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The origin of magnetic fields observed on both astrophysical and cosmological scales is a
compelling problem that has the potential to shed light on the early Universe. We analytically
investigate inflationary magnetogenesis in scenarios where a brief departure from slow-roll inflation—
akin to mechanisms proposed for primordial black hole formation—leads to enhanced magnetic field
generation with a growing power spectrum. Focusing on the Ratra model, we derive an analytic bound
on the growth of the magnetic field power spectrum in this context, showing that the spectral index can
reach d lnPB=d ln k ¼ 4.75 during the growth phase. This growth enables amplification from cosmic-
microwave-background-safe large-scale amplitudes to values of astrophysical relevance. We further
compute the stochastic gravitational wave background sourced by the resulting magnetic fields,
incorporating their rich spectral features. Under suitable conditions, the induced signal exhibits a
characteristic frequency dependence and amplitude within reach of future gravitational wave
observatories, providing a distinctive signature of this mechanism and a specific class of templates
for upcoming gravitational wave searches.
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I. INTRODUCTION

Understanding the origin of magnetic fields observed on
large astrophysical and cosmological scales is a fascinating
problem that may provide valuable insights into the early
evolution of the Universe. Over the past few decades,
significant efforts have been devoted to this question—see,
for instance, reviews in [1–7]. An intriguing possibility is
that cosmic inflation generates the seeds for the subsequent
evolution of cosmic magnetic fields: References [8–16]
include original and influential works on primordial
magnetogenesis. However, as discussed in these works,
scenarios of inflationary magnetogenesis face stringent
experimental and theoretical constraints that should be
carefully addressed. We adopt the scenario of Ratra [9] and
consider a coupling of the inflaton field to the electromag-
netic field during inflation, so as to break the conformal
invariance of the Maxwell action, and to allow for magnetic
field production. We link magnetogenesis to the physics of
primordial black holes [see [17] for a review], by assuming
that a brief phase of violation of slow-roll conditions occurs
during inflation, causing the inflaton velocity to change
abruptly during a short period of time. Such a non-slow-roll
phase—used in the context of primordial black hole
physics to enhance the spectrum of curvature fluctua-
tions—drastically affects the time dependence of the

coupling of the inflaton with Maxwell gauge fields, and
influences the production of primordial magnetic fields at
small scales only, with interesting phenomenological ram-
ifications. This scenario has the potential to selectively
amplify a primordial magnetic field at certain small
scales. This topic has been recently investigated in
[18,19], though without addressing the specific questions
we consider here.
Assuming an initial nearly scale-invariant magnetic field

spectrum on large scales, with an amplitude low enough
to satisfy stringent constraints from cosmic microwave
background (CMB) observations [20], we show that a non-
slow-roll epoch can rapidly amplify the magnetic field to
levels compatible with those observed in astrophysical
contexts. We address two questions:
(1) Within this approach, what is the maximal possible

slope of the magnetic field spectrum as it grows from
large to small scales? This question is important
because the magnetic field amplitude must increase
by several orders of magnitude from tiny values
at the largest scales—where it is constrained by
CMB observations—to smaller cosmological or
astrophysical scales, where observations suggest
much stronger fields. An analog problem has been
studied in [21] in the context of adiabatic curvature
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perturbations ζ relevant for the formation of pri-
mordial black holes. There, the amplification of ζ
from large to small scales was shown to be bounded

by d lnPζ

d ln k ¼ 4, up to subdominant logarithmic
corrections [22,23].1 In Sec. II, we address the
analogous question for the magnetic field spectrum.
We develop a fully analytical method, building
on [24,26], and find that the growth rate of the
magnetic field spectrum PB can exceed that of the
curvature spectrum. In fact, under our assumptions,

the maximal slope is d lnPB
d ln k ¼ 4.75, and the resulting

magnetic spectrum has a rich profile as a function
of the momentum scale. We also comment how our
scenario addresses strong coupling and backreaction
problems of magnetogenesis.

(2) Given that our non-slow-roll mechanism leads to a
rapid amplification of the magnetic field spectrum at
small scales, does this process also generate vector-
induced gravitational waves (GWs) at second order
in magnetic field fluctuations? The generation of
GWs induced by adiabatic scalar fluctuations has a
well-established history, see e.g. [27–33]: it has
recently gained renewed interest as a probe of
primordial black hole scenarios [see, e.g., [34] for
a review]. In contrast, less attention has been given
to GW production from non-adiabatic sources [see,
e.g., [35–39]], although there is existing literature on
GWs arising from magnetogenesis scenarios [see,
e.g., [40–48]]. A common assumption in previous
studies of magnetically induced GWs is that the
magnetic field spectrum follows a simple power-
law behavior. However, as outlined above, in our
scenario the magnetic spectrum exhibits a much
richer structure. This requires an extension of the
standard formalism of magnetically induced GW
to properly account for the non-trivial spectral
features of our setup. In Sec. III, we present such
an extension and compute the resulting GW spec-
trum. We find that, under suitable conditions, the
amplitude of the induced GWs can be large enough
to be potentially detectable by future GW observa-
tories. The resulting GW spectrum exhibits a
distinctive frequency dependence, which could
serve as a characteristic signature of our scenario,
helping to distinguish it from other early universe
sources of GWs.

We conclude in Sec. IV, which is followed by the technical
Appendix.

II. THE MAXIMAL SLOPE OF THE MAGNETIC
FIELD SPECTRUM

We consider an Einstein-Maxwell Lagrangian for the
electromagnetic field in an expanding universe,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
−
I2ðτÞ
4

FμνFμν

�
: ð2:1Þ

We set MPl ¼ 1, and we use a mostly plus metric signature
ds2 ¼ a2ðτÞ½−dτ2 þ dx2�. We define Fμν ¼ ∂μAν − ∂νAμ

in terms of the vector potential. The overall coupling IðτÞ
depends on time and serves to break the conformal
symmetry of Maxwell action. IðτÞ usually follows a power
law profile in terms of the scale factor aðτÞ during inflation.
Such behavior is motivated by directly coupling a function
of the inflation field ϕðτÞ with the Maxwell Lagrangian. In
a standard setup, the scalar profiles change very slowly as
functions of time, and a simple power-law behavior for IðτÞ
as function of time can be easily be obtained. In this work
we relax this assumption, motivating and analytically
investigating scenarios where IðτÞ changes rapidly during
inflation.
We decompose the Maxwell part of action (2.1) in terms

of the spatial components Ai of the vector potential (after
integrating out the auxiliary time-like component A0)

