survey were combined to produce continuum and
images and line cubes, resulting in an angular resolution ∼2″ for
continuum emission. For I18290, the combined continuum
data have rms noise (σ3 mm) ∼0.1 mJy beam−1. For line cubes
of the ATOMS survey, eight spectral windows (SPWs)
were configured, including six high-spectral-resolution SPWs
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(∼0.2−0.4 km s−1, e.g., H13CO+ (1−0)) and two wide SPWs
(∼1.8 GHz) with spectral resolution of ∼1.6 km s−1.
The QUARKS survey is a follow-up to the ATOMS survey,

which observed 139 massive star-forming protocluster clumps
through 156 single-pointings. QUARKS observations were
obtained with three different ALMA configurations at Band 6
(∼1.3 mm), including relatively low (∼5″), moderate (∼1″),
and high (∼0.3) angular resolution, which were performed
using the ACA 7m array, the ALMA 12m compact array C-2
(TM2) and extended C-5 (TM1) configurations, respectively.
More details regarding the QUARKS survey are available in
X. Liu et al. (2024), F. Xu et al. (2024b), and D. Yang et al.
(2025). Combining three configuration observations from the
QUARKS survey for both continuum and line data yielded a
synthesized beam size of ∼0.3. The combined QUARKS con-
tinuum data of the I18290 region have a typical sensitivity of
rms (σ1.3 mm) ∼0.14mJy beam−1. Four SPWs were configured
for the QUARKS survey, with a bandwidth of ∼1.8 GHz and a
velocity resolution of ∼1.3 km s−1 for each SPW.

3. Results

3.1. Parameter Estimation of Core and Condensation

To ensure consistent parameter estimation, the imfit task in
CASA (CASA Team et al. 2022) was used to extract structures
from both ATOMS 3mm and QUARKS 1.3 mm dust con-
tinuum maps. The imfit task involves a two-dimensional
Gaussian fit to the continuum emission of structures. We adopt
a hierarchical terminology by designating ATOMS-identified
structures as cores and QUARKS-resolved substructures as
condensations (see Figure 2). Note that these terms represent
manifestations of the same structure at different spatial reso-
lutions. Only a single compact condensation is observed in the
core C2 (see Figure 2(b)), indicating that the cloud core has not
undergone fragmentation at the high angular resolution (∼0.3)

of the QUARKS survey. The observed parameters of the core
and the condensation retrieved with the imfit task are listed in
Table 1.
If we assume that the 3 and 1.3 mm continuum emission is

optically thin and mainly arises from thermal dust radiation,
the masses of the core and condensation can be estimated
using the following expression:

M
R S D

B T
, 1gas

gd
int 2

dust( )
( )=

where Rgd is the ratio of gas to dust (assumed to be 100), S int is
the integrated flux derived, and D is the distance to the source.
The dust opacity, κν, is taken as 0.18 and 0.9 cm

2 g−1 for the 3
and 1.3 mm continuum emission, respectively (V. Ossenkopf
& T. Henning 1994). Bν(Tdust) is the Planck function at a given
dust temperature.
Dust temperatures as low as 10–15 K have been reported in

several IRDC environments harboring starless cores without
internal protostellar heating (P. Sanhueza et al. 2013;
A. T. Barnes et al. 2023; X. Mai et al. 2024). In this case, given
the starless nature of the C2 core (see Section 3.2), we adopt
10 K as the lower limit for the dust temperature. Further, the
average dust temperature of the natal clump (22 K, derived from
the spectral energy distribution; J. S. Urquhart et al. 2018) is
considered as the upper limit. For these temperature limits, the
estimated masses of the C2 core and condensation are
26.9–68.2M⊙ and 6.1–19.1M⊙ at 3 and 1.3 mm, respectively.
In addition, assuming a spherical geometry, the average

number density can be calculated as n M

R mH
3

42
core

c
3

H
=

µ
, where

μ = 2.8 is the mean molecular weight of the hydrogen mole-
cule, and mH is the mass of the hydrogen atom (J. Kauffmann
et al. 2008). The effective radius, Rc, is estimated as

DFWHM FWHM 2maj
Decon

min
Decon /× × , where FWHMmaj

Decon

and FWHMmin
Decon are the deconvolved FWHM of the major and

minor axes, respectively (see columns (7)–(8) in Table 1). The
radii of the C2 core and condensation are ∼2800± 500 au and
∼400± 20 au, respectively. The average number densities are
0.4−1.0× 108 cm−3 and 2.6−7.9× 109 cm−3, respectively.
The estimated physical parameters of the core and condensa-
tion are listed in Table 2.

