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ABSTRACT

Context. The standard nonlocal thermodynamic equilibrium (non-LTE) multi-level radiative transfer problem only takes into account
the deviation of the radiation field and atomic populations from their equilibrium distribution.
Aims. We aim to show how to solve for the full non-LTE (FNLTE) multi-level radiative transfer problem, also accounting for deviation
of the velocity distribution of the massive particles from Maxwellian. We considered, as a first step, a three-level atom with zero natural
broadening.
Methods. In this work, we present a new numerical scheme. Its initialisation relies on the classic, multi-level approximate Λ-iteration
(MALI) method for the standard non-LTE problem. The radiative transfer equations, the kinetic equilibrium equations for atomic
populations, and the Boltzmann equations for the velocity distribution functions were simultaneously iterated in order to obtain self-
consistent particle distributions. During the process, the observer’s frame absorption and emission profiles were re-computed at every
iterative step by convolving the atomic frame quantities with the relevant velocity distribution function.
Results. We validate our numerical strategy by comparing our results with the standard non-LTE solutions in the limit of a two-level
atom with Hummer’s partial redistribution in frequency, and with a three-level atom with complete redistribution. In this work, we
considered the so-called cross-redistribution problem. We then show new FNLTE results for a simple three-level atom while evaluating
the assumptions made for the emission and absorption profiles of the standard non-LTE problem with partial and cross-redistribution.
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1. Introduction

The standard multi-level non-LTE (non-local thermodynamic
equilibrium) radiative transfer problem is at the very heart of the
interpretation of spectra from astrophysical objects such as stars,
circumstellar discs, molecular clouds, and so on (see Hubený
& Mihalas 2014). While the standard approach, which has been
continuously developed since the late 1960s, accounts for devi-
ations of the radiation field and the atomic populations from
their equilibrium distributions, it assumes velocity distribution
of radiating atoms to be Maxwellian.

Hereafter, we consider the problem of full non-LTE
(FNLTE) radiative transfer, which mainly consists of the self-
consistent calculation of the velocity distribution functions
(VDFs) of massive particles with the radiation field; i.e. the
distribution of photons in the atmosphere. In that context, the
main numerical burden is to work directly with atomic velocities
and therefore solve the kinetic equilibrium equations for each
velocity.

The kinetic theory of particles and photons (see Oxenius
1986) on which our approach is based also introduces an addi-
tional physical process of atomic velocity-changing collisions,
which appear naturally in the Boltzmann equations. Hubený
& Cooper (1986, see also; e.g. Hubený et al. 1983a,b) studied
the consequences of these collisions on the radiative trans-
fer problem in detail (see also the discussion in Sect. 4 of

⋆ Corresponding author: tristan.lagache@univ-tlse3.fr

Sampoorna et al. 2024). The multi-level problem was origi-
nally formulated by Hubený et al. (1983a,b, hereafter HOSI
and HOSII, respectively; see also Oxenius 1965, 1986) using a
semi-classical picture.

Until now, only the two-level FNLTE problem has been
solved by Paletou et al. (2023, hereafter PSP23; see also Lagache
et al. 2025) for infinitely sharp levels, and by Sampoorna et al.
(2024) for naturally broadened excited levels. In the FNLTE
multi-level radiative transfer problem, the Boltzmann equation
for the VDFs of excited atoms need to be solved simultane-
ously with the radiative transfer equation for all radiatively
allowed transitions. Furthermore, at every iteration we also need
to recompute all the macroscopic absorption and emission pro-
files by convolving the atomic profiles with the relevant VDFs.
Clearly, this is a numerically very challenging problem. As a
first step, we considered a simple atomic model, namely a three-
bound-level atom with zero natural broadening, using most data
from Avrett (1968).

