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Abstract

The classification of exoplanets has been a longstanding challenge in astronomy, requiring significant
computational and observational resources. Traditional methods demand substantial effort, time, and cost,
highlighting the need for advanced machine learning techniques to enhance classification efficiency. In this study,
we propose a methodology that transforms raw light curve data from NASA’s Kepler mission into Gramian
angular fields (GAFs) and recurrence plots (RPs) using the Gramian angular difference field and RP techniques.
These transformed images serve as inputs to the vision transformer (ViT) model, leveraging its ability to capture
intricate temporal dependencies. We assess the performance of the model through recall, precision, and F1 score
metrics, using a five-fold cross-validation approach to obtain a robust estimate of the model’s performance and
reduce evaluation bias. Our comparative analysis reveals that RPs outperform GAFs, with the ViT model
achieving an 89.46% recall and an 85.09% precision rate, demonstrating its significant ability to accurately
identify exoplanetary transits. Despite using undersampling techniques to address class imbalance, data set size
reduction remains a limitation. This study underscores the importance of further research into optimizing model
architectures to enhance automation, performance, and generalization of the model.

Unified Astronomy Thesaurus concepts: Convolutional neural networks (1938); Transit photometry (1709);
Exoplanet astronomy (486); Astronomy data visualization (1968); Light curve classification (1954); Light curves
(918); Keplerian telescopes (2356)

1. Introduction

The groundbreaking discovery of the first exoplanet orbiting
a star similar to our Sun by M. Mayor et al. (1995) sparked a
new era of research in the field of astronomy. Since then,
thousands of exoplanets have been discovered, ranging in size
and mass from those similar to Earth to massive, Jupiter-sized
planets. With the detection of over 5800 exoplanets (NASA
Exoplanet Science Institute 2025), scientists are now able to
study the different populations of exoplanets and their host
stars in greater detail (D. A. Fischer & J. Valenti 2005; S. Udry
& N. C. Santos 2007; J. A. Johnson et al. 2017; C. Swastik
et al. 2022; A. Unni et al. 2022; M. L. Hill et al. 2023; T. Pyne
et al. 2025). By investigating the correlations between the
properties of exoplanet host stars and the planets they host,
researchers can gain a deeper understanding of how these
planets formed and evolved. It is also worth noting that many
exoplanet systems do not resemble our solar system; for
instance, the prevalence of “super-Earths” and “mini-Nep-
tunes” which are not found in our solar system, and “hot
Jupiters” which are extremely close to their host stars. This
highlights that our solar system is somewhat atypical and that
exoplanet formation and migration may have occurred
differently when compared to our solar system.
Over time, various techniques have been developed for

detecting exoplanets. The most direct way to detect exoplanets
is direct imaging. The direct imaging technique uses high-contrast

imaging and advanced technology such as coronagraphs and
adaptive optics, and is typically used to find exoplanets in wider
orbits (∼ tens of astronomical unit), specifically young, self-
luminous systems that are easier to detect (G. Chauvin et al.
2005; C. Swastik et al. 2021; B. B. Ren et al. 2023; Z. Wahhaj
et al. 2024; T. Pyne et al. 2025). However, only a handful of
planets (∼70) have been detected by direct imaging. The majority
of exoplanets detected so far are by transit, followed by radial
velocity (RV) technique. The RV detection technique, which also
detected the first exoplanet, 51 peg, measures the tiny wobbles in
a star’s motion caused by the gravitational pull of an orbiting
exoplanet, revealing the planet’s presence and mass. The transit
method, on the other hand, detects exoplanets by observing the
slight dimming of a star’s light when a planet passes in front
of it, revealing the planet’s size and orbit (W. J. Borucki et al.
2010). These techniques have been crucial in advancing our
understanding of exoplanetary systems and are continually
being refined to facilitate future discoveries (J. T. Wright &
B. S. Gaudi 2012; M. Perryman 2018; C. Swastik et al. 2023).
However, it is important to note that different methods have
different biases and limitations. For example, the RV and transit
methods are currently the most successful methods for detecting
exoplanets, but they are most effective for finding planets in close
to moderate orbits (0.1–10 au). On the other hand, the direct
imaging technique is sensitive to find exoplanets in wider orbits
(∼ tens of astronomical unit), specifically young, self-luminous
systems that are easier to detect (C. Swastik et al. 2024).
In a significant endeavor to expand our knowledge of

exoplanets, several missions have been launched by various
space agencies. The French Space Agency initiated the CoRoT
mission in 2006, pioneering space-based transit observations
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and discovering numerous exoplanets (A. Baglin et al. 2006).
Building on this success, NASA launched the Kepler mission
in 2009, which played a vital role in expanding our knowledge
of exoplanetary systems (W. J. Borucki et al. 2010). Kepler
was established to monitor over 170,000 stars in the Milky
Way, especially in the Cygnus-Lyra area, with the main
objective of finding Earth-sized exoplanets in the habitable zone
of their host stars using the transit method (W. J. Borucki 2016).
By analyzing the slight dimming of starlight caused by
planetary transits, Kepler substantially advanced the discovery
and classification of exoplanets. This mission revealed a rich
diversity in exoplanet size, composition, and orbital dynamics
(W. J. Borucki et al. 2010; N. M. Batalha 2014; W. J. Borucki
2016). Running until 2018, Kepler significantly enhanced our
understanding of exoplanetary systems, confirming over 2600
exoplanets and demonstrating the widespread presence of
planets in our Galaxy.
Despite the significant contributions of various space