3.2. Evolutionary Stage of the C2 Core

Starless cores lack any star formation signatures, such as
outflows traced by CO emission (e.g., A. Y. Yang et al.
2018, 2022; P. Sanhueza et al. 2019; J. S. Urquhart et al.
2022). We present the averaged spectra obtained from the
ATOMS (two SPWs) and QUARKS (four SPWs) surveys for
the C2 core and condensation in Figures 3(a) and (b),
respectively. Molecular line emission of HC3N is detected in
the ATOMS SPW2 spectrum. The QUARKS spectra exhibit
13CO (2–1), CO (2–1), and H2CO (30,3–20,2) molecular lines.
Additionally, N2D

+ (3–2) emission is marginally detected with
a low signal-to-noise ratio, which can be confirmed in the
zoom-in image of the detected spectral lines in Figure 3(c) (see
more in Section 3.3).
S. Zhang et al. (2023) used SiO and HCO+ emission from

the ATOMS survey to search for outflows in the I18290
region, concluding that no outflows were detected toward the
massive core C2. To confirm this result, we analyze the
CO (2–1) emission from the QUARKS survey, which provides

18h31m46s 44s 42s 40s

-9°22'00"

30"

23'00"

RA (IRCS)

DE
C 

(IR
CS

)
0.5pc

Figure 1. Three-color image of Spitzer 8 μm (red), 4.5 μm (green), and
3.6 μm (blue) of the region associated with I18290. The black contours
represent the 1.28 GHz MeerKAT emission. The white and green dashed
circles show the field of view of the ATOMS and QUARKS survey, respec-
tively. ATOMS 3 mm dust continuum emission is shown as the cyan contours,
with levels starting at 3σ3 mm (∼0.1 mJy beam−1) and increasing as
[6, 12, 24, 48] × σ3 mm. The purple cross symbol shows the location of Core 2
(S. Zhang et al. 2023). The synthesized beam size of the ATOMS survey and
the 0.5 pc scale bar are shown in the lower left corner and upper right corner,
respectively.
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enhanced resolution to investigate potential outflows in this
region. The CO line profile is integrated in a velocity range of
5−30 km s−1 relative to the systemic velocity (∼84.5 km s−1),
and the spatial distribution is shown by the blue and red
contours in Figure 2(a). No CO outflow is detected toward the
massive core C2 in the I18290 region. In a recent study based
on ATOMS data, A. Hoque et al. (2025) proposed the HC3N
transition as an effective tracer of low-velocity components of
outflows. They reported the detection of an outflow associated
with the I18290 region. A careful inspection of Figure A1 in
A. Hoque et al. (2025) confirms that the identified outflow is
not associated with the C2 core. Furthermore, no line wings
were identified in the H2CO (30,3–20,2) transition, which is also
considered as an outflow tracer (X. Liu et al. 2024). The
absence of the outflow signature in the line transitions
investigated is consistent with the findings of S. Zhang et al.
(2023). In addition, weak detection of the N2D

+ line toward
the C2 core indicates the presence of cold dense gas
(A. Crapsi et al. 2005; X. Liu et al. 2024). Due to the
spatial filtering-out effect of the interferometric observations,
it is likely that the detected N2D

+ line emission probes the
C2 core rather than the extended envelope. Therefore,
this evidence of the cold dense gas, coupled with the absence
of detected outflows, supports the starless nature of the
C2 core.