The FNLTE formalism for multi-level atoms naturally
accounts for both resonance and Raman scattering contribu-
tions1. To incorporate these scattering mechanisms – including
the effects of partial redistribution (PRD) for resonance scatter-
ing and cross-redistribution (a.k.a. XRD) for Raman scattering
– in the standard (in the sense that VDF deviations from
Maxwellian are only partially considered) non-LTE multi-level

1 In a scattering transition from level a → b → c, if a = c we have
resonance scattering; if a , c and Ea, Ec < Eb it is Raman scattering.
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problem an approximate approach was adopted; namely, the
absorption profile for all transitions was assumed to be the usual
Voigt (or Doppler) profile, and a simplified form of the emis-
sion profile derived by HOSII was used (see e.g. Hubený 1985;
Uitenbroek 1989; Paletou & Auer 1995; Sampoorna et al. 2013).
We remark that the simplifying assumptions behind this approxi-
mate approach were detailed in Hubený (1985), and their validity
remains to be evaluated. However, none of these assumptions are
used in our more complete FNLTE approach.

This paper is organised as follows. In Sect. 2, we present the
formalism of the FNLTE transfer problem and apply it to the
case of a three-bound-level atom with zero natural broadening
in Sect. 3. Our new numerical scheme is described in Sect. 4. It
is validated against various benchmark solutions in Sect. 5 (and
Appendix C). Supplementary material, useful for understanding
our tests, is presented in the Appendix B. New results are pre-
sented in Sect. 6. Finally, conclusions and future developments
are discussed in Sect. 7.

2. The FNLTE multi-level problem

Solving a multi-level radiative transfer problem requires the
self-consistent resolution of a set of equations, each of them
describing the distribution of particles of different nature: pho-
tons and massive particles (atoms, ions, molecules, or electrons).
Here, we used the kinetic approach developed by Oxenius (1986,
1965), which was extended by HOSI and HOSII and recently
dubbed FNLTE by Paletou & Peymirat (2021). In this formalism,
the equations of the transfer problem are all kinetic equations.

2.1. The kinetic equations of photons

The distribution of photons associated with the transition from
level i of energy Ei, to a level j of energy E j, is the specific
intensity Ii j. For an unpolarised, time-independent problem in
a plane-parallel 1D geometry, this distribution depends on the
frequency νi j of the photon in the observer’s frame, its direction
cosine µi j = cos(θi j), and the optical depth τi j(νi j). Its kinetic
equation is the usual radiative transfer equation (RTE), which is
written, with the convention i < j, as follows:

µi j
∂Ii j(νi j, µi j, τi j)

∂τi j
= Ii j(νi j, µi j, τi j) −

η ji(νi j, τi j)
χi j(νi j, τi j)

. (1)

Hereafter, we will not display dependence of relevant quantities
on the optical depth τi j without loss of clarity. In the RTE, we
introduced the emissivity η ji and the absorption coefficient χi j.
They depend on the frequency, the optical depth, the direction of
propagation and, implicitly, the VDFs of the massive particles,
knowledge of which is indispensable for the computation of the
emission and absorption profiles.

In the following, we assume the isotropy of these quantities2,
and we write

η ji(νi j) =
hν0,i j

4π
n jA jiψ ji(νi j) , (2)

and

χi j(νi j) =
hν0,i j

4π
niBi jφi j(νi j) , (3)

2 Taking into account their angular dependence would require us to
consider angular redistribution.

where A ji and Bi j are the Einstein coefficients associated, respec-
tively, with spontaneous emission and radiative absorption; ν0,i j
is the frequency of the i↔ j transition, and ni and n j are the pop-
ulation densities of the i and j excited levels. Strictly speaking,
we should also consider the stimulated emission characterised
by the Einstein coefficient B ji. However, in most astrophysi-
cal cases (with the exception of masers; see e.g. Gray 2012),
n jB ji ≪ niBi j, and stimulated emission is therefore considered as
‘negative absorption’. Also, taking this additional phenomenon
into account makes it much more difficult to obtain atomic frame
absorption and emission profiles (see Sect. 5 of HOSI). There-
fore, as a first step, we neglected stimulated emission completely.
We also introduced the absorption profile φi j and the emission
profile ψ ji in the observer’s frame defined as

