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The origin of magnetic fields observed on both astrophysical and cosmological scales is a
compelling problem that has the potential to shed light on the early Universe. We analytically
investigate inflationary magnetogenesis in scenarios where a brief departure from slow-roll inflation—
akin to mechanisms proposed for primordial black hole formation—leads to enhanced magnetic field
generation with a growing power spectrum. Focusing on the Ratra model, we derive an analytic bound
on the growth of the magnetic field power spectrum in this context, showing that the spectral index can
reach dInPg/dInk = 4.75 during the growth phase. This growth enables amplification from cosmic-
microwave-background-safe large-scale amplitudes to values of astrophysical relevance. We further
compute the stochastic gravitational wave background sourced by the resulting magnetic fields,
incorporating their rich spectral features. Under suitable conditions, the induced signal exhibits a
characteristic frequency dependence and amplitude within reach of future gravitational wave
observatories, providing a distinctive signature of this mechanism and a specific class of templates

for upcoming gravitational wave searches.
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I. INTRODUCTION

Understanding the origin of magnetic fields observed on
large astrophysical and cosmological scales is a fascinating
problem that may provide valuable insights into the early
evolution of the Universe. Over the past few decades,
significant efforts have been devoted to this question—see,
for instance, reviews in [1-7]. An intriguing possibility is
that cosmic inflation generates the seeds for the subsequent
evolution of cosmic magnetic fields: References [8—16]
include original and influential works on primordial
magnetogenesis. However, as discussed in these works,
scenarios of inflationary magnetogenesis face stringent
experimental and theoretical constraints that should be
carefully addressed. We adopt the scenario of Ratra [9] and
consider a coupling of the inflaton field to the electromag-
netic field during inflation, so as to break the conformal
invariance of the Maxwell action, and to allow for magnetic
field production. We link magnetogenesis to the physics of
primordial black holes [see [17] for a review], by assuming
that a brief phase of violation of slow-roll conditions occurs
during inflation, causing the inflaton velocity to change
abruptly during a short period of time. Such a non-slow-roll
phase—used in the context of primordial black hole
physics to enhance the spectrum of curvature fluctua-
tions—drastically affects the time dependence of the
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coupling of the inflaton with Maxwell gauge fields, and
influences the production of primordial magnetic fields at
small scales only, with interesting phenomenological ram-
ifications. This scenario has the potential to selectively
amplify a primordial magnetic field at certain small
scales. This topic has been recently investigated in
[18,19], though without addressing the specific questions
we consider here.

Assuming an initial nearly scale-invariant magnetic field
spectrum on large scales, with an amplitude low enough
to satisfy stringent constraints from cosmic microwave
background (CMB) observations [20], we show that a non-
slow-roll epoch can rapidly amplify the magnetic field to
levels compatible with those observed in astrophysical
contexts. We address two questions:

(1) Within this approach, what is the maximal possible
slope of the magnetic field spectrum as it grows from
large to small scales? This question is important
because the magnetic field amplitude must increase
by several orders of magnitude from tiny values
at the largest scales—where it is constrained by
CMB observations—to smaller cosmological or
astrophysical scales, where observations suggest
much stronger fields. An analog problem has been
studied in [21] in the context of adiabatic curvature
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perturbations { relevant for the formation of pri-
mordial black holes. There, the amplification of {
from large to small scales was shown to be bounded
b d;rllnig =4, up to subdominant logarithmic
corrections [22,23].l In Sec. II, we address the
analogous question for the magnetic field spectrum.
We develop a fully analytical method, building
on [24,26], and find that the growth rate of the
magnetic field spectrum Py can exceed that of the

curvature spectrum. In fact, under our assumptions,

the maximal slope is d;?nig = 4.75, and the resulting

magnetic spectrum has a rich profile as a function
of the momentum scale. We also comment how our
scenario addresses strong coupling and backreaction
problems of magnetogenesis.

(2) Given that our non-slow-roll mechanism leads to a
rapid amplification of the magnetic field spectrum at
small scales, does this process also generate vector-
induced gravitational waves (GWs) at second order
in magnetic field fluctuations? The generation of
GWs induced by adiabatic scalar fluctuations has a
well-established history, see e.g. [27-33]: it has
recently gained renewed interest as a probe of
primordial black hole scenarios [see, e.g., [34] for
a review]. In contrast, less attention has been given
to GW production from non-adiabatic sources [see,
e.g., [35-39]], although there is existing literature on
GWs arising from magnetogenesis scenarios [see,
e.g., [40-48]]. A common assumption in previous
studies of magnetically induced GWs is that the
magnetic field spectrum follows a simple power-
law behavior. However, as outlined above, in our
scenario the magnetic spectrum exhibits a much
richer structure. This requires an extension of the
standard formalism of magnetically induced GW
to properly account for the non-trivial spectral
features of our setup. In Sec. III, we present such
an extension and compute the resulting GW spec-
trum. We find that, under suitable conditions, the
amplitude of the induced GWs can be large enough
to be potentially detectable by future GW observa-
tories. The resulting GW spectrum exhibits a
distinctive frequency dependence, which could
serve as a characteristic signature of our scenario,
helping to distinguish it from other early universe
sources of GWs.

We conclude in Sec. IV, which is followed by the technical
Appendix.

'Stronger growth may be possible if multiple successive phases
of non-slow-roll evolution are allowed [see [24]] or if the initial
vacuum deviates from the Bunch-Davies form [see [25]].

II. THE MAXIMAL SLOPE OF THE MAGNETIC
FIELD SPECTRUM

We consider an Einstein-Maxwell Lagrangian for the
electromagnetic field in an expanding universe,

G /d4x\/—_g [g ~ 12‘(‘7)

FWF””] L2

We set Mp; = 1, and we use a mostly plus metric signature
ds* = a*(7)[—dr* + dx*]. We define F,, = d,A, — 0,A,
in terms of the vector potential. The overall coupling /(7)
depends on time and serves to break the conformal
symmetry of Maxwell action. /(z) usually follows a power
law profile in terms of the scale factor a(z) during inflation.
Such behavior is motivated by directly coupling a function
of the inflation field ¢(7) with the Maxwell Lagrangian. In
a standard setup, the scalar profiles change very slowly as
functions of time, and a simple power-law behavior for /(z)
as function of time can be easily be obtained. In this work
we relax this assumption, motivating and analytically
investigating scenarios where I(7) changes rapidly during
inflation.

We decompose the Maxwell part of action (2.1) in terms
of the spatial components A; of the vector potential (after
integrating out the auxiliary time-like component A)

1 1
S = 2/ drd’xI?(7) <A§2 5 (0:A; - ain)2>‘ (22)

The magnetic field components scale with time as
B;(7.x) « 1/a(r) [7]. Hence, after inflation we can write
the equality

B,(r.x) = ag/a()B;(x. X), (2.3)
where B;(7g.X) = €;40;A(tg,X) is the value of the
magnetic field right at the end of inflation.

The electromagnetic potential is decomposed in Fourier
space as

3
a0 =3 [ Grmeselbae. 4

with elw being two polarization vectors orthogonal to the

momentum k. The amplitude Py (k) of the 2-point corre-
lator for the magnetic field at the end of inflation is defined
in terms of the Fourier transform of the magnetic field
correlation function in Fourier space as follows:

<Bi(TR»k)Bj(TRvQ>>i(:q = m;;Pg(k), (2.5)

with

mi; = 6;; — kik;,

(2.6)
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and the symbol (...)j_o
omitting the momentum-conserving d-function. From now
on, vectors with a hat indicate unit vectors, as k=k /k with
k = vk - k. To proceed, it is convenient to rescale A; by
means of the conformal function I:

indicates two-point correlators

Ay(2) = 1(2)Ay(r). (2.7)
Its corresponding equation of motion reads
I//
Al + <k2 - 7) A =0. (2.8)

Standard quantization rules can be implemented [see e.g.
[10,15,18,49]] leading to the following expressions for the
magnetic field energy density at the end of inflation—we
call it the B spectrum:

dp IS
%= o [

Pa(k) =2 _
i dink 2zn%a}

(2.9)

Comparing with Eq. (2.5), since Py = k*|A¢|*/I*(rx) at
the end of inflation, we find the following relation:

I 1P (zg) Py (k)
Pplk) = ———F———. 2.10
oK) =i (2.10)
As a warm-up example, we begin by selecting

I(r) = a*(r), and impose Bunch-Davies initial conditions
at small scales |kz| — co. During inflation, we assume de
Sitter expansion a(r) = —1/(H;z), with H; being the
constant Hubble parameter. Equation (2.8) is easily solved
analytically:

3a*(t)H? e~i** , k*z?
Ak(T) —Tks/z 1+lkT—T . (211)

At time 7 =1p, when inflation ends, the magnetic
spectrum is

2.12
472 3 9 ( )

Working in the limit |kzg| < 1, this quantity becomes scale
invariant. It is proportional to the fourth power of the
inflationary Hubble parameter H;, and can then be made
very small at large scales [so as to satisfy existing stringent
CMB bounds [20]].