3.3. Dynamical Stability of C2 Core and Condensation

Understanding the stability of the unfragmented C2 core
against gravitational collapse is essential for assessing the
potential formation of a high-mass star in this core. This can be
assessed by estimating the virial parameters (αvir), which, for
an ideal spherical structure of uniform density, is given by

(F. Bertoldi & C. F. McKee 1992; S. Dib et al. 2007)

R

M

5

G
, 2c

vir
eff
2

c
( )=

where σeff is the effective sound speed. Rc and Mc are the
radius and mass of the structure, respectively. σeff can be
substituted by the total velocity dispersion ( tot

2
th
2

nt
2= + ).

The thermal velocity dispersion is k T mpth B H/µ= , where
μp = 2.33 is the mean molecular weight per free particle
(J. Kauffmann et al. 2008). In this study, the molecular line
emission of H13CO+ (1−0) from the ATOMS survey and
N 3 22D ( – )+ from the QUARKS survey were used to estimate the
contribution of nonthermal motion from turbulence to the C2
core and condensation, respectively. The ATOMS
H13CO+ (1−0) line emission provides high velocity resolution
(∼0.2 km s−1) and is a probe typical of dense core envelopes
(e.g., ncrit ∼ 105 cm−3; T. Gerner et al. 2014). In contrast, for
the higher angular resolution QUARKS data, N 3 22D ( – )+ line
emission was adopted to serve as kinematic tracers for colder
and denser conditions (A. Crapsi et al. 2005, 2007). Despite
the low signal-to-noise ratio, marginal detection of N2D

+

emission is confirmed by cross-checking with other detected
molecular lines of the C2 core (see Figure 3). The nonthermal

velocity dispersion is k T

mnt line
2

1 2
B

line( ) /
= , where kB is the

Boltzmann constant and mline is the molecular mass of the
observed molecule (mline = 30mH for the H13CO+ line and
mline = 32mH for N2D

+). The observed dispersions (σobs) are
∼0.62 km s−1 for H13CO+ of the C2 core and ∼0.50 km s−1

for N2D
+ of condensation, as shown in Figure 4.

The total velocity dispersion is estimated to be
∼0.65 km s−1 for H13CO+ and ∼0.53 km s−1 for N2D

+. From
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Figure 2. QUARKS 1.3 mm dust continuum image (color scale) overlaid with ATOMS 3 mm dust continuum emission (in gray dashed contours, identical to those
in Figure 1). The black contours are at levels of [3, 6, 12, 24, 48] × σ1.3 mm, with σ1.3 mm ∼ 0.14 mJy beam−1. The blue ellipses correspond to the FWHM sizes of
the C2 core estimated from the ATOMS 3 mm image using the task CASA imfit. The synthesized beam sizes of the QUARKS and ATOMS survey are shown in the
left and right bottom (panel (a)), respectively. The 0.01 pc scale bar is shown in the upper right corner. Panel (a): CO (2–1) outflow is overlaid on the QUARKS
1.3 mm dust continuum map. The blue and red contour levels are [3, 6, 12, 24, 48] × σco, with σco ∼ 0.08 Jy beam−1 km s−1 for the blue lobes and
∼0.06 Jy beam−1 km s−1 for the red lobes. The corresponding velocity ranges are plus/minus 5−30 km s−1 relative to VLSR (∼84.5 km s−1) of the C2 core. Panel
(b): zoom-in view of the C2 core. The black ellipses correspond to the FWHM sizes of the condensation estimated from the QUARKS 1.3 mm image using the task
CASA imfit.
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Table 1
Observed Parameters of Core and Condensation from CASA imfit