S ¼ 1

2

Z
dτd3xI2ðτÞ

�
A02
i −

1

2
ð∂iAj − ∂jAiÞ2

�
: ð2:2Þ

The magnetic field components scale with time as
Biðτ;xÞ ∝ 1=aðτÞ [7]. Hence, after inflation we can write
the equality

Biðτ;xÞ ¼ aR=aðτÞBiðτR;xÞ; ð2:3Þ

where BiðτR;xÞ ¼ ϵijk∂jAkðτR;xÞ is the value of the
magnetic field right at the end of inflation.
The electromagnetic potential is decomposed in Fourier

space as

Aiðτ;xÞ ¼
X
λ

Z
d3k

ð2πÞ3=2 e
ik·xeðλÞi ðk̂ÞAkðτÞ; ð2:4Þ

with eðλÞi being two polarization vectors orthogonal to the
momentum k. The amplitude PBðkÞ of the 2-point corre-
lator for the magnetic field at the end of inflation is defined
in terms of the Fourier transform of the magnetic field
correlation function in Fourier space as follows:

hBiðτR;kÞBjðτR;qÞi0k¼q ¼ πijPBðkÞ; ð2:5Þ

with

πij ¼ δij − k̂ik̂j; ð2:6Þ
1Stronger growth may be possible if multiple successive phases

of non-slow-roll evolution are allowed [see [24]] or if the initial
vacuum deviates from the Bunch–Davies form [see [25]].
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and the symbol h…i0k¼q indicates two-point correlators
omitting the momentum-conserving δ-function. From now
on, vectors with a hat indicate unit vectors, as k̂ ¼ k=kwith
k ¼ ffiffiffiffiffiffiffiffiffiffi

k · k
p

. To proceed, it is convenient to rescale Ak by
means of the conformal function I:

AkðτÞ ¼ IðτÞAkðτÞ: ð2:7Þ

Its corresponding equation of motion reads

A00
k þ

�
k2 −

I00

I

�
Ak ¼ 0: ð2:8Þ

Standard quantization rules can be implemented [see e.g.
[10,15,18,49]] leading to the following expressions for the
magnetic field energy density at the end of inflation—we
call it the B spectrum:

PBðkÞ ¼
dρB
d ln k

¼ k5

2π2a4R
jAkj2: ð2:9Þ

Comparing with Eq. (2.5), since PB ¼ k2jAkj2=I2ðτRÞ at
the end of inflation, we find the following relation:

PBðkÞ ¼
k3I2ðτRÞPBðkÞ

2a4Rπ
2

: ð2:10Þ

As a warm-up example, we begin by selecting
IðτÞ ¼ a2ðτÞ, and impose Bunch-Davies initial conditions
at small scales jkτj → ∞. During inflation, we assume de
Sitter expansion aðτÞ ¼ −1=ðHIτÞ, with HI being the
constant Hubble parameter. Equation (2.8) is easily solved
analytically:

AkðτÞ ¼
3a2ðτÞH2

Iffiffiffi
2

p e−ikτ

k5=2

�
1þ ikτ −

k2τ2

3

�
: ð2:11Þ

At time τ ¼ τR, when inflation ends, the magnetic
spectrum is

PB ¼ 9H4
I

4π2

�
1þ k2τ2R

3
þ k4τ4R

9

�
: ð2:12Þ

Working in the limit jkτRj ≪ 1, this quantity becomes scale
invariant. It is proportional to the fourth power of the
inflationary Hubble parameter HI, and can then be made
very small at large scales [so as to satisfy existing stringent
CMB bounds [20]].
Starting from the results of Eq. (2.12), it is interesting to

enquire whether there are mechanisms that would be able
to amplify the magnetic spectrum at small scales, so as to
possibly relate the observed magnetic fields at astrophysi-
cal or cosmological scales with primordial magnetogenesis.

To do so, as anticipated in Sec. I, we consider scenarios
in which the function IðτÞ temporarily deviates from a
power-law dependence on conformal time τ during infla-
tion. Such deviations can be motivated by inflationary
models that include a brief phase of non-slow-roll evolu-
tion, which are particularly relevant in setups that produce
primordial black holes. An appropriate choice of the epoch
where non-slow-roll occurs during inflation can enhance
the magnetic field amplitude at a convenient astrophysical
or cosmological scale.2 Hence, in what follows we will dub
this possibility non-slow-roll magnetogenesis.
We model IðτÞ as

IðτÞ ¼ a2ðτÞ
ffiffiffiffiffiffiffiffiffiffi
ωðτÞ

p
; ð2:13Þ

with ωðτRÞ ¼ 1 when inflation ends. If we choose
ωðτÞ ¼ 1 throughout all the inflationary evolution, we
recover a scale invariant magnetic field spectrum as out-
lined above.3 More generally, extending the analysis of [24]
from the scalar to the vector sector, we parametrize the
time-dependent function ωðτÞ as

ωðτÞ¼
8<
:
ω0ða constantÞ for τ<τ1;

continuousbut drastically changing for τ1<τ<τ2;

1 for τ2<τR:

ð2:14Þ

The two instants τ1 and τ2 during inflation are nearby, and
hence we assume ðτ1 − τ2Þ=τ1 ≪ 1. Consequently, during
the short time interval τ1 < τ < τ2, the conformal function
IðτÞ can experience strong departures from a power-law
profile, as dictated by Eq. (2.13). Correspondingly, a new
characteristic scale

k⋆ ¼ −1=τ1 ¼ aðτ1ÞHI ð2:15Þ

is expected to play a relevant role in our discussion—with
such a scale being associated to a comoving momentum of
modes leaving the horizon at the onset of the non-slow-roll
epoch during inflation. We confirm this expectation in the
following discussion.

A. Analytical determination of the
magnetic mode function

We now aim to solve Eq. (2.8) with a general, slow-roll-
violating function IðτÞ as given by Eq. (2.13). In order to

2Additionally, changes in the slope of IðτÞ, as the ones we
consider, can help in building magnetogenesis scenarios [15]
which avoid well-known strong coupling problems [11]. We
elaborate further in Sec. II C.