Starting from the results of Eq. (2.12), it is interesting to
enquire whether there are mechanisms that would be able
to amplify the magnetic spectrum at small scales, so as to
possibly relate the observed magnetic fields at astrophysi-
cal or cosmological scales with primordial magnetogenesis.

To do so, as anticipated in Sec. I, we consider scenarios
in which the function /(z) temporarily deviates from a
power-law dependence on conformal time 7 during infla-
tion. Such deviations can be motivated by inflationary
models that include a brief phase of non-slow-roll evolu-
tion, which are particularly relevant in setups that produce
primordial black holes. An appropriate choice of the epoch
where non-slow-roll occurs during inflation can enhance
the magnetic field amplitude at a convenient astrophysical
or cosmological scale.” Hence, in what follows we will dub
this possibility non-slow-roll magnetogenesis.

We model /() as

(2.13)

with @(zz) =1 when inflation ends. If we choose
w(7) =1 throughout all the inflationary evolution, we
recover a scale invariant magnetic field spectrum as out-
lined above.’ More generally, extending the analysis of [24]
from the scalar to the vector sector, we parametrize the
time-dependent function w(z) as

@, (aconstant) forz <z,

o(t) = { continuous butdrastically changing forz; <z <1,,
1 forz, <tp.
(2.14)

The two instants 7; and 7, during inflation are nearby, and
hence we assume (7, — 7,)/7; < 1. Consequently, during
the short time interval 7; < 7 < 7,, the conformal function
I(7) can experience strong departures from a power-law
profile, as dictated by Eq. (2.13). Correspondingly, a new
characteristic scale

k*:—l/’l'] :a(T])H] (215)
is expected to play a relevant role in our discussion—with
such a scale being associated to a comoving momentum of
modes leaving the horizon at the onset of the non-slow-roll
epoch during inflation. We confirm this expectation in the
following discussion.

A. Analytical determination of the
magnetic mode function

We now aim to solve Eq. (2.8) with a general, slow-roll-
violating function /(7) as given by Eq. (2.13). In order to

*Additionally, changes in the slope of I(z), as the ones we
consider, can help in building magnetogenesis scenarios [15]
which avoid well-known strong coupling problems [11]. We
elaborate further in Sec. II C.

*We can consider other powers of the scale factor in Eq. (2.13),
and write /() = a"(7)/w(7). The analysis that follows can be
readily extended to this generalized form.
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find analytic solutions of Eq. (2.8) in the interval 7; < 7 < 7,, we proceed as [24]. [See also [50,51] for different approaches
to determine analytic solutions for similar setup.] We choose an ansatz A () expanded as

T) \/_HZ —ikt
\/§ k5/2

A(r) =

with 7, being a pivot quantity which will not appear in the
final results, while G, (z) is a set of functions to be
determined. Plugging this ansatz into Eq. (2.8), we find a
system of coupled ordinary differential equations, which
we aim to solve order by order in powers of k:

2 !
Toa) ' . w
0(a) -2

2
0] , T o/ 27
9 [_14 (TOG@) ~Goy= 3%)} 14 ( 310) (2.18)

and for all n > 4:

@ wG/(n—l)
()T |:T_4 (T()Gl(n> - G(n—l)):| = 7 .

T

(2.17)

[O8]

(2.19)

We follow the protocol of [24] to solve this system in
the interval 7; < 7 < 7,. [We refer the reader to [24] for

3 2 H2 —ikz kZ 2
Ak(T) :%[14‘1](7—77—6](2(’[—7:1)

N TR
1 + ikt — — (ikt9)*G () +

(ikt) G3)(t) + -], (2.16)

additional technical details.] The solution nearby 7 is

2
2 a(r—1)
SEp ANV 2.2
Goy(r) =5, (220)
n ary ,,._ 3( Tl)n_l
75Gw(7) =52 NCES (2.21)
with a constant parameter a defined as
dlnw
2.22
(dlnT)lT 7 ( )

These solutions correctly describe the system in the time
short interval of interest, 7; < 7 < 7,. The dimensionless
quantity a in Eq. (2.22) is a key parameter for us. If large, it
can considerably amplify the magnetic spectrum from large
toward small scales.

In fact, plugging the configurations (2.21) into Eq. (2.16)
yields a series of the form

ikt

0 <1+2lk7—11 Z n!

The exponential series can be resummed, yielding an exact solution:

Ak:

3a>\/wH?e { k*7?
3

1 k ————k2
75 + ikt 6

This is the analytic solution of the mode function in the
interval 7; < 7 < 7,. Implementing Israel junction condi-
tions, the expression (2.24) is then joined to a second period
of standard power-law evolution for the conformal function
I(7) for 7, < 7 < 1g, with 7 being the conformal time
when inflation ends. According to Eq. (2.13), in this
interval we recover I(r) = a*(r)—the profile associated
with a scale invariant magnetic spectrum. Recalling the
definition (2.15) of k,, we introduce the convenient

|

3a’(z)

— § T H% Cie —ikt
- 2k5/2 1€

A

k2 2 k2 2
—l—lkT—TT) + C, e’k’(l—lkf——)],

(t—1)% - ’“]k; L1 4 2ik(z—17y) — ezl'k<f-fn>)} . (2.24)
|
dimensionless variables x and Atz as
kK = k/k, = —1/k, (2.25)
7, — 1) = —1,Ar. (2.26)

The solution for the mode function in the interval 7, <
T < 7p results

3 (2.27)
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with C, fixed by Israel conditions

(2(A7 = 1)2(At + 1)k* + 2i(Ar — 1)(3AT + 1)k — 9AT + 2) — 6i

C =1 —|—2AraK

8(A7 — 1)*
e?A(2(AT — 1)k + 3i) + 2k — 3i
, 2.28
Ta 8(Az— 1)'% (228)
c ae~ A% (2(A? — 1) + i(At(3BA7 — 5) — 4)k + 6A7 + 3) sin(Azk)
2 4(A7 - 1)%
N ae AT 2DR Az (ie(4i( At — 1)k — iA: +9) + 6i) cos(Arx) ‘ (2.29)
4(At—1)%k

The magnetic field spectrum is then evaluated at the end
of inflation, = — 7y, using the definition in Eq. (2.9):

_on;

Py(k) = 75 1C1 (k) + G (k)% (2.30)

neglecting terms depending on kzy, and assuming that this
quantity is small. Equations (2.27)—(2.30) are what we need

for the considerations we develop next. At large scales,
k — 0, the magnetic spectrum approaches a constant, with

an amplitude corresponding to the scale invariant case of
Eq. (2.12):

OH?}
Pylk < 1) = Hz’

(2.31)
Given the smallness of H; in Planck units, this value easily
satisfies CMB bounds. It is then straightforward to compute
the amplitude of the spectrum at very small scales, finding

9H¢ aAt(1 4+ At){4 + Azja — 8 + Ar(a + 4)]}
Ppk>1)=—~]1 . 2.32
5K ) 472 + 4(1 — A7)* ( )
|
So, comparing with Eq. (2.31), we can obtain an enhance- At —0, a— oo but aAr=2II, withIl, finite. (2.33)

ment in Py controlled by the parameter a. Such mechanism
might then be able to produce small-scale magnetic fields
compatible with cosmological observations, while satisfy-
ing stringent constraints at large CMB scales.