φi j(νi j) =
∮

dΩi j

4π

∫
fi(3)αi j(ξi j)d33, (4)

and

ψ ji(νi j) =
∮

dΩ ji

4π

∫
f j(3)β ji(ξ ji)d33, (5)

where β ji
3 and αi j are the atomic emission and absorption pro-

files; fi(3) and f j(3) are the VDFs, normalised to unity for,
respectively, atoms in the excited level i and j; 3 is the atomic
velocity;Ωi j is the direction of a photon of frequency νi j depend-
ing on azimuth ϕi j and co-latitude θi j; and ξi j is the photon
frequency in the atomic frame. The latter is directly linked to
the frequency in the observer’s frame by the Fizeau-Doppler
relationships:

ξi j = νi j −
ν0,i j

c
3 ·Ωi j. (6)

Solving the RTE and therefore the radiative transfer problem
requires knowledge of the dynamic and radiative properties of
the atoms: (i) their velocity distribution, fi, (ii) the atomic den-
sities, ni, and (iii) the atomic profiles, αi j and β ji. Each of these
elements are discussed below.

2.2. The kinetic equations of massive particles

Massive particles constituting an atmosphere are also described,
as photons, by a distribution (in velocity) governed by a kinetic
equation. Apart from their nature, the only properties that dis-
tinguish each of these atoms are their speed and direction. Each
of them is therefore characterised by its own VDF. The stan-
dard radiative transfer, however, deals with the self-consistent
determination of the number density of the atoms – i.e. the first
moment of these VDFs – together with the radiation field so
that nothing is known about these VDFs. On the contrary, our
more complete FNLTE approach requires the self-consistent res-
olution of all the kinetic equations describing all the particles
distributions.

In the following, we assume that the temperature of the
medium is sufficiently small so that n1 ≫ n2, n3, ... In that case,
atoms are so numerous on the fundamental level that their popu-
lation varies very slightly with respect to the LTE value, and we
consider that their distribution is Maxwellian. We only consid-
ered bound-bound radiative and collisional processes. For atoms

3 The atomic emission profile was previously written, η (see e.g.
Oxenius 1986 or HOSI and HOSII), but we renamed it β in order to
avoid any confusion with the emissivity.
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in excited levels, let Fi = ni fi be the distribution associated with
the excited level i ≥ 2. The kinetic equation describing their dis-
tribution is the Boltzmann equation (we neglected the streaming
of particles as argued by Hubený 1981; for more details, please
refer to Paletou & Peymirat 2021):

C[Fi] =
(
δFi

δt

)
rad.
+

(
δFi

δt

)
inel.
+

(
δFi

δt

)
3.c.c.
= 0. (7)

Here, C is the collisional operator composed of three terms
of different physical origins: a radiative term (collisions with
photons), an inelastic term (collisions with free electrons),
and a velocity-changing collision term, i.e. collisions between
atoms (this nomenclature was discussed in detail in Sect. 4 of
Sampoorna et al. 2024).

Let Ni = ni fid33dV be the number of atoms at level i con-
tained in a volume d33dV of the phase space. Per second, NiAi j
atoms spontaneously emit a photon and deexcite towards a level
j < i, and NiBi jJi j(3) atoms absorb a photon and are excited to a
level j > i. In the phase space, these atoms are destroyed. Here,
Ji j(3) denotes the partial scattering integral for atoms at level i
and velocity in the range of (3, 3 + d3), which is defined as

Ji j(3) =
∫

αi j(ξi j)Ii jdξi j. (8)

Similarly, the number of atoms created at level i from a level
j > i is N jA ji, and that from a level j < i is N jB jiJi j(3). Finally,
the total variation of the number density of atoms at level i in
a volume d33dV of the phase space, i.e. the distribution Fi =
Ni/(d33dV), resulting from the radiative processes alone, is(
δFi

δt

)
rad.
=
∑
j<i

(
n j f jB jiJi j(3) − ni fiAi j

)
+
∑
j>i

(
n j f jA ji − ni fiBi jJi j(3)

)
.