3We can consider other powers of the scale factor in Eq. (2.13),
and write IðτÞ ¼ anðτÞ ffiffiffiffiffiffiffiffiffi

ωðτÞp
. The analysis that follows can be

readily extended to this generalized form.
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find analytic solutions of Eq. (2.8) in the interval τ1 < τ < τ2, we proceed as [24]. [See also [50,51] for different approaches
to determine analytic solutions for similar setup.] We choose an ansatz AkðτÞ expanded as

AkðτÞ ¼
3a2ðτÞ ffiffiffiffiffiffiffiffiffiffi

ωðτÞp
H2

Iffiffiffi
2

p e−ikτ

k5=2

�
1þ ikτ −

k2τ2

3
þ ðikτ0Þ2Gð2ÞðτÞ þ ðikτ0Þ3Gð3ÞðτÞ þ � � �

�
; ð2:16Þ

with τ0 being a pivot quantity which will not appear in the
final results, while GðnÞðτÞ is a set of functions to be
determined. Plugging this ansatz into Eq. (2.8), we find a
system of coupled ordinary differential equations, which
we aim to solve order by order in powers of k:

∂τ

�
τ20ω

τ4
G0

ð2Þ

�
¼ ω0

3τ3
; ð2:17Þ

∂τ

�
ω

τ4

�
τ0G0

ð3Þ−Gð2Þ−
τ2

3τ20

��
¼ ω

τ4

�
G0

ð2Þ þ
2τ

3τ20

�
; ð2:18Þ

and for all n ≥ 4:

∂τ

�
ω

τ4

�
τ0G0

ðnÞ −Gðn−1Þ
��

¼
ωG0

ðn−1Þ
τ4

: ð2:19Þ

We follow the protocol of [24] to solve this system in
the interval τ1 < τ < τ2. [We refer the reader to [24] for

additional technical details.] The solution nearby τ1 is

τ20Gð2ÞðτÞ ¼
α

3

ðτ − τ1Þ2
2

; ð2:20Þ

τn0GðnÞðτÞ ¼
ατ1
3

2n−3
ðτ − τ1Þn−1
ðn − 1Þ! ; ð2:21Þ

with a constant parameter α defined as

α ¼
�
d lnω
d ln τ

�
jτ¼τ1

: ð2:22Þ

These solutions correctly describe the system in the time
short interval of interest, τ1 ≤ τ ≤ τ2. The dimensionless
quantity α in Eq. (2.22) is a key parameter for us. If large, it
can considerably amplify the magnetic spectrum from large
toward small scales.
In fact, plugging the configurations (2.21) into Eq. (2.16)

yields a series of the form

AkðτÞ ¼
3a2

ffiffiffiffi
ω

p
H2

I e
−ikτffiffiffiffiffiffiffi

2k5
p

�
1þ ikτ −

k2τ2

3
−
α

6
k2ðτ − τ1Þ2 −

iαkτ1
12

�
1þ 2ikðτ − τ1Þ −

X∞
n¼0

ð2ikÞn
n!

ðτ − τ1Þn
��

: ð2:23Þ

The exponential series can be resummed, yielding an exact solution:

Ak ¼
3a2

ffiffiffiffi
ω

p
H2

I e
−ikτffiffiffiffiffiffiffi

2k5
p

�
1þ ikτ −

k2τ2

3
−
α

6
k2ðτ − τ1Þ2 −

iαkτ1
12

ð1þ 2ikðτ − τ1Þ − e2ikðτ−τ1ÞÞ
�
: ð2:24Þ

This is the analytic solution of the mode function in the
interval τ1 < τ < τ2. Implementing Israel junction condi-
tions, the expression (2.24) is then joined to a second period
of standard power-law evolution for the conformal function
IðτÞ for τ2 ≤ τ ≤ τR, with τR being the conformal time
when inflation ends. According to Eq. (2.13), in this
interval we recover IðτÞ ¼ a2ðτÞ—the profile associated
with a scale invariant magnetic spectrum. Recalling the
definition (2.15) of k⋆, we introduce the convenient

dimensionless variables κ and Δτ as

κ ¼ k=k⋆ ¼ −τ1k; ð2:25Þ

τ2 − τ1 ¼ −τ1Δτ: ð2:26Þ

The solution for the mode function in the interval τ2 <
τ < τR results

Ak ¼
3a2ðτÞH2

I

2k5=2

�
C1e−ikτ

�
1þ ikτ −

k2τ2

3

�
þ C2eikτ

�
1 − ikτ −

k2τ2

3

��
; ð2:27Þ
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with C1;2 fixed by Israel conditions

C1 ¼ 1þ 2Δτα
κð2ðΔτ − 1Þ2ðΔτ þ 1Þκ2 þ 2iðΔτ − 1Þð3Δτ þ 1Þκ − 9Δτ þ 2Þ − 6i

8ðΔτ − 1Þ4κ3

þ α
e2iΔτκð2ðΔτ − 1Þκ þ 3iÞ þ 2κ − 3i

8ðΔτ − 1Þ4κ3 ; ð2:28Þ

C2 ¼
αe−iðΔτ−2Þκð2ðΔτ2 − 1Þκ2 þ iðΔτð3Δτ − 5Þ − 4Þκ þ 6Δτ þ 3Þ sinðΔτκÞ

4ðΔτ − 1Þ4κ3

þ αe−iðΔτ−2ÞκΔτðκð4iðΔτ − 1Þκ − 3Δτ þ 9Þ þ 6iÞ cosðΔτκÞ
4ðΔτ − 1Þ4κ3 : ð2:29Þ

The magnetic field spectrum is then evaluated at the end
of inflation, τ → τR, using the definition in Eq. (2.9):

PBðkÞ ¼
9H4

I

4π2
jC1ðkÞ þ C2ðkÞj2; ð2:30Þ

neglecting terms depending on kτR, and assuming that this
quantity is small. Equations (2.27)–(2.30) are what we need
for the considerations we develop next. At large scales,
κ → 0, the magnetic spectrum approaches a constant, with

an amplitude corresponding to the scale invariant case of
Eq. (2.12):

PBðκ ≪ 1Þ ¼ 9H4
I

4π2
: ð2:31Þ

Given the smallness of HI in Planck units, this value easily
satisfies CMB bounds. It is then straightforward to compute
the amplitude of the spectrum at very small scales, finding

PBðκ ≫ 1Þ ¼ 9H4
I

4π2

�
1þ αΔτð1þ ΔτÞf4þ Δτ½α − 8þ Δτðαþ 4Þ�g

4ð1 − ΔτÞ4
�
: ð2:32Þ

So, comparing with Eq. (2.31), we can obtain an enhance-
ment in PB controlled by the parameter α. Such mechanism
might then be able to produce small-scale magnetic fields
compatible with cosmological observations, while satisfy-
ing stringent constraints at large CMB scales.
The natural question we address next is how fast can the

magnetic spectrum increase from large [Eq. (2.31)] toward
small [Eq. (2.32)] scales in this context? In what comes
next, we show that there is a limitation on its growth rate.