missions, the complexity and volume of Kepler data necessi-
tated the development of advanced techniques for exoplanet
classification. Early machine learning methods, such as random
forests, were implemented to automate the classification of
Kepler objects of interest, significantly reducing human effort
and minimizing errors, thus leading to more efficient and
accurate classification (S. D. McCauliff et al. 2015). Further-
more, studies such as S. Basak et al. (2021) have shown that
machine learning techniques can classify new exoplanets, but
capturing complex patterns inside the large data set is still a
challenging task. To address these limitations, Y. LeCun et al.
(1998) introduced convolutional neural networks (CNNs), a
subclass of deep neural networks specifically designed for
image-based classification. CNNs consist of multiple layers of
convolutional filters to autonomously learn and extract spatial
hierarchies of features from input images. Each successive layer
of filters is designed to extract complex features, from simple
edges and textures to intricate patterns (A. Krizhevsky et al.
2012). This hierarchical approach allows CNNs to effectively
analyze and classify visual data with remarkable accuracy and
efficiency (C. Szegedy et al. 2015).
Building on the limitations of CNNs in capturing long-term

dependencies within data sets and the successful emergence of
transformers in natural language processing (NLP) inspired
researchers, including A. Dosovitskiy et al. (2020), to experi-
ment with a standard transformer by applying it directly to
images, with the fewest possible modifications. As a result, the
vision transformer (ViT) model was developed, which offers a
new approach to image-based classification as detailed by
A. Dosovitskiy et al. (2020). The fundamental concept of the
model involves a sequence of visual patches as tokens for
classifying the full image. It has achieved a benchmark
performance in multiple image-based recognition tasks.
In addition, transformer-based architectures have been success-
fully applied to numerous vision problems, including
semantic segmentation (S. Zheng et al. 2021), video under-
standing (A. Arnab et al. 2021), image processing using ViT
(A. Dosovitskiy et al. 2020), and object detection (X. Dai et al.
2021). Inspired by the rapid evolution of transformers, we have
also implemented this in our methodology to examine its
potential in exoplanet classification.
In the field of image-based classification, J.-P. Eckmann

et al. (1995) introduced recurrence plots (RPs) as a technique
to visualize the periodic nature inside the time-series data. RPs

convert time-series data into a 2D image where patterns and
structures in the data can be more easily identified, facilitating
the detection of hidden periodicities and the analysis of
dynamic behavior over time (J.-P. Eckmann et al. 1995). In
contrast, Z. Wang & T. Oates (2015) introduced the concept of
Gramian angular fields (GAFs), which provide a method
for transforming time-series data into images by encoding
angular information. GAFs represent time-series data in a
polar coordinate system, capturing the temporal correlations
between different points. This transformation emphasizes the
angular relationships between data points, which can be
particularly useful for capturing cyclical patterns and trends
(Z. Wang & T. Oates 2015).
Considering the potential of the above-mentioned transfor-

mation of 1D time series to 2D image representations,
researchers have used them with various machine learning
models in diverse fields. For example, P. G. Freitas et al.
(2023a, 2023b) highlighted the potential of RPs and GAFs by
projecting 1D photoplethysmogram signals into 2D images as
an input to ViT model for enhancing the overall performance
and the results demonstrated a competitive prediction accuracy
as compared to the current state of the art. Subsequently, these
advancements have enhanced the performance in tasks such as
classification accuracy, anomaly detection, and forecasting
(P. G. Freitas et al. 2023a, 2023b). These techniques have also
been applied in the field of astronomy, where they have been
used to enhance the efficiency of solar panels (M. Mulenga
et al. 2023).
In this way, recent research studies have successfully

integrated image representations with advanced modeling
algorithms for time-series data, showcasing their effectiveness
in tasks related to image-based classification. Therefore, this
study intends to build upon this foundation by integrating these
representations as an input in the ViT model to evaluate its
potential in exoplanet classification. Furthermore, we per-
formed a comparative analysis between RPs and GAFs to
assess their performance when integrated with the ViT model,
providing a framework to explore further in the field of
astronomy.
This paper is organized as follows. Section 1 offers an in-

depth overview of the background of exoplanet research,
detailing various missions and the machine learning techniques
for exoplanet classification. In Section 2, we present our
methodology, which encompasses the processes of data
collection and preprocessing. Additionally, we provide details
of the conversion of data into the preferred formats: RPs and
GAFs. This section provides a comprehensive overview of the
techniques and strategies applied to prepare the data for
subsequent analysis using ViT. Section 3 gives the subtle
architectural details of ViT and hyperparameters used in the
model. In Sections 4 and 5, we will provide detailed
information on the data used in our study and present a
comprehensive analysis of our comparative study of RPs and
GAFs as inputs to our model. These sections elaborate on the
techniques used for categorizing exoplanets, along with an in-
depth discussion of the results obtained and their implications
for the field of exoplanetary science. Section 6 will culminate
with a detailed discourse on the conclusions drawn from our
comparative study, emphasizing that RPs have performed
better on this data set.
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2. Data Preprocessing