Source R.A. Decl. FWHMmaj FWHMmin PA FWHMmaj
Decon FWHMmin

Decon F int Fpeak Data
(ICRS) (ICRS) (arcsec) (arcsec) (deg) (arcsec) (arcsec) (mJy) (mJy beam−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Core 18:31:42.68 −09:22:27.28 2.4 ± 0.1 2.0 ± 0.1 68.8 ± 8.8 1.2 ± 0.3 0.9 ± 0.3 2.15 ± 0.13 1.66 ± 0.06 Band3
Condensation 18:31:42.67 −09:22:27.53 0.35 ± 0.01 0.31 ± 0.01 103.9 ± 3.8 0.21 ± 0.01 0.12 ± 0.01 11.21 ± 0.22 8.35 ± 0.11 Band6
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these values, we calculate αvir to be ∼0.1–0.3 for both the C2
core and the condensation, in the temperature range of
10–22 K. Following Equation (5) of T. Pillai et al. (2011) with
the magnetic field contribution is considered, such low values
of αvir ≪ 1 are possible in the case of magnetized cloud
fragments, provided the magnetic field is strong ∼1 mG
(J. Kauffmann et al. 2013). Recent observational measure-
ments using the Davis–Chandrasekhar–Fermi method do yield
field strengths of 1–10 mG in massive star-forming regions
(e.g., P. C. Cortés et al. 2021; J. Hwang et al.
2021, 2022, 2025; P. Saha et al. 2024; L. A. Zapata et al. 2024;
P. Sanhueza et al. 2025), and smaller values of ∼0.1−1 mG in
starless/prestellar core (J. M. Kirk et al. 2006; J. Karoly et al.
2020; K. Pattle et al. 2021; J. Hwang et al. 2023).
The stability analysis is consistent with the observed

fragmentation scenario of the C2 core, where only a single
smaller-scale condensation is detected. Several theoretical and
numerical studies suggest that magnetic fields, by providing
support against gravity, play a key role in suppressing frag-
mentation. In a recent study, A. Palau et al. (2021) studied 18
massive dense cores to investigate this correlation. Though not
robustly observed, these authors discuss the possible influence
of the magnetic field on the fragmentation process. Based on the
above arguments, one can infer C2 core to be an unfragmented,

massive, and subvirial entity in a strong magnetized environ-
ment. This core is therefore gravitationally bound and has the
potential to collapse toward star formation.

4. Discussion and Conclusions

Despite the fact that F. Motte et al. (2018) have proposed an
evolutionary scheme for high-mass stars that excludes the
massive prestellar phase, the empirical identification of several
high-mass prestellar cores provides strong evidence for their
existence. There are several examples from the previous lit-
erature. A. Duarte-Cabral et al. (2013) reported the detection
of a high-mass prestellar core candidate (CygX-N53-MM2)
with a mass of ∼21M⊙ and a radius of 2500 au, which may be,
however, associated with tentative outflows. K. Wang et al.
(2014) have also observed a candidate (i.e., G11.11-P6-SMA1;
mass of ∼28M⊙ and radius of ∼2000 au) without any sig-
natures of CO outflows in SMA observations. However, this
source has yet to be confirmed by higher-angular-resolution
ALMA observations. In the ALMA-Initial Mass Function
Large Program, M. Valeille-Manet et al. (2025) identified 12
prestellar cores of masses greater than 16M⊙, 4 of which are
above 30M⊙. These sources have no associated CO and/or
SiO outflows detected. However, a comprehensive survey of
molecular lines with sufficiently broad bandwidths has not

Figure 3. Average spectra of the C2 core/condensation. (a): average spectra extracted from two ATOMS wideband SPWs over the C2 core. (b): same as panel (a)
but for four QUARKS SPWs over the C2 condensation. (c): zoom-in view of the molecular lines detected in the six SPWs (corresponding to panels (a) and (b)). The
dashed line indicates the systemic velocity of the C2 core (∼84.5 km s−1). Note that the absorption dips present in both 13CO and CO spectra are artifacts arising
from the missing flux by ALMA, which will be addressed in future, more in-depth studies by combining our QUARKS data with new single-dish observations.

Table 2
Physical Parameters of the Core and Condensation

Source Radiusa σobs Temperature Mass nH2 αvir Data
G022.3501+00.0697 (au) (km s−1) (K) (M⊙) (108 cm−3)
(1) (2) (3) (4) (5) (6) (7) (8)

Core 2800 ± 500 0.62 ± 0.37 10 68.2 ± 13.4 0.9 ± 0.5 0.10 ± 0.03 Band 3
22 26.9 ± 5.2 0.4 ± 0.2 0.27 ± 0.09

Condensation 400 ± 50 0.50 ± 0.20 10 19.1 ± 3.6 79.0 ± 20.0 0.03 ± 0.01 Band 6
22 6.1 ± 1.2 25.5 ± 6.5 0.12 ± 0.04