B. The maximal growth of the spectrum:
Analytical results

We proceed with the characterisation of the shape of the
magnetic field spectrum in our framework which includes a
brief violation of slow-roll conditions.4 We notice that
considerable simplifications occur in the limit of infini-
tesimal Δτ [see the definition (2.26)], and very large α [see
(2.22)]—yet ensuring that their product remains finite:

Δτ→0; α→∞ but αΔτ¼2Π0 withΠ0 finite: ð2:33Þ

This limit resembles the ‘t Hooft limit of large N gauge
theories [52] [see [26,53] for further discussions in a related
inflationary context]. Then the quantities C1;2 (2.28), (2.29)
reduce to simple expressions:

C1 ¼ 1þ
�
1 −

3i
κ3

−
2i
κ

�
Π0; ð2:34Þ

C2 ¼ −
e2iκðκ3 þ 4iκ2 − 6κ − 3iÞΠ0

κ3
: ð2:35Þ

In order to study the slope of PBðκÞ in the general case, it is
useful to introduce the ratio

ΠðκÞ ¼ PBðκÞ
PBðκ ≪ 1Þ ð2:36Þ

of the spectrum evaluated at scale κ ¼ k=k⋆ (with
k⋆ ¼ −τ1), against its constant value at large scales
κ ≪ 1. The function ΠðκÞ in Eq. (2.36) singles out the

4Recall the discussion before Eq. (2.13): we denote
with “violation of slow-roll” a phase during which the con-
formal function IðτÞ is not a simple power law, and obeys an
ansatz as (2.13).
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scale dependence of the spectrum. Using formula (2.32),
in the limit of Eq. (2.33), this quantity results

ΠðκÞ¼1þ2Π0ðκ3þ½4κ2−3Þsinð2κÞ−ðκ2−6Þκcosð2κÞ�
κ3

þ4ðκ2þ1ÞΠ0
2½ðκ2−3ÞsinðκÞþ3κcosðκÞ�2

κ6
: ð2:37Þ

It depends on the single parameter Π0 as defined in
Eq. (2.33). In Fig. 1, left panel, we represent ΠðκÞ as
function of the dimensionless quantity κ. When expressed
in terms of Π0, the enhancement from large toward small
scales results

Πðκ ≫ 1Þ ¼ ð1þ Π0Þ2: ð2:38Þ

Since magnetogenesis aims to achieve an enhancement of
the spectrum toward small scales, we select a large value for
the dimensionless constant Π0 (more on this in Sec. II C,
where we show that Π0 should be at least of order 106).
At very small scales, for κ ≫ 1, though, we expect that the
magnetic field amplitude gets damped by dissipation or
effects associated with magnetohydrodynamic (MHD)
turbulence of the astrophysical plasma: see e.g. [54].
This suppression will play an important role in the analysis
of induced gravitational waves in the next section.
The magnetic spectrum profile in the left panel of Fig. 1

has a dip at intermediate scales. Using the same arguments
of [24,26], it is straightforward to determine its position as a
function of Π0, in the limit of large Π0 in which we are
interested. We find

κdip ¼
ffiffiffiffiffi
15

2

r
1

Π1=2
0

; ð2:39Þ

up to corrections that are suppressed by higher powers of
1=Π0. In proceeding from small toward large κ, after the dip
the magnetic field spectrum profile ΠðκÞ grows steadily, to
then join an oscillatory region with approximately constant
amplitude at small scales (κ ≃ 5).
Working in the limit of large Π0, we can determine the

spectral index associated with the magnetic field spectrum,
finding

nBðκÞ¼
dlnΠðκÞ
d lnk

¼2ð−3κ4þ2κ2þ9ÞsinðκÞþ2κðκ4−5κ2−9ÞcosðκÞ
ðκ2þ1Þ½ðκ2−3ÞsinðκÞþ3κcosðκÞ�

þO
�

1

Π0

�
: ð2:40Þ

Relation (2.40) is what we need for our aim to find the
maximal slope of the spectrum. The function is easy to
handle, and we represent it in the right panel of Fig. 1,
focusing on the region of scales where the magnetic
spectrum in the figure left panel grows. We find that
nBðκÞ has a maximum at around

κmax ¼ 1.256; ð2:41Þ

where

nðBÞmax ¼ nBðκmaxÞ ¼ 4.75: ð2:42Þ

Hence, nmax is the maximal slope we can achieve in
the specific limit (2.33) we are considering. See also the
Appendix for a more systematic analysis away from the
limit (2.33).
Equation (2.42) leads us to conclude that the growth

of the magnetic field spectrum during a phase of

FIG. 1. Left: plot of the scale profile of the ratio (2.36) between the magnetic field spectrum against its value at large scales. We use the
dimensionless variable κ, defined in Eq. (2.25), and choose Π0 ¼ 106. Right: plot of the magnetic spectral index nB as function of the
scale, Eq. (2.40), focusing on the region of growing magnetic spectrum. The spectral index has a maximum at position κmax ≃ 1.256 and
value nBðκmaxÞ ≃ 4.75, after which it decreases to join the flat plateau (on average) toward small scales.
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non-slow-roll—starting from a scale-invariant profile at
large scales—can be steeper with respect to the case of
scalar curvature fluctuations [21]. In the scalar case, the

maximal slope was found to be nðscalÞmax ¼ 4, up to loga-
rithmic corrections [22,23]. The difference among the
results is due to the structure of Eq. (2.8) with IðτÞ
given in Eq. (2.13), which is different with respect to
the scalar case.5 We now continue with a discussion of
backreaction and strong coupling issues, to then discuss
phenomenological consequences of these findings.