2.1. Light Curves

NASA’s Kepler mission, launched in 2009, was specifically
designed to search for exoplanets by monitoring the brightness
of over 156,000 stars in a fixed field of view (W. J. Borucki
et al. 2010). This mission deepens our understanding of
exoplanetary systems by detecting subtle changes in stellar
brightness caused by planetary transits over vast distances,
typically known as light curves associated with a particular
star, which could further be used to identify and classify
extrasolar planets. Transiting dips are the reduction in flux
values that provide valuable information about the transiting
planet, whereas the width and depth of these dips provide
insights about the transiting events. Specifically, the width of
the transit provides information about the orbital period and
distance from the star, while the depth of the dip gives the
relationship between the radius of the star and the radius of the
transiting planet.
The shape of the dip in a light curve reveals significant

details about the transiting object and its orbital geometry.
There are generally two types of dips—a U-shaped dip and a
V-shaped dip. The U-shaped dip results from a central, edge-
on transit, which occurs at an orbital inclination close to 90°,
where the planet crosses near the center of the stellar disk.
Conversely, a V-shaped dip signifies a grazing transit, where
the planet partially crosses the stellar disk. While this also
requires a high orbital inclination, it is slightly less edge-on
compared to a central transit. Additionally, V-shaped dips are
characteristic of eclipsing binary stars, where two stars pass in
front of each other (C. Magliano et al. 2023).
In this study, we used the Kepler light curve data for the

exoplanet classification, consisting of labeled threshold cross-
ing events (TCEs). A TCE occurs when the Kepler pipeline
(J. M. Jenkins et al. 2010) detects periodic dips in stellar
brightness, indicating a potential planetary transit. By analyz-
ing these dips (TCEs), we can distinguish between actual
exoplanet transit signals and other astrophysical phenomena or
instrumental noise.
The TCEs shown in Figure 1 illustrate notable reductions in

the normalized flux for the Kepler ID ‘KIC 6922244’ over
time. Here, KIC refers to the Kepler Input Catalog. The
sequence of periodic dips (TCE) or straight-line patterns,

shown in Figure 1, indicate the possibility of actual
exoplanetary signals. This gives insight into the role of TCEs
in classifying potential exoplanet candidates. We will use these
labeled TCEs for the classification. The labels, assigned
through human vetting, provide a reliable basis for distinguish-
ing between true exoplanet candidates and false positives.
In this analysis, we accessed labeled TCEs data from the

NASA Exoplanet Science Institute (2025), specifically the
Autovetter Planet Candidate Catalog for Q1–Q17 DR24
(J. H. Catanzarite 2015). The data encompasses 20,367 TCEs,
each with a set of attributes or columns, and we selected
specific columns relevant to our analysis. Table 1 represents
the seven key attributes with their usual meanings.
The most crucial attribute, av_training_set, consists of four

distinct labels: nontransiting phenomena (NTP), astrophysical
false positives (AFPs), planet candidates (PCs), and unknown
(UNK). NTP includes phenomena that are not related to
transits, such as stellar variability, while AFP signifies signals
initially thought to be transits but later identified as noise or
other astrophysical events. PC denotes probable transiting
exoplanets, and UNK represents signals that cannot be clearly
classified. These labels provide a comprehensive framework
for categorizing various astrophysical signals. The detailed
configuration is given in Table 2. For binary classification
purposes, the data set is further categorized into “planet”
candidates and “not-planet” candidates, the latter comprising
NTP and AFP. We ignored TCEs with the UNK label. Table 2
indicates a substantial class imbalance, with 3600 “planet”
candidates and the remainder classified as “not-planet” (NTP/
AFP) candidates. J. H. Catanzarite (2015) reported that the
inclusion criteria for these labels were developed by a precise
procedure that included manual vetting and diagnostic
evaluations. In this study, we assume these labels as the
ground truth, considering that the potential impact of any
inaccuracies on our model is negligible.
The light curves of the corresponding stars were down-

loaded through the Mikulski Archive for Space Telescopes
(MAST), with each light curve generated through the Kepler

Figure 1. This diagram illustrates the transit crossing events observed in the
light curve data for (KIC) candidate with ID 6922244. The plotted points
represent the variations in flux as the exoplanet transits its host star, causing
periodic dips in brightness.

Table 1
Description of Key Attributes in the Exoplanet Data Set

Attribute Meaning

rowid Identifier for each row in the TCE table
kepid Kepler ID
tce_plnt_num TCE planet number
tce_period Orbital period
tce_time0bk Transit epoch in BJD format
tce_duration Transit duration
av_training_set Classification labels

Table 2
Configuration of the Data Set used in the Study, Detailing the Number of

Training Examples for each Label

Data Configuration

Labels Number of Training Set Examples

AFP 9596
NTP 2541
PC 3600
UNK 4630
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pipeline containing integrated flux measurements at 29.4minutes
intervals over up to four years.
Following the procedure of C. J. Shallue & A. Vanderburg

(2018), we performed additional steps on generated light
curves. First, we removed data points corresponding to transits
of any confirmed planets within the system. Subsequently, we
flattened the light curves by fitting a basis spline to the data
and normalized them by dividing each light curve by the best-
fit spline. Finally, the flattened light curves were phase folded
on the TCE period and binned to produce a 1D vector. These
binned and phase-folded light curves corresponding to each
TCE provide local and global curves.
Figure 2 presents the global and local curves generated from

the original light curve. The global light curve captured broad
trends and changes throughout the event based on the
photometric measurements, while the local light curve was
concentrated to capture changes around the transit dips.
Figure 2 provides the visual representation of both curves to
evaluate the effectiveness of each curve in capturing critical
patterns within the data. Figure 2(c) presents the global curve
of the KIC ID 11442793-1, in which identifying a narrow
transit was a difficult task or may provide us with a wrong
prediction, whereas the local light curve (Figure 2(d)) makes it
easier by providing subtle signals inside the data. Therefore,
considering its effectiveness in capturing subtle patterns, we
have used the local light curve as the primary approach in this
study, which makes it different from the one that incorporates
local and global views, such as C. J. Shallue & A. Vanderburg
(2018).
Furthermore, we transformed the local curve data set into

RP and GAF representations to feed them for training the
model and evaluating its performance using evaluation metrics

to compare the effectiveness of each in identifying hidden
patterns within the data.