Note.
a Beam-dencovolved.
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been conducted for these massive candidates, which is vital for
accurately classifying prestellar cores. For instance, detection
of COMs, such as CH3OH, in the 4.8 GHz SPWs of the high-
mass prestellar core candidate W43-MM1, typically linked
with hot cores, raises questions about its classification. This
suggests that W43-MM1 is more likely in the early protostellar
phase rather than a high-mass prestellar core candidate
(T. Nony et al. 2018; J. Molet et al. 2019). In addition, albeit
with an examination of a wide-ranging molecular line survey,
the classification of several other massive prestellar core
candidates remains uncertain. This includes C2c1a
(A. T. Barnes et al. 2023) and MM1-C and MM1-E1 (X. Mai
et al. 2024). For example, C2c1a is linked with faint CO
outflows, as depicted in Figure 3 of A. T. Barnes et al. (2023),
suggesting the beginning of protostellar activity. Additionally,
high-resolution imaging of MM1-C indicates fragmentation
(X. Mai et al. 2024), questioning its classification as a singular
high-mass prestellar core.
In this study, we present the C2 core in the I18290 massive

star-forming region as a prestellar core candidate, based on
ALMA two-band observations from the ATOMS and QUARKS
surveys. Under the assumption of a 10 K dust temperature, we
estimate the physical parameters of the C2 core using 3mm dust
continuum emission from the ATOMS survey. The mass,
radius, and average number density of the core were estimated
to be ∼27–68M⊙, ∼2800 au, and ∼108 cm−3, respectively. In
striking contrast to the clustered, centrally located environment
of the 12 massive prestellar cores reported by M. Valeille-Manet
et al. (2025), it is worth noting that the C2 core is rather isolated.
Subsequent higher-angular-resolution (∼0.3) 1.3 mm dust con-
tinuum data from the QUARKS survey revealed that the C2
core remains unfragmented, hosting only a central compact
condensation with a mass of ∼19M⊙, a radius of ∼400 au, and
an average number density of ∼109 cm−3. This condensation
exhibits highly compact dust emission with nearly circular
symmetry (ellipticity ∼1.1) (see Figure 2). Including the results
from S. Zhang et al. (2023), no outflows (tracers, HCO+, SiO,
and CO) were detected, nor was any young stellar object
identified (see Section 4.2 in S. Zhang et al. 2023) with the
massive C2 core. Furthermore, we only detected six molecular
line emissions within six SPWs (two from the ATOMS survey,
∼4 GHz; four from the QUARKS survey, ∼8 GHz; see
Figure 3). None of the detected molecular line transitions are
tracers of dense warm gas. Our stability analysis reveals that
thermal and turbulent support alone is insufficient to counteract
gravitational collapse, giving a virial parameter of ∼0.1−0.3.
These low values of the virial parameter suggest a strong
magnetized environment, which lends further support to the
unfragmented nature of the C2 core.
The identification of the C2 core in I18290 presents a case

study in support of the turbulent core model. The influence of
environment leading to core mass growth can be ruled out—
the more evolved the natal environment, the more massive the
embedded core. Though associated with the BRC I18290, the
C2 core is located in an IR-dark lane (see Figure 1), strongly
indicating its very early evolutionary stage and its massive

nature from the beginning. Additionally, the isolated nature of
the C2 prestellar candidate provides a template for more in-
depth studies, such as modeling and chemical evolution ana-
lysis. Although our study has outlined its fundamental physical
properties, a conclusive classification also hinges on the che-
mical evolution analysis. Our upcoming investigations aim to
determine the chemical nature of this prestellar core candidate
through quantitative analysis of molecular abundances and
comparisons with chemical models, with an emphasis on the
elevated abundances of deuterated isotopologues (e.g.,
P. Caselli et al. 1999, 2022; A. Crapsi et al. 2005).
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Appendix

Gaussian fitting of the average spectra of H13CO+ molecular
emission from the C2 core using the ATOMS data (see
Figure 4a) and N2D

+ molecular emission from the condensa-
tion using the QUARKS data (see Figure 4b).
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