C. Some considerations on backreaction
and strong coupling issues

In this section we estimate some features of the magnetic
field spectrum produced by the non-slow-roll evolution
discussed above, and we address potential issues regarding
theoretical aspects of our setup. The amount of growth in
the magnetic field spectrum is governed by the quantity Π0,
depending on the slope of the conformal function IðτÞ
during the non-slow-roll evolution. We can estimate inter-
esting values of Π0 as follows. Astrophysical and cosmo-
logical observations seem to suggest that magnetic fields
can be found at different astrophysical scales, with values
of the order of few to tens of micro-Gauss. In this section
we assume that fields of such size are produced by the
primordial process we are considering, and then evolved or
maintained by dynamo effects [see the review [3]].
Expressing as δB ≃ P1=2

B the size of magnetic field at the
end of inflation, we have [see Eq. (2.38)]

δB ¼ 3H2
I

2π
ð1þ Π0Þ; ð2:43Þ

once this quantity is evaluated at small scales k ≥ k⋆.
After inflation ends, this value is rapidly diluted by
cosmological expansion, with the suppression factor scal-
ing as ðaR=a0Þ2 ¼ 10−29 assuming an instantaneous reheat-
ing process [11]. (Here aR is the scale factor at the end
of inflation, or beginning of radiation domination era, while
a0 the scale factor today.) Hence, assuming HI ¼ 10−6

in Planck units, and converting the results to Gauss
(1 Gauss ¼ 1.95 × 10−2 eV2), we require that the ampli-

tude of the spectrum δð0ÞB today is

δð0ÞB ¼3H2
I

2π
ð1þΠ0Þ

�
aR
a0

�
2

¼
�

δobsB

10−5G

�
10−5G ð2:44Þ

≃1046ð1þΠ0Þð10−29Þ2G¼
�

δobsB

10−5G

�
10−5 G; ð2:45Þ

where we select a pivot value of 10 micro-Gauss for
selecting a value of δobsB compatible with astrophysical
observations. Although this amplitude is larger than the
required value of the seed magnetic field—typically of
the order of nano-Gauss—there are various damping and
diffusion mechanisms occurring in the post-inflationary
universe which can dissipate the magnetic field energy over
the scales of our interest [in this context, see [54,57–59]].
Solving for Π0, we find

Π0 ∼ 107
�

δobsB

10−5 G

�
: ð2:46Þ

Consequently, typical values for Π0 to obtain cosmologi-
cally significant magnetic fields at small scales span from
106 to few times 107. Importantly, although these are the
orders of magnitude of Π0 preferred by cosmological
observations, theoretical considerations prevent us from
choosing Π0 much larger than 106–107. In fact, the
amplitude of the magnetic field energy at small scales
goes as ρB ∼ PB ∝ H2

I × ðHIΠ0Þ2. To avoid large back-
reaction on the inflationary dynamics, whose typical energy
scale is of the order ρinf ∼H2

I , the factor HIΠ0 can be at
most of order one. Hence choosing HI ∼ 10−6 in Planck
units, we cannot select too large values of Π0.
The characteristic comoving momentum k⋆ ¼ −1=τ1,

around which the rapid growth of the spectrum occurs—see
Fig. 1—is determined by the time τ1 at which a brief
non-slow-roll phase takes place during inflation.
Depending on the location of k⋆, magnetic fields can be
amplified on a range of scales, from large distances
corresponding to galaxy clusters (1024 cm) to relatively
small stellar ones (1010 cm).
Our configuration, in which the gauge kinetic function

IðτÞ undergoes a rapid change during a short interval,
resonates with scenarios such as those proposed in [15],
where a sawtooth profile for IðτÞ is shown to mitigate the
strong coupling problem in primordial magnetogenesis [11]
[see also [60] for alternative approaches to this issue]. In
essence, the problem is the following: if one chooses a
function IðτÞ that increases during inflation—as in the
scale-invariant case IðτÞ ¼ a2ðτÞ—and imposes IðτRÞ ¼ 1
at the end of inflation, then inevitably IðτÞ is extremely
small at early times. Since IðτÞ is inversely proportional to
the electromagnetic coupling, this leads to an unphysically
large coupling at early times, rendering the electromagnetic
theory unreliable.
A proposed resolution [15] involves constructing sce-

narios in which IðτÞ changes its slope during inflation,
keeping its amplitude sufficiently large to avoid strong
coupling throughout. In our model, a similar mechanism is
potentially operative: by choosing a sufficiently large value
of ω0 in Eq. (2.14), we ensure that IðτÞ remains large
enough at the onset of inflation. Furthermore, if the non-
slow-roll phase begins sufficiently late—that is, if τ1 is

5Preliminary investigations of the analogous questions in the
spin-2 (tensor) case have been presented in [55,56].
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chosen appropriately—then IðτÞ remains at safe values
thereafter, ensuring theoretical control of the setup.6 It
would be interesting to further develop these preliminary
ideas within a fully developed framework.

III. GRAVITATIONAL WAVES INDUCED BY
MAGNETIC FIELD AMPLIFICATION

In the previous sections, we learned that a period of non-
slow-roll evolution can amplify the magnetic field spectrum
toward small scales, at around a comoving scale k⋆ ¼
−1=τ1 corresponding to the brief inflationary epoch during
which slow-roll is violated. In this section, we analyze the
properties of GWs sourced by such an amplified magnetic
field. We show that the frequency dependence of the
induced stochastic GW background (SGWB) can constitute
a distinct experimental smoking gun for this scenario.
Interestingly, even if the magnetic field is rapidly damped
by turbulence or diffusion after its production, the gravi-
tational waves it induces can still serve as evidence of its
existence in the first place. Our findings provide specific
templates for SGWB profiles [see, e.g., [61–63]], high-
lighting inflationary magnetogenesis as a compelling target
for gravitational wave searches.
To compute the induced GW spectrum, we follow the

methods developed in [29,33] in the context of SGWBs in
scalar-induced scenarios where amplified curvature fluc-
tuations source the GW after inflation ends. This subject
has a long history—see e.g. [27–33] and [34] for a
comprehensive review. We apply the idea to the non-
adiabatic case of magnetic field sources, a topic studied
in several works [40–48], although usually focusing on
simple power law profiles for the magnetic field correlator
PB in Eq. (2.9). Here we consider much richer scale-
dependent profiles for PB, as motivated by the consider-
ations of Sec. II on non-slow-roll evolution during infla-
tion; hence we need to further develop the corresponding
formalism for GW production.