2.2. Recurrence Plots

RP analysis is a technique deduced from nonlinear dynamics
and is particularly appropriate for complex signals (D. F. Silva
et al. 2013). It provides a strong alternative for demonstrating
and studying the periodic signals. RPs are a visual matrix
showing the point at which a phase space trajectory returns to a
state already visited. This method provides insight into viewing
and identifying hidden repetitive patterns that exhibit the
characteristics of orbital movements of exoplanet data, which
enables the analysis of m-dimensional trajectories within a 2D
phase space. We define a recurrence matrix R, where each
member is used to construct an RP (D. F. Silva et al. 2013).
Rk,l is defined by the proximity of state vectors x(k) and x(l)

by the following formula:

( ( ) ( ) ) (·)
( )

= = …RR x k x l x k l N, , , 1, , .
1

k l
m

,

The state vectors at indices k and l are represented by x(k)
and x(l), respectively, and the symbol ∥.∥ specifies the
application of norm, between these observations. The close-
ness threshold is set by the parameter ε, and the Heaviside
function, which is represented by f in Equation (2), is as
follows:

( ) ( )=
<

z
z0, if 0

1, otherwise
. 2

Equation (1) states that if the m-dimensional trajectory of
the time series at time k lies close to time l, then value 1 is

Figure 2. (a) and (c) represent the global light curves of AFP and PC candidates, respectively, consisting of full-length data with a resolution of 2001 bin size. (b)
and (d) represent the local light curves for the same candidates, which are fixed-length representations focusing on the transit region with a bin size of 201. Each plot
highlights the key periodic features distinguishing these astrophysical phenomena.
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assigned to Rk,l; otherwise, 0 is assigned. Graphically, it is
represented by an N × N matrix, with pixels corresponding to 1
being colored as black, showing recurrence behavior, and those
relating to 0 being white. For generating RPs, we choose a
threshold of 0.65, a time delay of 2, and a value of m= 2, and
apply the Euclidean distance to determine recurrences between
the embedded state vectors because it captures more temporal
dynamics since each point is now represented as a 2D state
vector. The RPs produced using these parameters have dimen-
sions of 199× 199 pixels, as shown in Figure 3. This visualiza-
tion offers a powerful tool for identifying periodic patterns and
randomness within time-series data, with varied degrees of
structure and complexity evident across different systems.
For example, the two lower frames in Figure 3 indicate real

exoplanet prospects with regular transit properties, indicative
of stable exoplanetary systems. Conversely, systems charac-
terized by high disturbance or high stellar activity may be
represented by more disorganized and fractured plots (refer to
the upper two frames of Figure 3), which could lead to false
positive detections of exoplanets.
These RPs were generated using some essential Python

libraries, such as NumPy, PyRQA, and matplotlib, where
recurrence quantification analysis (RQA) offers several measures
to quantify the structures within the RPs, such as determinism,
recurrence rate, and entropy (T. Rawald et al. 2017). These
metrics can elucidate the nature of the dynamical systems
observed, providing insights into the stability and predictability of
exoplanetary orbits. Due to its outstanding suitability for handling
nonstationary and nonlinear data, RQA is particularly well-suited
for analyzing light curves, where noise and observational gaps
frequently provide substantial obstacles.

2.3. Gramian Angular Fields

Z. Wang & T. Oates (2015) proposed GAFs to convert time-
series data to visual patterns. GAFs are effective in capturing

long-term dependencies, sparsity, and subtle signals, so we
have used the GAFs method for converting the 1D time series
to 2D visual representations to provide a framework for
images wherein the image is characterized by angular
coordinates rather than Cartesian coordinates. The encoding
process first normalizes the time-series data into the range of
[−1, 1]. The normalized input is transformed into polar
coordinates to retain the temporal information of the input.
After this, the trigonometric cosine function is used for
temporal correlation by comparing each point in polar
coordinates with every other point to generate a Gramian
matrix of dimension n × n, where n is the length of time-
series data.
Given a time series Y = {y1, y2, …, yn} of n real-valued

observations, we first normalize the values into the range [−1,
1] using the following equation:

˜ { ( ) ( )}
( ) ( )

( )=
+

y
y Y Y

Y Y

2 max min

max min
. 3i

i

After normalization, each value in the time series is encoded
into a polar coordinate system. Specifically, each value ỹi is
mapped to an angular cosine value, representing the angle

( ˜)= yarccosi i , while the temporal index is mapped to a radial
coordinate. This mapping establishes a unique angular position
for each time point in the series.
We then computed the GAF, where each element of the

matrix G is defined as the trigonometric sum of angles between
time steps:

( ) ( )= +G cos . 4i j i j,

The resulting symmetric GAF matrices encapsulate the
temporal patterns and underlying relationships observed in the
exoplanetary time-series data. Following the aforementioned
methodological approach, a set of images with the resolution
of 201× 201 was generated, which is depicted in Figure 4,

Figure 3. RPs for exoplanet classification. The upper two frames represent
RPs for “not-planet” candidate cases, showing irregular patterns indicative of
false positives. The lower two frames depict RPs for “planet” candidates,
displaying clear, periodic structures consistent with true exoplanets.

Figure 4. GAFs for exoplanet classification. The upper two frames represent
GAFs for “planet” cases, characterized by distinct periodic patterns indicative
of planetary transits. The lower two frames show GAFs for “not-planet”
candidate cases, which lack the clear periodic structures seen in true exoplanet
detections, indicating the absence of exoplanets.
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where the top two plots illustrate the periodic behavior of
planet candidates by capturing subtle signals and the bottom
two plots represent cases where no transiting planet candidates
were detected.