The natural question we address next is how fast can the
magnetic spectrum increase from large [Eq. (2.31)] toward
small [Eq. (2.32)] scales in this context? In what comes
next, we show that there is a limitation on its growth rate.

B. The maximal growth of the spectrum:
Analytical results

We proceed with the characterisation of the shape of the
magnetic field spectrum in our framework which includes a
brief violation of slow-roll conditions. We notice that
considerable simplifications occur in the limit of infini-
tesimal Az [see the definition (2.26)], and very large « [see
(2.22)]—yet ensuring that their product remains finite:

“Recall the discussion before Eq. (2.13): we denote
with “violation of slow-roll” a phase during which the con-
formal function /() is not a simple power law, and obeys an
ansatz as (2.13).

This limit resembles the ‘t Hooft limit of large N gauge
theories [52] [see [26,53] for further discussions in a related
inflationary context]. Then the quantities C, 5 (2.28), (2.29)
reduce to simple expressions:

3i 2
cl_1+(1——§——l>n0,
K K

¥ (i + 4i1<23— 6x — 3i)I1, C 239)

K

(2.34)

C2:—

In order to study the slope of Py (k) in the general case, it is
useful to introduce the ratio

Pg(x)
k) ==———"— 2.36
(k) Pplk < 1) (2.36)
of the spectrum evaluated at scale x = k/k, (with
k, = —11), against its constant value at large scales
k < 1. The function II(x) in Eq. (2.36) singles out the
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FIG. 1.
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Left: plot of the scale profile of the ratio (2.36) between the magnetic field spectrum against its value at large scales. We use the

dimensionless variable «, defined in Eq. (2.25), and choose IT, = 10°. Right: plot of the magnetic spectral index ny as function of the
scale, Eq. (2.40), focusing on the region of growing magnetic spectrum. The spectral index has a maximum at position k,,,, ~ 1.256 and
value ng (ke ) = 4.75, after which it decreases to join the flat plateau (on average) toward small scales.

scale dependence of the spectrum. Using formula (2.32),
in the limit of Eq. (2.33), this quantity results

() =1+ 20 (k3 + [4Kk> = 3) singk) — (x* —6)Kcos(2k)]
+4(K2 + DIT%[(k* —3) sin(x) + 3k cos(x)]? .

IC6

(2.37)

It depends on the single parameter Il; as defined in
Eq. (2.33). In Fig. 1, left panel, we represent Il(x) as
function of the dimensionless quantity x. When expressed
in terms of I, the enhancement from large toward small
scales results

(k> 1) = (1 + 1) (2.38)
Since magnetogenesis aims to achieve an enhancement of
the spectrum toward small scales, we select a large value for
the dimensionless constant I1, (more on this in Sec. IIC,
where we show that IT, should be at least of order 10°).
At very small scales, for x > 1, though, we expect that the
magnetic field amplitude gets damped by dissipation or
effects associated with magnetohydrodynamic (MHD)
turbulence of the astrophysical plasma: see e.g. [54].
This suppression will play an important role in the analysis
of induced gravitational waves in the next section.

The magnetic spectrum profile in the left panel of Fig. 1
has a dip at intermediate scales. Using the same arguments
of [24,26], it is straightforward to determine its position as a
function of I, in the limit of large I, in which we are
interested. We find

15 1
Kdip = TW,
0

(2.39)

up to corrections that are suppressed by higher powers of
1/T1,. In proceeding from small toward large , after the dip
the magnetic field spectrum profile IT(x) grows steadily, to
then join an oscillatory region with approximately constant
amplitude at small scales (k ~5).

Working in the limit of large I1;, we can determine the
spectral index associated with the magnetic field spectrum,
finding

dInTI(k)
ns () ==k

 2(=3x*+2k2 4 9) sin(k) 4 2k (k* — 5k —9) cos (k)
B (k*4+1)[(xk* =3)sin(x) + 3k cos(«)]

+o(nio>.

Relation (2.40) is what we need for our aim to find the
maximal slope of the spectrum. The function is easy to
handle, and we represent it in the right panel of Fig. 1,
focusing on the region of scales where the magnetic
spectrum in the figure left panel grows. We find that
ng(x) has a maximum at around

(2.40)

K = 1.256, (2.41)

where

B = ng (k) = 4.75.

(2.42)
Hence, n,, is the maximal slope we can achieve in
the specific limit (2.33) we are considering. See also the
Appendix for a more systematic analysis away from the
limit (2.33).

Equation (2.42) leads us to conclude that the growth
of the magnetic field spectrum during a phase of
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non-slow-roll—starting from a scale-invariant profile at
large scales—can be steeper with respect to the case of

scalar curvature fluctuations [21]. In the scalar case, the

maximal slope was found to be nfﬁfﬁl) =4, up to loga-

rithmic corrections [22,23]. The difference among the
results is due to the structure of Eq. (2.8) with I(7)
given in Eq. (2.13), which is different with respect to
the scalar case.” We now continue with a discussion of
backreaction and strong coupling issues, to then discuss
phenomenological consequences of these findings.

C. Some considerations on backreaction
and strong coupling issues

In this section we estimate some features of the magnetic
field spectrum produced by the non-slow-roll evolution
discussed above, and we address potential issues regarding
theoretical aspects of our setup. The amount of growth in
the magnetic field spectrum is governed by the quantity IT,,
depending on the slope of the conformal function I(z)
during the non-slow-roll evolution. We can estimate inter-
esting values of Il as follows. Astrophysical and cosmo-
logical observations seem to suggest that magnetic fields
can be found at different astrophysical scales, with values
of the order of few to tens of micro-Gauss. In this section
we assume that fields of such size are produced by the
primordial process we are considering, and then evolved or
maintained by dynamo effects [see the review [3]].

Expressing as dp =~ Pllg/ ? the size of magnetic field at the
end of inflation, we have [see Eq. (2.38)]

3H?
8p = =L (1+TI).

= (2.43)

once this quantity is evaluated at small scales k > k,.
After inflation ends, this value is rapidly diluted by
cosmological expansion, with the suppression factor scal-
ing as (ag/agy)? = 1072° assuming an instantaneous reheat-
ing process [11]. (Here ay is the scale factor at the end
of inflation, or beginning of radiation domination era, while
ay the scale factor today.) Hence, assuming H; = 107°
in Planck units, and converting the results to Gauss
(1 Gauss = 1.95 x 1072 eV?), we require that the ampli-

tude of the spectrum 520)

H? 2 obs
5§)>:3—’(1+H0)<“—R> :( % )10‘5G

today is

2.44
2r ag 105G (244)

5%bs
107°G

~10%(1+11)(107°)2 G = < )10—5 G, (2.45)

Preliminary investigations of the analogous questions in the
spin-2 (tensor) case have been presented in [55,56].

where we select a pivot value of 10 micro-Gauss for
selecting a value of 8% compatible with astrophysical
observations. Although this amplitude is larger than the
required value of the seed magnetic field—typically of
the order of nano-Gauss—there are various damping and
diffusion mechanisms occurring in the post-inflationary
universe which can dissipate the magnetic field energy over
the scales of our interest [in this context, see [54,57-59]].
Solving for I1,, we find

I, ~ 107 Y
10° G

Consequently, typical values for Il to obtain cosmologi-
cally significant magnetic fields at small scales span from
10% to few times 107. Importantly, although these are the
orders of magnitude of Il, preferred by cosmological
observations, theoretical considerations prevent us from
choosing Il, much larger than 10°-107. In fact, the
amplitude of the magnetic field energy at small scales
goes as pg ~ Py o H? x (H/T1)?. To avoid large back-
reaction on the inflationary dynamics, whose typical energy
scale is of the order p;,; ~ H%, the factor H,Il, can be at
most of order one. Hence choosing H; ~ 107% in Planck
units, we cannot select too large values of I.