(9)

For inelastic collisions, we proceeded in an equivalent way by
introducing the collisional excitation and deexcitation coeffi-
cients Ci j

4. We have:(
δFi

δt

)
inel.
=
∑
j,i

(n j f jC ji − ni fiCi j). (10)

Velocity-changing collisions also destroy and create particles in
phase space. The rate of these collisions is quantified by the
parameter QV,i for each atomic level (see Oxenius 1986, HOSI,
and Paletou & Peymirat 2021). We thus write:(
δFi

δt

)
3.c.c.
= niQV,i

[
f M − fi

]
, (11)

where f M is the Maxwell–Boltzmann velocity distribution
defined as

f M(3) =
1

33thπ
3/2

e−3·3/3
2
th , (12)

with 3th being the most probable velocity. The Boltzmann equa-
tion is finally written, for level i, as∑

j<i

(
n j f jB jiJ ji(3) − ni fiAi j

)
+
∑
j>i

(
n j f jA ji − ni fiBi jJi j(3)

)
+
∑
j,i

(n j f jC ji − ni fiCi j) + niQV,i

[
f M − fi

]
= 0.

(13)

4 The Ci j depend on the electronic density, which should, in future
works, also be determined self-consistently with the kinetic equations.

As we can see from Eq. (13), there is a coupling between
each of the VDFs fi in the Boltzmann equations. This is pre-
cisely what the standard non-LTE radiative transfer cannot deal
with. We also note that the Boltzmann equations are formally
kinetic equilibrium equations (KEE). Integrating over all veloc-
ities5, we have the equilibrium between all the processes that
populate and depopulate the atomic levels in a given space of
volume dV . Hereafter, we refer to the following as integrated
(and more usual) equations of the kinetic equilibrium or IKEE:∑

j<i

(
n jB jiJ ji − niAi j

)
+
∑
j>i

(
n jA ji − niBi jJi j

)
+
∑
j,i

(n jC ji − niCi j) = 0,
(14)

where Ji j is the scattering integral, completely equivalent to the
standard definition of J̄i j, and defined as

Ji j =

∫
3

fi(3)Ji j(3)d33 . (15)

2.3. Atomic emission and absorption profiles of a
three-bound-level atom

In what follows, we used a model atom with three bound levels.
Using phenomenological arguments, HOSI obtained the explicit
form of the atomic profiles required to calculate the observer’s
frame profiles (see Eqs. (4) and (5)) and the partial scattering
integral Ji j(3) (see Eq. (8)). For the sake of clarity, we briefly
recall their main arguments. For more details, we refer the reader
to HOSI and HOSII.

First of all, it is important to come back to the notion of nat-
ural population. For an ensemble of atoms of the same species,
we are interested in a radiative transition from a level b to a
level a. Moreover, there is a given radiation field permeating the
atmosphere, i.e. a given quantity of photons whose characteris-
tics (frequencies and direction of propagation) are well known.
We consider a particular physical process populating the level b.
If the number of atoms created in atomic level b is independent
of the number of photons already present, then the b→ a radia-
tive transition will result in a new distribution of photons that is
completely independent of the pre-existing photon distribution
in the atmosphere. Thus, we can say that the physical process
populating level b leads to its natural population. This is the
case for spontaneous emission, inelastic collisions, and velocity-
changing collisions. However, radiative absorption depends on
the radiation field and so does not naturally populate the atomic
levels.

An atomic profile characterises a specific radiative transition;
say, b → a. To find an expression for it, we need to study all
the transitions and series of transitions that populate level b and,
ultimately, lead to the b→ a radiative transition. Let c→ b be a
transition populating level b:

(i) If c naturally populates level b, then the resulting dis-
tribution of b → a will be independent of the resulting
distribution of c→ b. Hence, we need to consider the phys-
ical phenomenon involving a single photon, namely the
b∗ → a radiative transition (where the notation l∗ means
that level l is naturally populated). To describe it, we use
the generalised redistribution function rba(ξba) related to

5 By integrating over all the velocities, we will be missing all the poten-
tial effects that may originate from the velocity-changing collisional
process.
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the probability that a photon of frequency between ξba and
ξba + dξba is involved in the b→ a transition.