3. Model Architecture

The classification of exoplanets using Kepler data is
inherently challenging due to the intricate patterns embedded
within light curves, which often contain deviations corresp-
onding to planetary transits. Traditional approaches, such as
CNNs, have demonstrated significant efficacy in various
image-based classification tasks. However, CNNs use loca-
lized convolution operations, and it may be difficult for them
to capture the global patterns and long-term dependencies due
to their limited scope.
To address these limitations and leverage its effectiveness in

various image-based tasks, we have implemented ViT
(A. Dosovitskiy et al. 2020) in the exoplanet classification.
ViT can be an effective approach to image-based classification
by using a transformer architecture that treats an image as a
sequence of patches, similar to the way words are processed in
a sentence. Each patch is embedded into a token and processed
through multiple layers of self-attention mechanisms, enabling
ViT to capture both local and global relationships within the
data. We have used RPs and GAFs as classification input
tokens, allowing ViT to analyze Kepler data and classify
exoplanets effectively.
Its architecture begins by dividing an input image I into

nonoverlapping square patches; our model typically uses size
8 × 8. Each patch is flattened into a vector representing the
pixel data, which is then projected into a higher-dimensional
space via a learnable linear transformation matrix, E. These
patch embeddings are analogous to word embeddings in NLP.
Alongside these tokens, a special classification token [cls] is
introduced at the beginning of the sequence. This token will be
later used to accumulate and represent the overall information
of the image, which will be used for the final classification
output. Moreover, positional encodings are added to each
embedding to ensure the spatial relationships between patches
are maintained, providing critical context to the self-attention
mechanism (A. Dosovitskiy et al. 2020).
Once the input sequence is ready, it is fed into the

transformer encoder, a structure derived from the architecture
proposed by A. Vaswani et al. (2017) and C. Chi et al. (2020).
In our model, we used 10 such transformer layers. Each
encoder layer has two primary components: a multihead self-
attention mechanism and a feed-forward network (FFN), as
shown in Figure 5. Using four heads per layer, this mechanism
enables the model to capture complex interdependencies and
global features from different regions of image, essential for
identifying subtle planetary signals. The multihead self-
attention mechanism allows every token to attend every other
token in the sequence, capturing long-range dependencies and
relationships between patches. It computes attention scores
using the query, key, and value matrices obtained from the
input embeddings. In the model architecture, the input
embeddings of dimension 32 are first projected to a higher-
dimensional space of dimension 128 to calculate the query,
key, and value matrices across four attention heads. The
concatenated output from all heads is then projected back to
the original dimension 32, resulting in a higher parameter
count for the multihead attention layer, as shown in the

Appendix. By performing multiple self-attention operations in
parallel, the model can understand intricate relationships
across different parts of the image.
After the self-attention stage, the FFN, which consists of

two fully connected layers (64 and 32 neurons) with a
Gaussian error linear unit (GELU) activation function, further
refines the information extracted by the attention mechanism.
The GELU is a nonlinear activation function that combines the
properties of the rectified linear unit (ReLU) and Gaussian
distributions. Mathematically, it is defined as GELU(x) = x · Φ
(x), where Φ(x) is the cumulative distribution function of a
Gaussian distribution. This function provides a smoother
transition by gradually adjusting the activation, unlike ReLU,
which immediately sets all negative values to zero. The GELU
function models data more accurately by weighing the input
data’s transformation based on its estimated probability
distribution, allowing it to smoothly activate neurons rather
than switching them off completely. This characteristic makes
GELU particularly effective in deep learning architectures
such as ViT, where the diversity and complexity of the input
data require nuanced processing. GELU helps in smoothing
the learning pathway, allowing for better handling of the
nonlinearities found in the data, thus contributing to more
robust and higher-quality feature extraction.
At the end of the encoder sequence, the classification token,

which now contains aggregated global information from all
patches, passes through a multilayer perceptron (MLP) head.
This MLP head, consisting of layers with 2048 and 1024 units,
uses the refined global representations to determine the final
classification. Each sublayer in the encoder, both the self-
attention and the feed-forward layers, includes residual
connections and layer normalization, which help stabilize the
training process by improving gradient flow.
In this study, the ViT model was initialized with random

weights and trained using the AdamW optimizer with
hyperparameters β1 = 0.9, β2 = 0.999, a learning rate of
0.0001, and a weight decay of 0.00001 to ensure the model’s

Figure 5. Architecture of the ViT model.
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optimization and regularization. Input images were resized to
192 × 192 and divided into nonoverlapping patches of size
8 × 8, resulting in 576 patches per image. Each patch was
flattened and linearly projected into an embedding space with a
dimensionality of 32.

4. Exoplanet Classification

A structured implementation of the above methodology was
performed to handle complex astronomical data for exoplanet
classification. To address this challenge, we conducted a
comparative analysis of the ViT model based on primary
inputs: RPs and GAFs. This study investigates how using
different input types enhances the reliability and robustness of
exoplanet classification with the model.
To train our model for exoplanet classification, we adopted a

systematic approach inspired by C. J. Shallue & A. Vanderburg
(2018). The data set was randomly partitioned into three distinct
subsets to ensure a comprehensive and unbiased evaluation of
the model. The partitioning was as follows:

1. Training Set. Comprising 80% of the total data set, this
subset was used to train the model. In the case of RPs as
input, the data set comprised 2848 “planet” candidates
and 9741 “not-planet” candidates. Conversely, when
using GAFs as input, the data set consisted of 2869
“planet” candidates and 9720 “not-planet” candidates.
The substantial size of this set ensured that the model had
sufficient data to learn and generalize from a wide range
of examples.