The characteristic comoving momentum k, = —1/7,
around which the rapid growth of the spectrum occurs—see
Fig. 1—is determined by the time 7z; at which a brief
non-slow-roll phase takes place during inflation.
Depending on the location of k,, magnetic fields can be
amplified on a range of scales, from large distances
corresponding to galaxy clusters (10** cm) to relatively
small stellar ones (10'° cm).

Our configuration, in which the gauge kinetic function
I(7) undergoes a rapid change during a short interval,
resonates with scenarios such as those proposed in [15],
where a sawtooth profile for /(z) is shown to mitigate the
strong coupling problem in primordial magnetogenesis [11]
[see also [60] for alternative approaches to this issue]. In
essence, the problem is the following: if one chooses a
function I(z) that increases during inflation—as in the
scale-invariant case I(7) = a(7)—and imposes I(7z) = 1
at the end of inflation, then inevitably I(z) is extremely
small at early times. Since I(z) is inversely proportional to
the electromagnetic coupling, this leads to an unphysically
large coupling at early times, rendering the electromagnetic
theory unreliable.

A proposed resolution [15] involves constructing sce-
narios in which I(z) changes its slope during inflation,
keeping its amplitude sufficiently large to avoid strong
coupling throughout. In our model, a similar mechanism is
potentially operative: by choosing a sufficiently large value
of wy in Eq. (2.14), we ensure that /(z) remains large
enough at the onset of inflation. Furthermore, if the non-
slow-roll phase begins sufficiently late—that is, if z; is

(2.46)
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chosen appropriately—then /(z) remains at safe values
thereafter, ensuring theoretical control of the setup.® It
would be interesting to further develop these preliminary
ideas within a fully developed framework.

III. GRAVITATIONAL WAVES INDUCED BY
MAGNETIC FIELD AMPLIFICATION

In the previous sections, we learned that a period of non-
slow-roll evolution can amplify the magnetic field spectrum
toward small scales, at around a comoving scale k, =
—1/7, corresponding to the brief inflationary epoch during
which slow-roll is violated. In this section, we analyze the
properties of GWs sourced by such an amplified magnetic
field. We show that the frequency dependence of the
induced stochastic GW background (SGWB) can constitute
a distinct experimental smoking gun for this scenario.
Interestingly, even if the magnetic field is rapidly damped
by turbulence or diffusion after its production, the gravi-
tational waves it induces can still serve as evidence of its
existence in the first place. Our findings provide specific
templates for SGWB profiles [see, e.g., [61-63]], high-
lighting inflationary magnetogenesis as a compelling target
for gravitational wave searches.

To compute the induced GW spectrum, we follow the
methods developed in [29,33] in the context of SGWBs in
scalar-induced scenarios where amplified curvature fluc-
tuations source the GW after inflation ends. This subject
has a long history—see e.g. [27-33] and [34] for a
comprehensive review. We apply the idea to the non-
adiabatic case of magnetic field sources, a topic studied
in several works [40—48], although usually focusing on
simple power law profiles for the magnetic field correlator
Pp in Eq. (2.9). Here we consider much richer scale-
dependent profiles for Py, as motivated by the consider-
ations of Sec. II on non-slow-roll evolution during infla-
tion; hence we need to further develop the corresponding
formalism for GW production.

A. The calculation of the gravitational
wave spectrum

After inflation ends, the GW equation of motion reads
T
R (z.x) + 2H(2) (2. X) = V2hy(z,x) = I1) (2, %),
(3.1)

with Hf-jn being the transverse-traceless component of the
magnetic field stress tensor sourcing the GW. In order to

®Alternatively, one might consider multiple short non-slow-roll
epochs [24], stitched together by segments in which /() follows
different power-law behaviors. This would allow one more
flexibility in choosing 7.

express this quantity and proceed with our discussion, it is
convenient to work in Fourier space. The spin-2 GW
fluctuations are decomposed as

PR () )
Bz x) = / eexe () p
J ; (271)3/2 J k

(3.2)

with el(.?)(k) being the spin-2 polarization tensors. The

()

evolution equation for the modes A’ results

n +omnl) +en = SO k).  (33)

The source in the right-hand side of this equation reads
2eDi (k) Az T (K)

a(7) ’

(3.4)

SW(z,k) = eI (R (. k) =

where the magnetic field stress tensor is [see e.g. [42]]

(B) 1 dp
7 (k) = @/(27)3 [Bi(p)Bj(k -p)

2

The projection tensor Aj}" selects its transverse-traceless
part, and is given by

1
ACm £ m £ m
ij *_(ﬂiﬂj +ﬂjjzi T

3 ﬂjm), with ﬂljzél]_]}l]}]

ij

(3.6)

Notice that A" = Aff = 0. Hence, we can neglect the
contribution proportional to §;; in (3.5). The quantities
entering Eq. (3.5) are evaluated at the end of inflation. Their
value then redshifts with the universe expansion after
inflation ends, as indicated by the scale factor dependence
of the source (3.4).

Equation (3.3) can be formally solved as

h (7) _ b / ' g, (v. )[a(?)SP (). (3.7)

where the g, is the Green function evaluated at the epoch of
interest. During radiation domination—the era on which we
focus our attention from now on—it reads

a7, 7) = % [sin (k7) cos (k7’) — sin (k7’) cos (k7)].  (3.8)
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The result (3.7) allows us to formally express the tensor
power spectrum as

=33

Pz, k) T) k=q (3.9)

:4ﬂzlzlé(1_)/dTldfzgk(T’Tl)gq(T,Tz)a(ﬁ)a(Tz)
g (Z<S§3><rl>sa‘><rz>>;=q), (3.10)
A

where as before the symbol (...)}_,

correlators omitting the momentum-conserving s-function.
The GW spectrum above is the necessary ingredient to
compute the GW density parameter, Qgyw, Which is the
basic quantity to be compared with experiments. Following
the notation of [33], we have

indicates two-point

2

2a 2H273h, (3.11)

Qcw =
where a bar indicates the average over rapid oscillations. To

proceed, we need to estimate P,. We compute the quantity
within parenthesis in Eq. (3.10):

S8 (72) Vg

A

= # (2B (k)2 ()i (3.12)
a*(ty)a* () P

_ 4

 (4n)’d*(1))a*(r)
% / é:)ls N () (2 (1) ma(R) + 7 (pr)) (R))

x Pg(p1)Ps( ), (3.13)

where we introduce the unit tensor i = (k — p;)/|k — py|,
and the amplitude of the magnetic field 2-point correlators
is introduced in Eq. (2.5). We do not consider non-Gaussian
contributions, such as those arising from connected four-
point functions of the magnetic field, since the underlying
Maxwell action is quadratic in the vector fields and there-
fore does not generate intrinsic non-Gaussianity. Following
[29,33], we introduce convenient variables

1—u?—?

:|k—P1| p=P1
-k k'

k'P1:
kp, 2v

U (3.14)

The tensors within the integral of Eq. (3.13) can be
contracted straightforwardly [44], leading to a function
of (u,v) which we call Cy:

Colu.v) = A2 (k) (7 (p))mh(R) + 7L (p1) 7 (R))  (3.15)

1 —uv)?
:(1+u2)<1+7( " )>.
By expressing d°p, =

>

A

(3.16)

Zﬂpldpld,u, we can rewrite (3.13) as

(0)8¢) ()

k3 0 1
_W/ vzdv/_ d//tPB(ku>PB(kU)Co(M,’U>
2k 3
/ / dMPB ku)PB(kU)C()(M U)
Tl 72

(3.17)

where we used Eq. (2.10) to pass from Py to Pp between
the first and the second line. Equation (3.17) can be
plugged into the definition of P, in (3.10). The tensor
spectrum is then nicely factorized into two integral con-
tributions. They are

1
Pi= 77, (3.18)
with
2
72 = < / dr, a((TTIT)‘)), (3.19)

/ / Py (k) Py (kv)Co (i, v).  (3.20)

We start handling the time integral in Eq. (3.19). Working
in radiation domination, we use the identities a(z)/a(z;) =
7/t and a(7)H(z) = 1/7. A simple calculation, averaging
over rapid oscillations, gives at large z:

. 1 , T 2
I% :m |:C1(—kTR)2 + <§—sl(—kTR)> :| . (321)

where Ci(x), Si(x) are the cosine and sine integral
functions, and with the bar we average over rapid oscil-
lations. The integral in Eq. (3.20) is conveniently expressed
in terms of variables ¢, s:

t 1 r— 1
_frs+? y:s—+. (3.22)

27 2

Taking into account the corresponding Jacobian, we can
write it as

oo 1
I,w_/ dt/ ds(1=s+1)72(1+s+1)72
0 -1

X Py(ku)Pg(kv)Cy(t, s), (3.23)
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with

(P4t +2) - 1)
CO(I’S)_< A=s+1+1) +1>

(s> +1(t+2)+3)
) < As+ir1p H)'

(3.24)

We can pass from the tensor spectrum to the GW density
parameter Qgw, given by Eq. (3.11). Using our formulas,
we obtain:

K -
GW — WI%IMU' (325)
We substitute into Eq. (3.25) the results derived above. We
use the same expression of [41]
a(t) = Hyr/Quq7, (3.26)
for the scale factor during radiation domination, with H,,
and Q4 being, respectively, the Hubble parameter and the
fraction of total energy density in radiation. We denote with
Qp = pp/pe = PSMB/(3H3) a quantity parametrizing the
fractional energy density of the magnetic field at very large
CMB scales, and we use the expression (2.31) for PSMB.
Finally, we multiply the resulting Qgyw by the factor Q,4,
in order to take into account the redshift of the GW
observable from early to late times [see e.g. [34]].
Expressing the formulas in terms of the dimensionless «
[see Eq. (2.25)], we get

Qaw (k) = {634?221;]
x { <Ci2(1<x*) + G - Si(Kx*)>2>i'm)(K)},
(3.27)
with
7, (x) :/)“dr/_i ds(l—s+0)2(1 + 5+ 1)
« TH(ku)T1(xv)Co 1, 5). (3.28)

The function TI(x) is defined in Eq. (2.37), while we
introduce the (small) number x, = 7z/7; which controls
the ratio between the time when inflation ends versus the
time |z;| when the slow-roll conditions are violated during
inflation. This quantity only enters in the arguments of
the Ci, Si functions. For clarity, we choose x, = 1074, but
the results are in any case mildly dependent on this quantity
since, when small, it enters only logarithmically in
Eq. (3.27) (through Ci(x) ~ In(x) for very small x).

The overall constant quantity [...] within square brackets
in Eq. (3.27) depends on the scale of inflation, as well as on
postinflationary evolution. It is the same overall constant
scale found in previous works [starting with [41]] which
quantifies the impact of the amplitude of large scale
magnetic fields into GW observables. The overall ampli-
tude is not our primary focus here; instead, we are
interested in the scale dependence of the gravitational
wave background. For definiteness, we fix the overall
prefactor in Eq. (3.27) to a small value, [...] ~2 x 107,
to better highlight the subsequent growth of the spectrum
toward smaller scales. Such reduced values can be due by
post-inflationary processes related with field evolution and
dissipation in the astrophysical plasma—a subject that we
do not touch here, though.

The quantity within curly parenthesis {...} in Eq. (3.27)
is dimensionless, and depends on the function TI(k)
which—as we learned in the previous section—controls
the growth of the magnetic field spectrum. The combina-
tion within {...} can be evaluated numerically: we find that
it has a profile with a plateau, and a maximal value scaling
with T1; as

(o = 10°TIA, (3.29)

Using this information, we plot in Fig. 2 the resulting
expression for the fractional energy density Qgw in
gravitational waves as a function of frequency, employing
the relation k/Mpc~!~6.5x10'* f/Hz. We choose
I, = 7 x 107, a large value consistent with our consid-
erations in Sec. II B. To account for the damping of the
magnetic field at small scales, as anticipated in Sec. II, we
truncate the magnetic power spectrum at large x, where its
amplitude is known to be suppressed by dissipation and
turbulent effects [see, e.g., the review [6]]. Specifically, as a
concrete example, we use the expression for Il(x) from
Eq. (2.37), but set I1(x) = 0 for x > 50.

107 = Qow(f)

— = Tangent o866

107134

107154

10-174

Qcw

10-19 4

107214

10-234

fIf «

FIG. 2. Plot of Qgw/(f) in our setup. We follow Eq. (3.27) and
choose the parameters as explained in the main text.
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107°

10~°

10-12

Qaw(f)

10-15

10-2t

1024

10-5 104 10~ 10-2 101

f(Hz)

107t 10°

FIG. 3.

Qaw(f)

v

A Qowlf

107° 10-8 1077 ‘ 10-°

f(Hz)

10710 To-6

Left: same frequency profile of Qgw (f) as in Fig. 2 is shown for f, = 0.1, compared against the nominal LISA sensitivity

curve and its broken power-law version [66,67]. Right: same frequency profile of Qg (f) as in Fig. 2 is shown for f, =5 x 1078,

compared against the SKA, IPTA, NANOGrav sensitivity curves.

The spectral shape of the SGWB, Qgw(f), pleasantly
reflects the underlying profile of the magnetic field power
spectrum I1(x) that sources it:

(i) At relatively low frequencies, Qgw(f) exhibits a

steep rise, scaling approximately as (f/f,)%’. This
behavior arises from the convolution integrals of
Eq. (3.28), involving the square of the magnetic field
spectrum. Since I1(x) during its growth scales with a
spectral slope of order 4 (or slightly larger), taking
its square within the integrals leads to the afore-
mentioned scaling in the gravitational wave signal.
This rapid growth is abruptly halted at around
f/f«~1/50, giving way to a flat plateau in the
SGWB spectrum of Fig. 2. The amplitude of this
plateau scales as Hg. It corresponds to the convo-
Iution of the nearly flat region of the magnetic field
spectrum at small scales, which follows the initial
growth phase—modulo oscillations in the magnetic
field spectrum, which are smoothed out in the
convolution integrals.
At higher frequencies, specifically for f/f, = 102,
the SGWB spectrum undergoes a sharp decline. This
reflects the assumed rapid suppression of Il(k) at
large k > 50, due to dissipation and turbulence
effects in the plasma [see discussion following
Eq. (3.29)]. We emphasize though that this decline
in Qgw(f) is model dependent, since it relies on our
assumptions about the suppression of the magnetic
field spectrum toward small scales.

(i)

(iii)

B. Consequences for gravitational wave experiments

The selected value of the parameter IT, =7 x 10’
leads to a gravitational wave signal with peak amplitude
Qgw =~ 107! given our hypothesis on the overall constant
factor in Eq. (3.27).

This GW signal could fall within the sensitivity range of
future GW experiments provided that the frequency f,
determining the position of the plateau in Qgw lies within

their observational bands. As specific simple examples, we
show in the left panel of Fig, 3 that such a GW spectrum
can be in principle detected with LISA [64], by choosing
the pivot frequency f, = 0.1 Hz. Such a pivot frequency
corresponds to a magnetic field enhanced at very small
scales of 3 x 10'! cm, i.e. stellar-size scales. In the right
panel of Fig. 3 we instead consider a pivot frequency
f+ =5 x 1078 Hz, corresponding to signals at nano-Hertz
scales detectable with pulsar timing array experiments—we
take the corresponding sensitivity curves from [65]. The
magnetic field gets then enhanced a scales of 6 x 10'7 ¢cm,
i.e. interstellar size.

The resulting SGWB spectrum has a distinctive shape:
its rapid growth toward its plateau and squared shape are
quite atypical compared to standard templates commonly
considered in scalar-induced SGWB scenarios [63] based
on adiabatic perturbations.7 The characteristic knee in the
profile of Fig. 3 can be detected implementing techniques
as [69,70]. Despite the differences between adiabatic and
nonadiabatic sources, the properties of the magnetic field
source can, in principle, be reconstructed using recently
developed tools such as those presented in [71,72]. A more
detailed analysis of the detectability and characterization of
the magnetically induced SGWB will be pursued in future
work: nevertheless our investigation already shows how the
rich scale dependence of the magnetic field spectrum in our
setup leads to a distinctive GW signal.