(ii) If c does not naturally populate level b but is itself naturally
populated, we need to consider a two-photon phenomenon
(c∗ → b → a). To handle it, we define the conditional
probability jcba(ξba); i.e. the probability that a photon of fre-
quency between ξba and ξba + dξba is involved in the b→ a
transition, knowing that a photon of frequency between
ξcb and ξcb + dξcb was previously involved in the c∗ → b
transition. This quantity is defined as (see Eq. (4.4) of
HOSI):

jcba(ξba) =

∫
Icbrcba(ξcb, ξba)dξcb∫

Icbrcb(ξcb)dξcb
. (16)

In this equation, rcba(ξcb, ξba) is the generalised redistribu-
tion function describing the probability that two photons
whose frequencies are, respectively, between ξcb, ξcb + dξcb
and ξba, ξba + dξba, are engaged in the c∗ → b → a tran-
sition (see Sect. 3 of HOSI). To understand the meaning
of jcba(ξba), we need to interpret each quantity probabilis-
tically. The specific intensity Icb can be related to the so-
called photon number density (see e.g. Hubený & Mihalas
2014). Thus, we can see the denominator term of Eq. (16) as
the total number of photons involved in the c→ b transition
and the numerator term as the fraction of photons created
by the b→ a transition that actually comes from the c→ b
transition.

(iii) If c does not naturally populate the b level and is non-
naturally populated by a third transition d∗ → c, we need
to consider a phenomenon involving three photons in the
series of transitions d∗ → c → b → a. To describe such
a phenomenon, we should use the conditional probability
jdcba(ξba) defined analogously to Eq. (16).

(iv) It is clear that the d level itself can be populated non-
naturally by a given e → d transition, and similarly for
e with an f → e transition, and so on. Finally, when a
photon is involved in the b → a transition, there will be
a given probability that it originally comes from one of
the series of transitions previously described. The atomic
profile is the probability density describing all these possi-
bilities simultaneously. It is defined as the average of all the
series of possible transitions weighted by their occurrence
probabilities.

For atoms with three levels, we therefore need to determine three
absorption profiles – α12, α13, and α23 – as well as three emis-
sion profiles: β21, β31, and β32. The α12 and α13 profiles are
the simplest to determine. Since stimulated emission has been
neglected, the fundamental level is naturally populated. Conse-
quently, the probability of occurrence of such a phenomenon is
certain; only case (i) needs to be taken into account. We therefore
have

α12 = r12(ξ12) (17)

and

α13 = r13(ξ13). (18)

For β21 and α23, we need to take into account all the series
of transitions leading to level 2. It can be naturally populated,
and we denote prob(→ 2∗) as the relevant probability following
HOSI and HOSII notations. This is case (i). It can also be pop-
ulated non-naturally from the fundamental level, and we express

prob(1∗ ⇒ 2) as its probability. This is case (ii). Combining
these two phenomena, we have (see Eqs. (4.3) and (4.6) of HOSI)

α23 = prob(→ 2∗)r23 + prob(1∗ ⇒ 2) j123 (19)

and

β21 = prob(→ 2∗)r21 + prob(1∗ ⇒ 2) j121. (20)

For β32 and β31, we are interested in the processes populating
level 3. We had to take into account the processes which do not
naturally populate level 3 from level 2 and therefore treat the
cascade 1∗ → 2 → 3 → 1 or 1∗ → 2 → 3 → 2 (case (iii)). We
then have (see Eqs. (4.7) and (4.8) of HOSI)