2. Validation Set. This subset, comprising 10% of the data
set, was used for hyperparameter tuning and model
validation. In the case of RPs as input, the data set
comprised 382 “planet” candidates and 1192 “not-
planet” candidates. Meanwhile, for GAFs, it comprised
359 “planet” candidates and 1215 “not-planet” candi-
dates. The validation set played a crucial role in
preventing overfitting by providing a basis for tuning
the model’s parameters and assessing its performance
during training.

3. Test Set. The remaining 10% of the data set was reserved
for testing the model’s performance. For RPs, this subset
included 370 “planet” candidates and 1204 “not-planet”
candidates. For GAFs, the test set consisted of 372
“planet” candidates and 1202 “not-planet” candidates.
As detailed by C. J. Shallue & A. Vanderburg (2018), the
test set provides an unbiased evaluation of the model’s
accuracy and generalization capabilities.

The data for RPs and GAFs was partitioned to ensure that
each split (i.e., training, validation, and testing) contained the
same instances across both representations; however, slight
differences in the number of planet and not-planet candidates
between the two input types were due to the independent
generation of RPs and GAFs images before partitioning into
training, validation, and testing data sets. Additionally, the
models were trained separately on each data representation. To
ensure the reliability of the results, we have performed cross
validation. This ensures that the performance of the model
with both inputs is comparable. Given the significant class
imbalance in the data set, evaluating the model’s performance
based solely on accuracy would be inappropriate. Therefore,
we assessed the model’s performance using recall and

precision metrics. These metrics provide a more accurate and
meaningful evaluation of the model’s ability to handle an
imbalanced data set. Precision and recall are critical metrics.
Precision measures the model’s ability to correctly identify
relevant instances (true positives), while recall assesses the
model’s effectiveness in capturing all relevant instances. The
F1 score, as the harmonic mean of Precision and recall,
provides a balanced metric that addresses the trade-offs
between these two aspects. The metrics are defined as:
Recall (sensitivity or true positive rate; TPR):

( )=
+

Recall
TP

TP FN
, 5

Precision (positive predictive value):

( )=
+

Precision
TP

TP FP
. 6

In these formulas:

1. TP (true positive) refers to the number of correctly
identified planet candidates.

2. FN (false negative) refers to the number of actual planet
candidates that were incorrectly classified as not-planet
candidates.

3. FP (false positive) refers to the number of not-planet
candidates that were incorrectly classified as planet
candidates.

Upon evaluation of the test data set, the model with RPs as
input exhibited significant performance as compared to GAFs
by achieving a recall of 89.46% and a precision of 85.09%.
These results underscore the model’s effectiveness when using
RPs as input, demonstrating its ability to identify planet
candidates accurately. This validates the model’s utility for
classification tasks within the context of the Kepler-DR24
data set.

5. Results and Discussion

In this section, we present a comprehensive analysis of ViT
performance in time-series data, which not only identifies the
strengths of the proposed methodology but also points out its
shortcomings, paving the way for further research and
improvements in these areas.
In this study, we conducted a comparative analysis between

two types of inputs, RPs and GAFs, by using a ViT model for
the classification of exoplanets from time-series data. The
performance of the model was evaluated over 100 epochs, and
it took approximately 3–4 hr to train the model, which consists
of ∼2.39 million parameters. This computationally intensive
task was executed using an NVIDIA DGX-1 8X Tesla V100
GPU, equipped with 32 GB of memory, and supports Tensor
Cores, enhancing the performance of machine learning related
tasks. The following sections provide a detailed analysis and
interpretation of the results, supported by visual aids.

5.1. Performance Analysis of Recurrence Plots

The metrics for evaluating the model performance with RPs
as input are summarized in Table 3. The recall, precision, and
F1 score values are 0.8946, 0.8509, and 0.8722, respectively.
These values indicate a balanced trade-off between precision
and recall, highlighting the model’s proficiency in minimizing
false positives, while effectively identifying true positives.
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Further supporting these results, the confusion matrix for the
model shown in Figure 6 visually illustrates its classification
capabilities. The matrix reveals that the model accurately
identified a significant number of both “not-planet” and
“planet” candidates, with relatively few misclassifications.
This underscores the model’s effectiveness in distinguishing
between the classes.
To validate the model’s robustness, we applied cross

validation, a widely used technique that assesses the model’s
performance on independent data sets. Specifically, we used
five-fold cross validation, where the data set is split into five
equal parts (folds). In each iteration, four folds are used for
training, and one fold is used for testing iteratively, ensuring
that every fold is used as a test set once. Cross validation is
crucial because it provides a more reliable estimate of model
performance by reducing the variance associated with a single
split of the data.
The cross-validation results yielded an average recall of

0.8810 and an average precision of 0.8426. To validate the
consistency of the cross-validation results across all folds, we
calculated the standard deviation and variance for each metric,
as presented in Table 4. The low value of standard deviation
indicates minimal variability across all folds. Similarly, the
small variance highlights the robustness, irrespective of the
specific fold partitioning. These results are consistent with the
initial metrics, affirming the model’s stability and reliability
across different data subsets. By using cross validation, we
ensure that the model’s performance is not overly dependent
on a particular subset of the data, thereby improving its
generalizability to unseen data sets.
However, while cross validation confirms the model’s

robustness, it also brings attention to the persistent challenge
of class imbalance in the data set. In this context, the number
of “not-planet” candidates substantially exceeds that of
“planet” candidates. This imbalance can lead to biased model
predictions, where the model is inclined to the majority class,
thereby reducing its sensitivity to detecting minority class
instances. To mitigate this issue, an undersampling technique
was applied to the original data set by randomly reducing the
number of instances in the majority class to achieve a balanced
data set. This approach is designed to enhance the model’s
capacity to accurately identify the minority class, thereby
improving overall classification performance.
Following the application of undersampling, the model was