IV. CONCLUSIONS

We analytically investigated inflationary magnetogene-
sis in the Ratra model, focusing on scenarios where a brief
violation of slow-roll conditions enhances the coupling
between the inflaton and gauge fields. This mechanism

"In particular, the logarithmic slope In(f/f ) ~ 8 characterizes
the spectral shape in the intermediate regime approaching the
plateau, whereas in the deep infrared, the spectrum exhibits a
gentler power-law behavior [68].
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allows for a rapid growth of the magnetic field spect-
rum, with an analytically derived maximal slope of
dInPg/dInk = 4.75, sufficient to bridge the gap between
CMB-constrained large-scale amplitudes and observed
astrophysical field strengths. We also commented on strong
coupling and backreaction problems in this setup.

We then studied the stochastic gravitational wave back-
ground induced by the amplified magnetic fields, extending
standard formalisms to account for the nontrivial spectral
features of our scenario. Under suitable conditions, the
resulting gravitational wave signal exhibits a characteristic
frequency profile and potentially detectable amplitude,
providing a unique observational handle on inflationary
magnetogenesis with transient non-slow-roll dynamics.

At the technical level, the main highlights of our results
are as follows:

(i) We introduced a systematic method for analytically
studying the spectral profile of perturbations for
fields with spin greater than zero, and applied it to
the vector case. This method yields compact ana-
Iytical expressions and allows us to extract key
features of the spectrum, such as the location of
the dip and the rate of its growth.

(i) We derived general expressions for the gravitational
wave spectrum induced at second order by magnetic
fields, applicable to scenarios with s magnetic field
profiles like ours. Remarkably, the resulting formu-
las exhibit a simpler, factorizable structure than their
scalar, adiabatic counterparts—a feature that may
prove useful for future analyses of related scenarios.

Our findings suggest a possible connection between
primordial magnetogenesis, primordial black hole phenom-
enology, and gravitational wave physics, motivating further
exploration of inflationary scenarios beyond slow-roll and
their couplings with vector fields.
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APPENDIX: FINITE DURATION
OF THE NON-SLOW-ROLL EPOCH

In this appendix we reconsider the problem of determin-
ing the maximal slope of the magnetic field spectrum in its

114
R M(x)

- AKB

1014

10~

103

10-2 10-2 101 100 10! 102
K

FIG. 4. Example of the fitted spectrum, I1(x), taking a = 107,
At = 0.1. The power-law fit finds A = 8.9 x 10" B = 4.197.

growing region, without taking the limit of Eq. (2.33).
In other words, we vary both parameters a and Ar,
performing a grid-search, computing the maximal slope
of II(x) for choices of a and Ar restricting such that
10* < aA7 < 108. In the growing region we assume the
spectrum to follow a power-law profile Ax®. Figure 4
explicitly shows the region in which the power law is
fitted, away from deviations from linearity toward the
extreme ends of the transitionary phase.

Figure 5 demonstrates the variation of the power-law
exponent with the choices of @ and Az. In the limit that
A7 — 0 and o — oo we find that B — 4.4. For this sub-
space, we find the global maximum slope be B = 4.398 for
At =7 x 107*, a = 1.33 x 107. Observably, the resulting
slope is smaller than the value B = 4.75 quoted in the main

1097 4.395
4.389

4.383

4.376

@
4370 £
s 108 2
o
4363 £
w
4.357
4.350
max B = 4.395 4344
Qopt = 1.331e+07
ATopt = 7.512e-04
107 T T 4.337
105 1074 1073 102
AT
FIG.5. Maximum slope value as function of @ and Az restricted

such that 10* < aAr < 10%. Global maximum slope found to be
B=4395at At =75x 10", a=1.33 x 10".
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text, obtained in the limit (2.33). We interpret the discrep-
ancy as due to the fact that in this appendix we assume a
power-law behavior with constant B for the entire growing
part of the spectrum; however it is anticipated that the

corresponding spectral index has a nontrivial dependence
on the scale—as seen for example in Fig. 1, right panel. It is
intended that a more systematic analysis of this topic will
be left to future work.

[1] P.P. Kronberg, Extragalactic magnetic fields, Rep. Prog.
Phys. 57, 325 (1994).

[2] D. Grasso and H. R. Rubinstein, Magnetic fields in the early
universe, Phys. Rep. 348, 163 (2001).

[3] L. M. Widrow, Origin of galactic and extragalactic magnetic
fields, Rev. Mod. Phys. 74, 775 (2002).

[4] A. Kandus, K.E. Kunze, and C.G. Tsagas, Primordial
magnetogenesis, Phys. Rep. 505, 1 (2011).

[51 L. M. Widrow, D. Ryu, D. R. G. Schleicher, K. Subramanian,
C.G. Tsagas, and R. A. Treumann, The first magnetic fields,
Space Sci. Rev. 166, 37 (2012).

[6] R. Durrer and A. Neronov, Cosmological magnetic fields:
Their generation, evolution and observation, Astron.
Astrophys. Rev. 21, 62 (2013).

[7] K. Subramanian, The origin, evolution and signatures of
primordial magnetic fields, Rep. Prog. Phys. 79, 076901
(2016).

[8] M. S. Turner and L. M. Widrow, Inflation produced, large
scale magnetic fields, Phys. Rev. D 37, 2743 (1988).

[9] B. Ratra, Cosmological ‘seed” magnetic field from inflation,
Astrophys. J. Lett. 391, L1 (1992).

[10] J. Martin and J. Yokoyama, Generation of large-scale
magnetic fields in single-field inflation, J. Cosmol. Astro-
part. Phys. 01 (2008) 025.

[11] V.Demozzi, V. Mukhanov, and H. Rubinstein, Magnetic fields
from inflation?, J. Cosmol. Astropart. Phys. 08 (2009) 025.

[12] S. Kanno, J. Soda, and M. Watanabe, Cosmological
magnetic fields from inflation and backreaction, J. Cosmol.
Astropart. Phys. 12 (2009) 009.

[13] K. Bamba and M. Sasaki, Large-scale magnetic fields
in the inflationary universe, J. Cosmol. Astropart. Phys.
02 (2007) 030.

[14] N. Barnaby, R. Namba, and M. Peloso, Observable non-
Gaussianity from gauge field production in slow roll
inflation, and a challenging connection with magnetogen-
esis, Phys. Rev. D 85, 123523 (2012).

[15] R.J.Z. Ferreira, R. K. Jain, and M. S. Sloth, Inflationary
magnetogenesis without the strong coupling problem,
J. Cosmol. Astropart. Phys. 10 (2013) 004.

[16] R.J.Z. Ferreira, R. K. Jain, and M. S. Sloth, Inflationary
magnetogenesis without the strong coupling problem II:
Constraints from CMB anisotropies and B-modes,
J. Cosmol. Astropart. Phys. 06 (2014) 053.

[17] O. Ozsoy and G. Tasinato, Inflation and primordial black
holes, Universe 9, 203 (2023).

[18] S. Tripathy, D. Chowdhury, R. K. Jain, and L. Sriramkumar,
Challenges in the choice of the nonconformal coupling
function in inflationary magnetogenesis, Phys. Rev. D 105,
063519 (2022).

[19] S. Tripathy, D. Chowdhury, H. V. Ragavendra, R. K. Jain,
and L. Sriramkumar, Circumventing the challenges in the
choice of the nonconformal coupling function in infla-
tionary magnetogenesis, Phys. Rev. D 107, 043501 (2023).

[20] P. A.R. Ade et al. (Planck Collaboration), Planck 2015
results. XIX. Constraints on primordial magnetic fields,
Astron. Astrophys. 594, A19 (2016).

[21] C.T. Byrnes, P.S. Cole, and S. P. Patil, Steepest growth of
the power spectrum and primordial black holes, J. Cosmol.
Astropart. Phys. 06 (2019) 028.