A. The calculation of the gravitational
wave spectrum

After inflation ends, the GW equation of motion reads

h00ijðτ;xÞ þ 2HðτÞh0ijðτ;xÞ −∇2hijðτ;xÞ ¼ ΠðTÞ
ij ðτ;xÞ;

ð3:1Þ

with ΠðTÞ
ij being the transverse-traceless component of the

magnetic field stress tensor sourcing the GW. In order to

express this quantity and proceed with our discussion, it is
convenient to work in Fourier space. The spin-2 GW
fluctuations are decomposed as

hijðτ;xÞ ¼
X
λ

Z
d3k

ð2πÞ3=2 e
ik·xeðλÞij ðkÞhðλÞk ; ð3:2Þ

with eðλÞij ðkÞ being the spin-2 polarization tensors. The

evolution equation for the modes hðλÞk results

hðλÞ
00

k þ 2HhðλÞ
0

k þ k2hðλÞk ¼ SðλÞðτ;kÞ: ð3:3Þ

The source in the right-hand side of this equation reads

SðλÞðτ;kÞ ¼ eðλÞijðk̂ÞΠðTÞ
ij ðτ;kÞ ¼ 2eðλÞijðk̂ÞΛmn

ij τðBÞmn ðkÞ
a2ðτÞ ;

ð3:4Þ

where the magnetic field stress tensor is [see e.g. [42]]

τðBÞij ðkÞ ¼ 1

4π

Z
d3p
ð2πÞ3

�
BiðpÞBjðk − pÞ

−
δij
2
BmðpÞBmðk − pÞ

�
: ð3:5Þ

The projection tensor Λmn
ij selects its transverse-traceless

part, and is given by

Λlm
ij ¼1

2
ðπli πmj þπlj π

m
i −πijπ

lmÞ; with πij¼δij− k̂ik̂j:

ð3:6Þ

Notice that Λln
ii ¼ Λll

ij ¼ 0. Hence, we can neglect the
contribution proportional to δij in (3.5). The quantities
entering Eq. (3.5) are evaluated at the end of inflation. Their
value then redshifts with the universe expansion after
inflation ends, as indicated by the scale factor dependence
of the source (3.4).
Equation (3.3) can be formally solved as

hðλÞk ðτÞ ¼ 1

aðτÞ
Z

dτ0gkðτ; τ0Þ½aðτ0ÞSðλÞk ðτ0Þ�; ð3:7Þ

where the gk is the Green function evaluated at the epoch of
interest. During radiation domination—the era on which we
focus our attention from now on—it reads

gkðτ; τ0Þ ¼
1

k
½sin ðkτÞ cos ðkτ0Þ − sin ðkτ0Þ cos ðkτÞ�: ð3:8Þ

6Alternatively, one might consider multiple short non-slow-roll
epochs [24], stitched together by segments in which IðτÞ follows
different power-law behaviors. This would allow one more
flexibility in choosing τ1.
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The result (3.7) allows us to formally express the tensor
power spectrum as

Phðτ; kÞ≡ 1

2

k3

2π2
X
λ

hhðλÞk ðτÞhðλÞq ðτÞi0k¼q ð3:9Þ

¼ k3

4π2a2ðτÞ
Z

dτ1dτ2gkðτ; τ1Þgqðτ; τ2Þaðτ1Þaðτ2Þ

×

�X
λ

hSðλÞk ðτ1ÞSðλÞq ðτ2Þi0k¼q

�
; ð3:10Þ

where as before the symbol h…i0k¼q indicates two-point
correlators omitting the momentum-conserving δ-function.
The GW spectrum above is the necessary ingredient to
compute the GW density parameter, ΩGW, which is the
basic quantity to be compared with experiments. Following
the notation of [33], we have

ΩGW ≡ k2

12a2H2
P̄h; ð3:11Þ

where a bar indicates the average over rapid oscillations. To
proceed, we need to estimate P̄h. We compute the quantity
within parenthesis in Eq. (3.10):

X
λ

hSðλÞk ðτ1ÞSðλÞ�q ðτ2Þi0q¼k

¼ 4Λln
ij

a2ðτ1Þa2ðτ2Þ
hτ̂ðBÞijðkÞτ̂ðBÞ�ln ðpÞi0p¼k ð3:12Þ

¼ 4

ð4πÞ2a2ðτ1Þa2ðτ2Þ

×
Z

d3p1

ð2πÞ3 Λ
ln
ij ðk̂Þðπilðp̂1Þπjnðn̂Þ þ πinðp̂1Þπjlðn̂ÞÞ

× PBðp1ÞPBðjk − p1jÞ; ð3:13Þ

where we introduce the unit tensor n̂ ¼ ðk − p1Þ=jk − p1j,
and the amplitude of the magnetic field 2-point correlators
is introduced in Eq. (2.5). We do not consider non-Gaussian
contributions, such as those arising from connected four-
point functions of the magnetic field, since the underlying
Maxwell action is quadratic in the vector fields and there-
fore does not generate intrinsic non-Gaussianity. Following
[29,33], we introduce convenient variables

u≡ jk−p1j
k

; v≡p1

k
; μ≡k ·p1

kp1

¼1−u2−v2

2v
: ð3:14Þ

The tensors within the integral of Eq. (3.13) can be
contracted straightforwardly [44], leading to a function
of ðu; vÞ which we call C0:

C0ðu; vÞ ¼ Λln
ij ðk̂Þðπilðp̂1Þπjnðn̂Þ þ πinðp̂1Þπjlðn̂ÞÞ ð3:15Þ

¼ ð1þ μ2Þ
�
1þ ð1 − μvÞ2

u2

�
: ð3:16Þ

By expressing d3p1¼2πp2
1dp1dμ, we can rewrite (3.13) as

X
λ

hSðλÞk ðτ1ÞSðλÞq ðτ2Þi0

¼ k3

4π2a2ðτ1Þa2ðτ2Þ
Z

∞

0

v2dv
Z

1

−1
dμPBðkuÞPBðkvÞC0ðu;vÞ

¼ π2k−3

a2ðτ1Þa2ðτ2Þ
Z

∞

0

dv
u3v

Z
1

−1
dμPBðkuÞPBðkvÞC0ðu;vÞ;

ð3:17Þ

where we used Eq. (2.10) to pass from PB to PB between
the first and the second line. Equation (3.17) can be
plugged into the definition of Ph in (3.10). The tensor
spectrum is then nicely factorized into two integral con-
tributions. They are

Ph ¼
1

4a2ðτÞ I
2
τIuv; ð3:18Þ

with

I2
τ ¼

�Z
τ

τR

dτ1
gkðτ; τ1Þ
aðτ1Þ

�
2

; ð3:19Þ

Iuv ¼
Z

∞

0

dv
u3v

Z
1

−1
dμPBðkuÞPBðkvÞC0ðu; vÞ: ð3:20Þ

We start handling the time integral in Eq. (3.19). Working
in radiation domination, we use the identities aðτÞ=aðτ1Þ ¼
τ=τ1 and aðτÞHðτÞ ¼ 1=τ. A simple calculation, averaging
over rapid oscillations, gives at large τ:

Ī2
τ ¼

1

2k2a4H2

�
Cið−kτRÞ2þ

�
π

2
−Sið−kτRÞ

�
2
�
; ð3:21Þ

where CiðxÞ, SiðxÞ are the cosine and sine integral
functions, and with the bar we average over rapid oscil-
lations. The integral in Eq. (3.20) is conveniently expressed
in terms of variables t, s:

u ¼ tþ sþ 1

2
; v ¼ t − sþ 1

2
: ð3:22Þ

Taking into account the corresponding Jacobian, we can
write it as

Iuv ¼
Z

∞

0

dt
Z

1

−1
dsð1 − sþ tÞ−2ð1þ sþ tÞ−2

× PBðkuÞPBðkvÞC0ðt; sÞ; ð3:23Þ
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with

C0ðt; sÞ ¼
�ðs2 þ tðtþ 2Þ − 1Þ2

4ð−sþ tþ 1Þ2 þ 1

�

×

�ðs2 þ tðtþ 2Þ þ 3Þ2
4ðsþ tþ 1Þ2 þ 1

�
: ð3:24Þ

We can pass from the tensor spectrum to the GW density
parameter ΩGW, given by Eq. (3.11). Using our formulas,
we obtain:

ΩGW ¼ k2

96a4H2
Ī2
τIuv: ð3:25Þ

We substitute into Eq. (3.25) the results derived above. We
use the same expression of [41]

aðτÞ ¼ H0

ffiffiffiffiffiffiffi
Ωrd

p
τ; ð3:26Þ

for the scale factor during radiation domination, with H0

and Ωrd being, respectively, the Hubble parameter and the
fraction of total energy density in radiation. We denote with
Ω̂B ¼ ρB=ρcr ¼ PCMB

B =ð3H2
0Þ a quantity parametrizing the

fractional energy density of the magnetic field at very large
CMB scales, and we use the expression (2.31) for PCMB

B .
Finally, we multiply the resulting ΩGW by the factor Ωrd,

in order to take into account the redshift of the GW
observable from early to late times [see e.g. [34]].
Expressing the formulas in terms of the dimensionless κ
[see Eq. (2.25)], we get

ΩGWðκÞ ¼
�
3Ω̂2

B

64Ωrd

�

×

	�
Ci2ðκx⋆Þ þ

�
π

2
− Siðκx⋆Þ

�
2
�
ĨuvðκÞ



;

ð3:27Þ

with

ĨuvðκÞ ¼
Z

∞

0

dt
Z

1

−1
dsð1 − sþ tÞ−2ð1þ sþ tÞ−2

× ΠðκuÞΠðκvÞC0ðt; sÞ: ð3:28Þ

The function ΠðxÞ is defined in Eq. (2.37), while we
introduce the (small) number x⋆ ¼ τR=τ1 which controls
the ratio between the time when inflation ends versus the
time jτ1j when the slow-roll conditions are violated during
inflation. This quantity only enters in the arguments of
the Ci, Si functions. For clarity, we choose x⋆ ¼ 10−4, but
the results are in any case mildly dependent on this quantity
since, when small, it enters only logarithmically in
Eq. (3.27) (through CiðxÞ ∼ lnðxÞ for very small x).

The overall constant quantity ½…� within square brackets
in Eq. (3.27) depends on the scale of inflation, as well as on
postinflationary evolution. It is the same overall constant
scale found in previous works [starting with [41]] which
quantifies the impact of the amplitude of large scale
magnetic fields into GW observables. The overall ampli-
tude is not our primary focus here; instead, we are
interested in the scale dependence of the gravitational
wave background. For definiteness, we fix the overall
prefactor in Eq. (3.27) to a small value, ½…� ≃ 2 × 10−48,
to better highlight the subsequent growth of the spectrum
toward smaller scales. Such reduced values can be due by
post-inflationary processes related with field evolution and
dissipation in the astrophysical plasma—a subject that we
do not touch here, though.
The quantity within curly parenthesis f…g in Eq. (3.27)

is dimensionless, and depends on the function ΠðκÞ
which—as we learned in the previous section—controls
the growth of the magnetic field spectrum. The combina-
tion within f…g can be evaluated numerically: we find that
it has a profile with a plateau, and a maximal value scaling
with Π0 as

f…gmax ≃ 105Π4
0: ð3:29Þ

Using this information, we plot in Fig. 2 the resulting
expression for the fractional energy density ΩGW in
gravitational waves as a function of frequency, employing
the relation k=Mpc−1 ≃ 6.5 × 1014 f=Hz. We choose
Π0 ¼ 7 × 107, a large value consistent with our consid-
erations in Sec. II B. To account for the damping of the
magnetic field at small scales, as anticipated in Sec. II, we
truncate the magnetic power spectrum at large κ, where its
amplitude is known to be suppressed by dissipation and
turbulent effects [see, e.g., the review [6]]. Specifically, as a
concrete example, we use the expression for ΠðκÞ from
Eq. (2.37), but set ΠðκÞ ¼ 0 for κ > 50.

FIG. 2. Plot of ΩGWðfÞ in our setup. We follow Eq. (3.27) and
choose the parameters as explained in the main text.

BILL ATKINS et al. PHYS. REV. D 112, 063534 (2025)

063534-10



The spectral shape of the SGWB, ΩGWðfÞ, pleasantly
reflects the underlying profile of the magnetic field power
spectrum ΠðκÞ that sources it:

(i) At relatively low frequencies, ΩGWðfÞ exhibits a
steep rise, scaling approximately as ðf=f⋆Þ8.7. This
behavior arises from the convolution integrals of
Eq. (3.28), involving the square of the magnetic field
spectrum. Since ΠðκÞ during its growth scales with a
spectral slope of order 4 (or slightly larger), taking
its square within the integrals leads to the afore-
mentioned scaling in the gravitational wave signal.

(ii) This rapid growth is abruptly halted at around
f=f⋆ ∼ 1=50, giving way to a flat plateau in the
SGWB spectrum of Fig. 2. The amplitude of this
plateau scales as Π4

0. It corresponds to the convo-
lution of the nearly flat region of the magnetic field
spectrum at small scales, which follows the initial
growth phase—modulo oscillations in the magnetic
field spectrum, which are smoothed out in the
convolution integrals.