trained again and the performance was re-evaluated following
the training process outlined in Section 4. As shown in
Table 5, there was a slight decrease in precision to 0.8426,
recall to 0.8756, and the F1 score remained stable at 0.8587,
indicating that the balance between precision and recall was
effectively maintained.
Additionally, the receiver operating characteristic (ROC)

curve offers a graphical representation of the model’s
diagnostic ability by plotting the TPR on the y-axis and the

false positive rate (FPR) on the x-axis, allowing for an intuitive
assessment of the model’s ability to distinguish between the
positive and negative classes. A model that perfectly separates
the classes would have an ROC curve that reaches the top-left
corner of the plot, indicating a high TPR and a low FPR. As
illustrated in Figure 7, the ROC curve showcases the model’s
performance, with the diagonal line representing a random
classifier, where TPR equals FPR and indicates no discrimi-
natory power. The ROC curve for the general model reaches
an ROC value of 0.9445, significantly exceeding the diagonal
line and reflecting strong predictive power. Although the ROC
value for the undersampled model slightly decreased to
0.9434. The model demonstrates robustness in handling class
imbalance, showing strong classification performance with
RPs as input, even without using undersampling techniques.

5.2. Performance Analysis of GAFs

The model’s performance using GAFs as input is also
summarized in Table 3. The model achieved a precision of

Table 3
General Model Performance for RPs and GAFs, Evaluated Using Precision,

Recall, and F1 Score

Metric RPs GAFs

Precision 0.8509 0.7513
Recall 0.8946 0.7956
F1 Score 0.8722 0.7728

Figure 6. Confusion matrix for RPs data set, illustrating model performance.
Class 0 represents “not-planet” candidates, while Class 1 represents “planet”
candidates.

Table 4
Statistical Measures for Five-fold Cross Validation (RPs)

Metric Mean Standard Deviation Variance

Precision 0.8426 0.0153 0.0002
Recall 0.8810 0.0149 0.0002
F1 Score 0.8614 0.0150 0.0002

Table 5
A Comparative Performance Analysis of RPs and GAFs as Input Data

following Undersampling

Metric RPs GAFs

Precision 0.8426 0.7971
Recall 0.8756 0.8293
F1 Score 0.8587 0.8128
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0.7513, a recall of 0.7956, and an F1 score of 0.7728.
Although these values are slightly lower than those obtained
with RPs, they still reflect strong classification capabilities,
demonstrating the model’s effectiveness in identifying and
capturing relevant instances within the data set.
Further validation of these results is provided by the

confusion matrix shown in Figure 8. The model correctly
identified a substantial number of not-planet candidates (1104)
and planet candidates (296), with relatively few misclassifica-
tions (98 false positives and 76 false negatives). This
distribution supports the model’s significant classification

accuracy and effectiveness in distinguishing between positive
and negative classes, corroborating the values of the metrics
presented in Table 3.
To ensure the robustness of the model, we performed a

cross-validation technique. The cross-validation results for the
model with GAFs as input produced an average recall of
0.8102 and an average precision of 0.7756. Following the
analysis performed for RPs, we also calculated the same
statistical measures for GAFs as presented in Table 6 to
thoroughly assess the consistency and reliability of its cross-
validation results. The low standard deviations and variances
confirm that the performance metrics for GAFs also exhibit
minimal variability across folds. Although slightly lower than
the general results, the values demonstrate the consistent
performance of the model and confirm its robustness in
handling various data subsets. This consistency across
different data splits underscores the reliability and stability
of the model when using GAFs as input.
To address the class imbalance in the data set, we applied an

undersampling technique to balance the data set and reassess
the model’s performance. The performance metrics for the
undersampled data set are presented in Table 5. Following
undersampling, the model achieved a precision of 0.7971,
recall of 0.8293, and F1 score of 0.8128. This improvement
suggests that the undersampling technique enhanced the
model’s ability to classify exoplanets more effectively.
Similar to RPs, we also assessed the model’s performance

using the ROC curve. The ROC curve, shown in Figure 9,
provides a detailed illustration of the model’s ability to

Figure 7. ROC curve for the RPs-based model, comparing the performance of the general model (red) and the undersampled model (blue).

Figure 8. Confusion matrix for the GAFs data set, illustrating general model
performance. Class 0 represents “not-planet” candidates, while Class 1
represents “planet” candidates.

Table 6
Statistical Measures for Five-fold Cross Validation (GAFs)

Metric Mean Standard Deviation Variance

Precision 0.7756 0.0470 0.0022
Recall 0.8102 0.0468 0.0021
F1 Score 0.7925 0.0468 0.0021
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distinguish between positive and negative classes. The model
achieved an ROC value of 0.7934, indicating strong predictive
power. After applying the undersampling technique, the ROC
value improved to 0.9115, highlighting a significant enhance-
ment in the model’s ability to discriminate between classes.
This improvement suggests that the model benefits signifi-
cantly from the undersampling technique, enhancing its ability
to classify exoplanets more effectively.
We analyzed the results on balanced and imbalanced data

sets to evaluate the model’s performance on both input
representations. An undersampling technique was applied to
address the class imbalance and the performance was observed
on each representation under varying data conditions. The
results indicate that RPs demonstrate consistent performance,
highlighting their effectiveness in managing class imbalance,
whereas GAFs exhibit reasonable performance on balanced
data sets, suggesting their suitability with evenly distributed
classes but limited adaptability to imbalanced data.
We also compared the performance of our results with other