[22] P. Carrilho, K. A. Malik, and D. J. Mulryne, Dissecting the
growth of the power spectrum for primordial black holes,
Phys. Rev. D 100, 103529 (2019).

[23] O. Ozsoy and G. Tasinato, On the slope of the curvature
power spectrum in non-attractor inflation, J. Cosmol.
Astropart. Phys. 04 (2020) 048.

[24] G. Tasinato, An analytic approach to non-slow-roll inflation,
Phys. Rev. D 103, 023535 (2021).

[25] M. Cielo, G. Mangano, O. Pisanti, and D. Wands, Steepest
growth in the primordial power spectrum from excited states at
asudden transition, J. Cosmol. Astropart. Phys. 04 (2025) 007.

[26] G. Tasinato, Large Iyl approach to single field inflation,
Phys. Rev. D 108, 043526 (2023).

[27] S. Matarrese, O. Pantano, and D. Saez, A general relativistic
approach to the nonlinear evolution of collisionless matter,
Phys. Rev. D 47, 1311 (1993).

[28] K. N. Ananda, C. Clarkson, and D. Wands, The cosmo-
logical gravitational wave background from primordial
density perturbations, Phys. Rev. D 75, 123518 (2007).

[29] D. Baumann, P.J. Steinhardt, K. Takahashi, and K. Ichiki,
Gravitational wave spectrum induced by primordial scalar
perturbations, Phys. Rev. D 76, 084019 (2007).

[30] R. Saito and J. Yokoyama, Gravitational-wave constraints
on the abundance of primordial black holes, Prog. Theor.
Phys. 123, 867 (2010).

[31] E. Bugaev and P. Klimai, Induced gravitational wave
background and primordial black holes, Phys. Rev. D 81,
023517 (2010).

[32] J.R. Espinosa, D. Racco, and A. Riotto, A cosmological
signature of the SM Higgs instability: Gravitational waves,
J. Cosmol. Astropart. Phys. 09 (2018) 012.

[33] K. Kohri and T. Terada, Semianalytic calculation of gravi-
tational wave spectrum nonlinearly induced from primordial
curvature perturbations, Phys. Rev. D 97, 123532 (2018).

[34] G. Domenech, Scalar induced gravitational waves review,
Universe 7, 398 (2021).

[35] G. Domenech, S. Passaglia, and S. Renaux-Petel, Gravita-
tional waves from dark matter isocurvature, J. Cosmol.
Astropart. Phys. 03 (2022) 023.

063534-13


https://doi.org/10.1088/0034-4885/57/4/001
https://doi.org/10.1088/0034-4885/57/4/001
https://doi.org/10.1016/S0370-1573(00)00110-1
https://doi.org/10.1103/RevModPhys.74.775
https://doi.org/10.1016/j.physrep.2011.03.001
https://doi.org/10.1007/s11214-011-9833-5
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1088/0034-4885/79/7/076901
https://doi.org/10.1088/0034-4885/79/7/076901
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1086/186384
https://doi.org/10.1088/1475-7516/2008/01/025
https://doi.org/10.1088/1475-7516/2008/01/025
https://doi.org/10.1088/1475-7516/2009/08/025
https://doi.org/10.1088/1475-7516/2009/12/009
https://doi.org/10.1088/1475-7516/2009/12/009
https://doi.org/10.1088/1475-7516/2007/02/030
https://doi.org/10.1088/1475-7516/2007/02/030
https://doi.org/10.1103/PhysRevD.85.123523
https://doi.org/10.1088/1475-7516/2013/10/004
https://doi.org/10.1088/1475-7516/2014/06/053
https://doi.org/10.3390/universe9050203
https://doi.org/10.1103/PhysRevD.105.063519
https://doi.org/10.1103/PhysRevD.105.063519
https://doi.org/10.1103/PhysRevD.107.043501
https://doi.org/10.1051/0004-6361/201525821
https://doi.org/10.1088/1475-7516/2019/06/028
https://doi.org/10.1088/1475-7516/2019/06/028
https://doi.org/10.1103/PhysRevD.100.103529
https://doi.org/10.1088/1475-7516/2020/04/048
https://doi.org/10.1088/1475-7516/2020/04/048
https://doi.org/10.1103/PhysRevD.103.023535
https://doi.org/10.1088/1475-7516/2025/04/007
https://doi.org/10.1103/PhysRevD.108.043526
https://doi.org/10.1103/PhysRevD.47.1311
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1143/PTP.123.867
https://doi.org/10.1143/PTP.123.867
https://doi.org/10.1103/PhysRevD.81.023517
https://doi.org/10.1103/PhysRevD.81.023517
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1103/PhysRevD.97.123532
https://doi.org/10.3390/universe7110398
https://doi.org/10.1088/1475-7516/2022/03/023
https://doi.org/10.1088/1475-7516/2022/03/023

BILL ATKINS et al.

PHYS. REV. D 112, 063534 (2025)

[36] S. Passaglia and M. Sasaki, Primordial black holes from
CDM isocurvature perturbations, Phys. Rev. D 105, 103530
(2022).

[37] G. Domenech, Cosmological gravitational waves from
isocurvature fluctuations, AAPPS Bull. 34, 4 (2024).

[38] O. @zsoy and G. Tasinato, Vector dark matter, inflation, and
non-minimal couplings with gravity, J. Cosmol. Astropart.
Phys. 06 (2024) 003.

[39] A. Marriott-Best, M. Peloso, and G. Tasinato, New gravi-
tational wave probe of vector dark matter, Phys. Rev. D 111,
103511 (2025).

[40] R. Durrer, P.G. Ferreira, and T. Kahniashvili, Tensor
microwave anisotropies from a stochastic magnetic field,
Phys. Rev. D 61, 043001 (2000).

[41] C. Caprini and R. Durrer, Gravitational wave production: A
strong constraint on primordial magnetic fields, Phys. Rev.
D 65, 023517 (2001).

[42] A. Mack, T. Kahniashvili, and A. Kosowsky, Microwave
background signatures of a primordial stochastic magnetic
field, Phys. Rev. D 65, 123004 (2002).

[43] L. Pogosian, T. Vachaspati, and S. Winitzki, Signatures of
kinetic and magnetic helicity in the CMBR, Phys. Rev. D
65, 083502 (2002).

[44] C. Caprini, R. Durrer, and T. Kahniashvili, The cosmic
microwave background and helical magnetic fields: The
tensor mode, Phys. Rev. D 69, 063006 (2004).

[45] J.R. Shaw and A. Lewis, Massive neutrinos and magnetic
fields in the early universe, Phys. Rev. D 81, 043517 (2010).

[46] S. Saga, H. Tashiro, and S. Yokoyama, Limits on primordial
magnetic fields from direct detection experiments of gravi-
tational wave background, Phys. Rev. D 98, 083518 (2018).

[47] A. Bhaumik, T. Papanikolaou, and A. Ghoshal, Vector
induced gravitational waves sourced by primordial magnetic
fields, J. Cosmol. Astropart. Phys. 08 (2025) 054.

[48] S. Maiti, D. Maity, and R. Srikanth, Probing reheating phase
via non-helical magnetogenesis and secondary gravitational
waves, arxXiv:2505.13623.

[49] K. Subramanian, Magnetic fields in the early universe,
Astron. Nachr. 331, 110 (2010).

[50] A. Karam, N. Koivunen, E. Tomberg, V. Vaskonen, and H.
Veermide, Anatomy of single-field inflationary models for
primordial black holes, J. Cosmol. Astropart. Phys. 03
(2023) 013.

[51] G. Franciolini and A. Urbano, Primordial black hole dark
matter from inflation: The reverse engineering approach,
Phys. Rev. D 106, 123519 (2022).

[52] G.’t Hooft, A planar diagram theory for strong interactions,
Nucl. Phys. B72, 461 (1974).

[53] G. Tasinato, Non-Gaussianities and the large Iyl approach to
inflation, Phys. Rev. D 109, 063510 (2024).

[54] K. Jedamzik, V. Katalinic, and A.V. Olinto, Damping of
cosmic magnetic fields, Phys. Rev. D 57, 3264 (1998).