β31 = prob(→ 3∗)r31 + prob(1∗ ⇒ 3) j131

+ prob(→ 2∗ ⇒ 3) j231 + prob(1∗ ⇒ 2⇒ 3) j1231
(21)

and

β32 = prob(→ 3∗)r32 + prob(1∗ ⇒ 3) j132

+ prob(→ 2∗ ⇒ 3) j232 + prob(1∗ ⇒ 2⇒ 3) j1232.
(22)

For more details on the expressions of ‘prob’ probabilities, we
refer the reader to HOSI or Oxenius (1986). Knowledge of
these quantities will not be explicitly necessary later on. In this
work, we only studied the simplified case of an atom with three
infinitely sharp levels. In Sect. 3, we will see how this simplifies
the expression of the general atomic profiles given above and,
consequently, the whole problem.

3. A three-level atom with infinitely sharp levels

With the exception of the fundamental level, atomic levels
are generally broadened in energy. In the theoretical develop-
ments of HOS presented above, no assumptions on the atomic
model were made. Considering the same physical processes, the
assumption of infinitely sharp levels does not degrade the prob-
lem, although it does simplify it. However, we warn the reader
that this hypothesis is part of a heuristic approach and that the
realistic study of an astrophysical atmosphere does not leave us
the choice of the atomic model, it imposes it. In fact, it is the
physical conditions in which the atoms are immersed and the
intrinsic nature of the atoms that dictate the width of the atomic
levels (broadened or infinitely sharp). For example, if the con-
ditions under investigation lead to collisional broadening, these
physical conditions impose an atomic model. Similarly, if we
assume an atom such that levels 4 and 5 are naturally broadened,
but levels 2 and 3 are not (e.g. metastable levels), this atomic
model must be adopted for a realistic study. Hereafter, we restrict
ourselves to an atmosphere composed of atoms with three bound
and infinitely sharp levels, neglecting stimulated emission and
considering that the VDF associated with the fundamental level
is Maxwellian ( f1 ≡ f M).

3.1. Atomic profiles

To calculate the atomic profiles of a three-level atom, we dis-
tinguish five phenomena that ultimately lead to the radiative
transition under investigation: (i) absorption or emission of a
single photon in a given b → a transition (rab terms); (ii) res-
onance scattering, i.e. absorption and re-emission of a photon in
a single line ( jaba terms); (iii) Raman scattering, i.e. absorption
and re-emission of a photon in two distinct lines ( jcba terms);
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(iv) two-photon absorption processes ( j123 term) and (v) three-
photon processes ( jdcba terms). Since our levels are assumed to
be infinitely sharp, the probability that a photon involved in a
given b → a transition has a frequency ξba , ν0,ba is zero. We
then write

rba(ξba) = δ(ξba − ν0,ba), (23)

where δ is the Dirac distribution. Resonance scattering was
studied by Hummer (1962), which obtained analytical expres-
sions for the redistribution functions raba(ξab, ξba). Later, Hubený
(1982) obtained general expressions for all two-photon redistri-
bution functions rcba(ξcb, ξba). For atoms without natural broad-
ening, we have, for the Raman or resonance scattering processes
(see Eq. (10.135) of Hubený & Mihalas 2014),

rcba(ξcb, ξba) = δ(ξcb − ν0,cb)δ(ξba − ν0,ba) = rcb(ξcb)rba(ξba). (24)

The conditional probabilities jcba(ξba) are then written as
follows:

jcba(ξba) =

∫
Icbrcb(ξcb)rba(ξba)dξcb∫

Icbrcb(ξcb)dξcb
= rba(ξba). (25)

In this study, we did not consider the two-photon absorption pro-
cess. As discussed in Hubený & Mihalas (2014, pp. 322–323),
this process is negligible in most astrophysical atmospheres. We
also neglected all three-photon processes for which redistribu-
tion functions were obtained by Hubený & Oxenius (1987) from
quantum mechanical calculations. For α23, for example, the term
proportional to j123 is assumed to be equal to zero, and therefore
α23 = prob(→ 2∗)r23. We know that atomic profiles and gener-
alised redistribution functions are normalised to unity because
they are probability densities. Hence, to guarantee this condi-
tion, we renormalised α23, which gives α23 = r23. We proceeded
in the same way when three-photon processes were neglected.