state-of-the-art models based on deep learning, as shown in
Table 7, and found that our model achieved comparable results
(a recall of 0.89 with a precision of 0.85). Although C. J. Sha-
llue & A. Vanderburg (2018) achieved higher recall and
precision by using deep learning models with local light
curves, our proposed model is better suited for learning long-
term dependencies with respect to previous approaches.
Similarly, A. Malik et al. (2022) proposed a planet detection
method based on classical machine learning on the Kepler and
TESS data sets; although the precision of their model is lower
than that of the current study, the recall is higher, which
indicates that without human supervision, the model is prone
to make mistakes on unseen data. In contrast, our study has
also provided a balanced trade-off between precision and recall
that was shown by the variation in the mean of cross
validation, highlighting the effectiveness of ViT in exoplanet
classification. Unlike previous studies, which primarily relied
on deep network architectures, our approach used ViT, i.e., a

deep network with an additional multihead self-attention layer
for effective feature extraction. We have also applied dropout
regularization in the model to prevent overfitting by randomly
dropping some of the output neurons. So, future research
should explore this in more detail to fully use the potential of
ViT in this field.
Our study highlights the use of RPs and GAFs as input

representations using the ViT model, which has not been
explored much in the field of exoplanet classification. The
results demonstrate the efficacy of RPs in tasks related to
classification by highlighting their ability to deliver reliable
results even under class imbalance. Moreover, our invest-
igation highlights the potential of RPs and ViT in capturing
complex relationships within diverse data distribution com-
pared to GAFs.
Several limitations were identified in this study. While

undersampling addresses class imbalance with GAFs effec-
tively, its impact on RPs was limited because the samples were
randomly dropped, indicating the need for more advanced data
balancing techniques. Additionally, RPs as input to the Vit
model have not demonstrated significant improvements in
performance as compared to the earlier studies shown in
Table 7. However, their performance highlights the potential
for further enhancement and modifications in the architecture
of the ViT model. One possible approach to improve the
model’s performance is through a hybrid architecture of CNN
and ViT because by combining the strengths of both models,
the overall performance of the model may be improved.
Another key consideration is that using local light curves as
the basic input for generating image representations may not
fully exploit ViT’s capabilities, so future exploration with
global light curves as input could yield better results by
providing a more comprehensive view of the data. Further-
more, implementing a ViT model increases computational cost
and model complexity. Therefore, future research should focus
on optimizing and fine-tuning the model’s architecture to
balance performance with computational efficiency.

6. Summary and Conclusion

In conclusion, we implemented a ViT model for exoplanet
classification, focusing on a comparative analysis of image-
based inputs. We evaluated the model’s performance using
two types of transformed inputs: RPs and GAFs. The results
consistently revealed that images derived from RPs achieved
higher classification results as compared to those obtained
from GAFs. Additionally, the model that uses RPs is
significant for handling imbalanced data sets effectively. This
characteristic makes RPs a more suitable choice for scenarios
involving data imbalance, in contrast to GAFs. For this
application, RPs emerge as a more effective method for
enhancing classification performance. Here, we summarize the
key points of our paper.

Figure 9. ROC curve for the GAFs-based model, comparing the performance
of the general model (red) and the undersampled model (blue).

Table 7
Comparative Analysis of Exoplanet Classification Studies

Type Recall Precision

C. J. Shallue & A. Vanderburg (2018) 0.95 0.93
A. Malik et al. (2022) 0.96 0.82
Our method 0.89 0.85
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1. This study presents a new approach to classify
exoplanets. It uses ViT to analyze image representations
of Kepler light curve data. The data is transformed into
RPs and GAFs, allowing the model to effectively capture
the intricate temporal relationships within the data.

2. The ViT model showed reasonable performance, espe-
cially when using RPs as input. It achieved an 89.46%
recall rate and an 85.09% precision rate. These results
emphasize the model’s ability to accurately identify
exoplanetary transits, demonstrating it as a potentially
powerful tool for automated exoplanet detection.

3. We found that RPs outperformed GAFs in classifying
exoplanets. By using RPs, a higher performance in
classification was achieved, indicating that they are more
successful in capturing the essential characteristics
required to differentiate exoplanets from nonexoplane-
tary occurrences.

4. We also addressed the issue of class imbalance in the
data set using undersampling techniques and the model
still performed well, but the smaller data set size was
seen as a limitation.

5. The evaluation metrics such as precision, recall, and F1
score provided a thorough assessment of the model’s
performance. The robustness of the model was also
validated through ROC analysis. The RPs-based model
achieved a high ROC value, indicating its reliability in
accurately identifying true exoplanets.

6. Although this study yielded promising results, it is
important to acknowledge some limitations. Specifically,
the training of ViT was computationally intensive and
the improvements obtained through undersampling were
modest. To address these issues, it is recommended that
future research prioritize the development of more
advanced techniques that can effectively capture tem-
poral dependencies and manage class imbalance.
Furthermore, optimizing the ViT architecture to reduce
training time and computational resource requirements
will enhance the scalability and applicability of the
model in various astrophysical scenarios.

This research significantly contributes to the classification of
exoplanets by introducing a significant approach using ViT
with image-based time-series representations. The findings
suggest that this methodology has the potential to improve the
accuracy and reliability of exoplanet detection, which is vital
for future space missions and automated data analysis in
astronomy. Moving forward, it is important to develop more
sophisticated techniques that can effectively capture the
temporal complexities in RPs. Additionally, optimizing the
ViT architecture to reduce computational demands and
training time is crucial to expand the model’s usability in
different astrophysical contexts. By addressing these chal-
lenges, future research can build upon this work to create even
more powerful and versatile tools for classifying exoplanets.
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Model Architecture

The model comprises ∼2.39 million parameters, and the
configuration is in Table 8.
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