(iii) At higher frequencies, specifically for f=f⋆ ≳ 102,
the SGWB spectrum undergoes a sharp decline. This
reflects the assumed rapid suppression of ΠðκÞ at
large κ ≥ 50, due to dissipation and turbulence
effects in the plasma [see discussion following
Eq. (3.29)]. We emphasize though that this decline
in ΩGWðfÞ is model dependent, since it relies on our
assumptions about the suppression of the magnetic
field spectrum toward small scales.

B. Consequences for gravitational wave experiments

The selected value of the parameter Π0 ¼ 7 × 107

leads to a gravitational wave signal with peak amplitude
ΩGW ≃ 10−11, given our hypothesis on the overall constant
factor in Eq. (3.27).
This GW signal could fall within the sensitivity range of

future GW experiments provided that the frequency f⋆
determining the position of the plateau in ΩGW lies within

their observational bands. As specific simple examples, we
show in the left panel of Fig, 3 that such a GW spectrum
can be in principle detected with LISA [64], by choosing
the pivot frequency f⋆ ¼ 0.1 Hz. Such a pivot frequency
corresponds to a magnetic field enhanced at very small
scales of 3 × 1011 cm, i.e. stellar-size scales. In the right
panel of Fig. 3 we instead consider a pivot frequency
f⋆ ¼ 5 × 10−8 Hz, corresponding to signals at nano-Hertz
scales detectable with pulsar timing array experiments—we
take the corresponding sensitivity curves from [65]. The
magnetic field gets then enhanced a scales of 6 × 1017 cm,
i.e. interstellar size.
The resulting SGWB spectrum has a distinctive shape:

its rapid growth toward its plateau and squared shape are
quite atypical compared to standard templates commonly
considered in scalar-induced SGWB scenarios [63] based
on adiabatic perturbations.7 The characteristic knee in the
profile of Fig. 3 can be detected implementing techniques
as [69,70]. Despite the differences between adiabatic and
nonadiabatic sources, the properties of the magnetic field
source can, in principle, be reconstructed using recently
developed tools such as those presented in [71,72]. A more
detailed analysis of the detectability and characterization of
the magnetically induced SGWB will be pursued in future
work: nevertheless our investigation already shows how the
rich scale dependence of the magnetic field spectrum in our
setup leads to a distinctive GW signal.

IV. CONCLUSIONS

We analytically investigated inflationary magnetogene-
sis in the Ratra model, focusing on scenarios where a brief
violation of slow-roll conditions enhances the coupling
between the inflaton and gauge fields. This mechanism

FIG. 3. Left: same frequency profile of ΩGWðfÞ as in Fig. 2 is shown for f⋆ ¼ 0.1, compared against the nominal LISA sensitivity
curve and its broken power-law version [66,67]. Right: same frequency profile of ΩGWðfÞ as in Fig. 2 is shown for f⋆ ¼ 5 × 10−8,
compared against the SKA, IPTA, NANOGrav sensitivity curves.

7In particular, the logarithmic slope lnðf=f⋆Þ ∼ 8 characterizes
the spectral shape in the intermediate regime approaching the
plateau, whereas in the deep infrared, the spectrum exhibits a
gentler power-law behavior [68].
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allows for a rapid growth of the magnetic field spect-
rum, with an analytically derived maximal slope of
d lnPB=d ln k ¼ 4.75, sufficient to bridge the gap between
CMB-constrained large-scale amplitudes and observed
astrophysical field strengths. We also commented on strong
coupling and backreaction problems in this setup.
We then studied the stochastic gravitational wave back-

ground induced by the amplified magnetic fields, extending
standard formalisms to account for the nontrivial spectral
features of our scenario. Under suitable conditions, the
resulting gravitational wave signal exhibits a characteristic
frequency profile and potentially detectable amplitude,
providing a unique observational handle on inflationary
magnetogenesis with transient non-slow-roll dynamics.
At the technical level, the main highlights of our results

are as follows:
(i) We introduced a systematic method for analytically

studying the spectral profile of perturbations for
fields with spin greater than zero, and applied it to
the vector case. This method yields compact ana-
lytical expressions and allows us to extract key
features of the spectrum, such as the location of
the dip and the rate of its growth.

(ii) We derived general expressions for the gravitational
wave spectrum induced at second order by magnetic
fields, applicable to scenarios with s magnetic field
profiles like ours. Remarkably, the resulting formu-
las exhibit a simpler, factorizable structure than their
scalar, adiabatic counterparts—a feature that may
prove useful for future analyses of related scenarios.

Our findings suggest a possible connection between
primordial magnetogenesis, primordial black hole phenom-
enology, and gravitational wave physics, motivating further
exploration of inflationary scenarios beyond slow-roll and
their couplings with vector fields.
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APPENDIX: FINITE DURATION
OF THE NON-SLOW-ROLL EPOCH

In this appendix we reconsider the problem of determin-
ing the maximal slope of the magnetic field spectrum in its

growing region, without taking the limit of Eq. (2.33).
In other words, we vary both parameters α and Δτ,
performing a grid-search, computing the maximal slope
of ΠðκÞ for choices of α and Δτ restricting such that
104 ≤ αΔτ ≤ 108. In the growing region we assume the
spectrum to follow a power-law profile AκB. Figure 4
explicitly shows the region in which the power law is
fitted, away from deviations from linearity toward the
extreme ends of the transitionary phase.
Figure 5 demonstrates the variation of the power-law

exponent with the choices of α and Δτ. In the limit that
Δτ → 0 and α → ∞ we find that B → 4.4. For this sub-
space, we find the global maximum slope be B ¼ 4.398 for
Δτ ¼ 7 × 10−4, α ¼ 1.33 × 107. Observably, the resulting
slope is smaller than the value B ¼ 4.75 quoted in the main

FIG. 4. Example of the fitted spectrum, ΠðκÞ, taking α ¼ 107,
Δτ ¼ 0.1. The power-law fit finds A ¼ 8.9 × 107 B ¼ 4.197.

FIG. 5. Maximum slope value as function of α andΔτ restricted
such that 104 ≤ αΔτ ≤ 108. Global maximum slope found to be
B ¼ 4.395 at Δτ ¼ 7.5 × 10−4, α ¼ 1.33 × 107.
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text, obtained in the limit (2.33). We interpret the discrep-
ancy as due to the fact that in this appendix we assume a
power-law behavior with constant B for the entire growing
part of the spectrum; however it is anticipated that the

corresponding spectral index has a nontrivial dependence
on the scale—as seen for example in Fig. 1, right panel. It is
intended that a more systematic analysis of this topic will
be left to future work.
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