Finally, for a three-level atom with infinitely sharp levels,
each of the six atomic profiles established in Eqs. (17)–(22) can
then be written simply, ∀ j > i, after renormalisation, as

αi j(ξi j) = ri j(ξi j) = δ(ξi j − ν0,i j) (26)

and

β ji(ξ ji) = r ji(ξ ji) = δ(ξ ji − ν0,i j). (27)

3.2. The multi-level atom problem

Our new problem therefore involves five coupled distributions:
three specific intensities, associated with each of the radiatively
allowed transitions, and two velocity distributions associated
with the two excited levels. We must now jointly solve all the
RTEs (see Eq. (1)), together with the IKEE (see Eq. (14)) and
the Boltzmann equations (see Eq. (13)). The set of IKEEs is
redundant. So, for atoms with three levels, we chose to replace
one of the three equations, namely the one associated with
the fundamental density level n1, by the conservation equation
n1 + n2 + n3 = ntot. Thus, solving the IKEE is equivalent to
solving the system: 1 1 1
E21 D2 E23
E31 E32 D3


n1
n2
n3

 =
ntot

0
0

 , (28)

with

Ei j = A ji + B jiJ ji +C ji (29)

and

Di = −
∑
j,i

(Ai j + Bi jJi j +Ci j). (30)

In the above equations, we (numerically) assume that Ai j = 0 for
i < j and Bi j = 0 for i > j.

Solving Boltzmann equations means solving a set of three
equations, one of which is trivial ( f1 = f M). We then have 1 0 0
e21 d2 e23
e31 e32 d3


 f1(3)

f2(3)
f3(3)

 =
 1
−n2QV,2
−n3QV,3

 f M(3), (31)

with

ei j = n j(A ji + B jiJ ji(3) +C ji) (32)

and

di = −ni

QV,i +
∑
j,i

(Ai j + Bi jJi j(3) +Ci j)

 . (33)

The choice of the atomic and scattering models does not
directly affect the form of these equations. However, their ingre-
dients do depend explicitly on them: the absorption and emission
profiles in the observer’s frame φi j and ψ ji and the partial scatter-
ing integrals Ji j(3), given, respectively, by Eqs. (4), (5), and (8).
For infinitely sharp levels, the emission and absorption profiles
take the form (see Appendix A)

ψ ji(x ji) =
1

2∆ ji

∫ ∞
|x ji |

f j(u)udu (34)

and

φi j(xi j) =
1

2∆i j

∫ ∞
|xi j |

fi(u)udu, (35)

together with

Ji j(u) =
∮

dΩi j

4π

∫
δ(xi j − u ·Ωi j)Ii jdxi j. (36)

In the equations above, we introduce the reduced frequency
xi j = (νi j − ν0,i j)/∆i j; the normalised velocity u = 3/3th6; and the
Doppler width ∆i j = (ν0,i j/c)3th. We also note that fi(u) is the
modulus of the VDF fi(u), i.e. its integration over all the direc-
tionsΩu of the atoms. Finally, it is easy to show that φ12 and φ13
are given by the mere Doppler profile,

φi j(xi j) =
1
∆i j
×

1
√
π

e−x2
i j , (37)

because f1 = f M . A priori, all the other profiles will be differ-
ent, and only a self-consistent resolution of the RTE, IKEE, and
Boltzmann equations will make it possible to obtain an expres-
sion that is physically consistent with the FNLTE approach to
radiative transfer.

6 We now write f M(u) = π−3/2e−u·u. The factor 33th disappears, in the
integrals, with the change of variable 3→ u.
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4. Numerical strategy

In this section, we present our numerical strategy for solving the
FNLTE problem for three infinitely sharp bound-level atoms.
We first initialised the iterative process to the multi-level CRD
solution with the MALI method of Rybicki & Hummer (1991,
hereafter the MALI-CRD method; see also Paletou & Lagache
2025). Then, we successively updated each of the radiative
quantities using the following very simple strategy:
0: Initialise with a MALI-CRD solution, which gives the popu-

lation densities n1, n2, and n3 and therefore the CRD source
functions.