[55] M. Mylova, O. Ozsoy, S. Parameswaran, G. Tasinato, and L.
Zavala, A new mechanism to enhance primordial tensor
fluctuations in single field inflation, J. Cosmol. Astropart.
Phys. 12 (2018) 024.

[56] O. Ozsoy, M. Mylova, S. Parameswaran, C. Powell, G.
Tasinato, and I. Zavala, Squeezed tensor non-Gaussianity in
non-attractor inflation, J. Cosmol. Astropart. Phys. 09
(2019) 036.

[57] H. A. G. Cruz, T. Adi, J. Flitter, M. Kamionkowski, and
E. D. Kovetz, 21-cm fluctuations from primordial magnetic
fields, Phys. Rev. D 109, 023518 (2024).

[58] D. Paoletti, J. Chluba, F. Finelli, and J. A. Rubiflo-Martin,
Constraints on primordial magnetic fields from their impact
on the ionization history with Planck 2018, Mon. Not. R.
Astron. Soc. 517, 3916 (2022).

[59] J. Chluba, D. Paoletti, F. Finelli, and J.-A. Rubifio-Martin,
Effect of primordial magnetic fields on the ionization
history, Mon. Not. R. Astron. Soc. 451, 2244 (2015).

[60] G. Tasinato, A scenario for inflationary magnetogenesis
without strong coupling problem, J. Cosmol. Astropart.
Phys. 03 (2015) 040.

[61] C. Caprini, R. Jinno, M. Lewicki, E. Madge, M. Merchand,
G. Nardini, M. Pieroni, A. Roper Pol, and V. Vaskonen
(LISA Cosmology Working Group Collaboration), Gravi-
tational waves from first-order phase transitions in LISA:
Reconstruction pipeline and physics interpretation, J. Cos-
mol. Astropart. Phys. 10 (2024) 020.

[62] J.J. Blanco-Pillado, Y. Cui, S. Kuroyanagi, M. Lewicki,
G. Nardini, M. Pieroni, I. Y. Rybak, L. Sousa, and J. M.
Wachter (LISA Cosmology Working Group Collaboration),
Gravitational waves from cosmic strings in LISA:
Reconstruction pipeline and physics interpretation,
J. Cosmol. Astropart. Phys. 05 (2025) 006.

[63] M. Braglia et al. (LISA Cosmology Working Group
Collaboration), Gravitational waves from inflation in
LISA: Reconstruction pipeline and physics interpretation,
J. Cosmol. Astropart. Phys. 11 (2024) 032.

[64] M. Colpi et al. (LISA Collaboration), LISA definition study
report, arXiv:2402.07571.

[65] K. Schmitz, New sensitivity curves for gravitational-wave
signals from cosmological phase transitions, J. High Energy
Phys. 01 (2021) 097.

[66] D. Chowdhury, G. Tasinato, and I. Zavala, The rise of the
primordial tensor spectrum from an early scalar-tensor
epoch, J. Cosmol. Astropart. Phys. 08 (2022) 010.

[67] A. Marriott-Best, D. Chowdhury, A. Ghoshal, and G.
Tasinato, Exploring cosmological gravitational wave back-
grounds through the synergy of LISA and the Einstein
Telescope, Phys. Rev. D 111, 103001 (2025).

[68] R.-G. Cai, S. Pi, and M. Sasaki, Universal infrared scaling of
gravitational wave background spectra, Phys. Rev. D 102,
083528 (2020).

[69] C. Caprini, D.G. Figueroa, R. Flauger, G. Nardini, M.
Peloso, M. Pieroni, A. Ricciardone, and G. Tasinato,
Reconstructing the spectral shape of a stochastic gravita-
tional wave background with LISA, J. Cosmol. Astropart.
Phys. 11 (2019) 017.

[70] P. Auclair et al. (LISA Cosmology Working Group Col-
laboration), Cosmology with the Laser Interferometer Space
Antenna, Living Rev. Relativity 26, 5 (2023).

[71] J.E. Gammal et al. (LISA Cosmology Working Group
Collaboration), Reconstructing primordial curvature pertur-
bations via scalar-induced gravitational waves with LISA, J.
Cosmol. Astropart. Phys. 05 (2025) 062.

[72] A. Ghaleb, A. Malhotra, G. Tasinato, and I. Zavala,
Bayesian reconstruction of primordial perturbations from
induced gravitational waves, arXiv:2505.22534.

063534-14


https://doi.org/10.1103/PhysRevD.105.103530
https://doi.org/10.1103/PhysRevD.105.103530
https://doi.org/10.1007/s43673-023-00109-z
https://doi.org/10.1088/1475-7516/2024/06/003
https://doi.org/10.1088/1475-7516/2024/06/003
https://doi.org/10.1103/PhysRevD.111.103511
https://doi.org/10.1103/PhysRevD.111.103511
https://doi.org/10.1103/PhysRevD.61.043001
https://doi.org/10.1103/PhysRevD.65.023517
https://doi.org/10.1103/PhysRevD.65.023517
https://doi.org/10.1103/PhysRevD.65.123004
https://doi.org/10.1103/PhysRevD.65.083502
https://doi.org/10.1103/PhysRevD.65.083502
https://doi.org/10.1103/PhysRevD.69.063006
https://doi.org/10.1103/PhysRevD.81.043517
https://doi.org/10.1103/PhysRevD.98.083518
https://doi.org/10.1088/1475-7516/2025/08/054
https://arXiv.org/abs/2505.13623
https://doi.org/10.1002/asna.200911312
https://doi.org/10.1088/1475-7516/2023/03/013
https://doi.org/10.1088/1475-7516/2023/03/013
https://doi.org/10.1103/PhysRevD.106.123519
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1103/PhysRevD.109.063510
https://doi.org/10.1103/PhysRevD.57.3264
https://doi.org/10.1088/1475-7516/2018/12/024
https://doi.org/10.1088/1475-7516/2018/12/024
https://doi.org/10.1088/1475-7516/2019/09/036
https://doi.org/10.1088/1475-7516/2019/09/036
https://doi.org/10.1103/PhysRevD.109.023518
https://doi.org/10.1093/mnras/stac2947
https://doi.org/10.1093/mnras/stac2947
https://doi.org/10.1093/mnras/stv1096
https://doi.org/10.1088/1475-7516/2015/03/040
https://doi.org/10.1088/1475-7516/2015/03/040
https://doi.org/10.1088/1475-7516/2024/10/020
https://doi.org/10.1088/1475-7516/2024/10/020
https://doi.org/10.1088/1475-7516/2025/05/006
https://doi.org/10.1088/1475-7516/2024/11/032
https://arXiv.org/abs/2402.07571
https://doi.org/10.1007/JHEP01(2021)097
https://doi.org/10.1007/JHEP01(2021)097
https://doi.org/10.1088/1475-7516/2022/08/010
https://doi.org/10.1103/PhysRevD.111.103001
https://doi.org/10.1103/PhysRevD.102.083528
https://doi.org/10.1103/PhysRevD.102.083528
https://doi.org/10.1088/1475-7516/2019/11/017
https://doi.org/10.1088/1475-7516/2019/11/017
https://doi.org/10.1007/s41114-023-00045-2
https://doi.org/10.1088/1475-7516/2025/05/062
https://doi.org/10.1088/1475-7516/2025/05/062
https://arXiv.org/abs/2505.22534

	Inflationary magnetogenesis beyond slow-roll and its induced gravitational waves
	I. INTRODUCTION
	II. THE MAXIMAL SLOPE OF THE MAGNETIC FIELD SPECTRUM
	A. Analytical determination of the magnetic mode function
	B. The maximal growth of the spectrum: Analytical results
	C. Some considerations on backreaction and strong coupling issues

	III. GRAVITATIONAL WAVES INDUCED BY MAGNETIC FIELD AMPLIFICATION
	A. The calculation of the gravitational wave spectrum
	B. Consequences for gravitational wave experiments

	IV. CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX: FINITE DURATION OF THE NON-SLOW-ROLL EPOCH
	References