1: For each of the transitions, calculate the emission and
absorption coefficients, η ji, χi j, using Eqs. (2) and (3).

2: Calculate the source function S i j:

S i j(xi j) =
η ji(xi j)
χi j(xi j)

. (38)

3: Knowing the source function at all optical depths, compute
photon distributions Ii j for each of the transitions.

4: Compute the partial scattering integrals, Ji j(u), given by
Eq. (36), using the current VDF (a Maxwellian is adopted
for the first iteration; see also Sect. 4 of PSP23).

5: Compute scattering integrals, Ji j, using Eq. (15).
6: Update all populations, ni, by solving the IKEE system in

Eq. (28).
7: Update the velocity distributions, fi, by solving the system

in Eq. (31) at each optical depth and atomic velocity u.
8: Update φi j and ψ ji profiles for each of the radiatively allowed

transitions using Eqs. (35) and (34), and return to Step 1.
The output of this iterative process is a self-consistent determi-
nation of all the photon and massive particle distributions.

5. Validation

Since the multi-level FNLTE radiative transfer problem was
never fully addressed before, we proceeded with the validation
of our calculations through several indispensable verification
steps. Furthermore, since we considered the restricted case of
a three-level atom with infinitely sharp levels and neglected
velocity-changing collisions (see below), the numerical solutions
presented here essentially validate our numerical scheme and
do not represent the real spectral lines of hydrogen formed in
a stellar atmosphere.

All the solutions presented in this sections are calculated
with a common set of parameters taken from Avrett (1968,
Sect. 9.A; see also the code shared by Paletou & Lagache 2025)7.
We considered an isothermal atmosphere composed of a three-
bound-level hydrogen atom in a 1D, semi-infinite, plane-parallel
geometry having a maximum total optical depth of τmax = 1014

for the transition 1 ↔ 2. We neglected the effects of velocity-
changing collisions, i.e. QV = 0 (however, QV , 0 adds no
numerical difficulties). We sample the optical depth scale with
a logarithmic grid using four points per decade extending from
0 to τmax, with an initial step of 10−3. Integration over µ is per-
formed using a six-point Gauss-Legendre quadrature. Integration
over the azimuths (required to calculate Ji j(u) – see PSP23)
was performed using a ten-point rectangular quadrature. Finally,
grids of reduced frequency, x, and normalised velocity, u, are
identical and extend from 0 to xmax = umax = 4 with a step of

7 In particular, the temperature and collision rates C ji are fixed and
independent of the optical depth.

Fig. 1. Frequency variation of normalised source function S 12 of 1↔ 2
line at different optical depths τ for a two-level atom. Horizontal dashed
black lines show CRD solutions for τ = 0, 1, 10, 100, 103, 104. We com-
pare FNLTE results (coloured lines) with Hummer’s PRD results (black
open circle). CRD and PRD solutions were computed using the ALI and
FBF methods, respectively. Clearly, we accurately recover the results
presented by Hummer (1969) and PSP23.

0.1. Velocity and frequency integrations were performed with
trapezoidal quadrature. Each solution computed with our FNLTE
code was obtained after 75 iterations, and the process is always
initialised by the CRD solution, obtained after 100 iterations
of the MALI-CRD method. Finally, for quantitative comparison
purposes, we introduce the following relative error term, defined
for each optical depth and frequency,

Errrel
i j =

∣∣∣∣∣∣∣S
FNLTE
i j − S ref

i j

S ref
i j

∣∣∣∣∣∣∣ , (39)

between our FNLTE source functions S i j and reference solutions
described hereafter.

5.1. Benchmarking against a two-level atom in PRD

The first step in validating our multi-level code is to reduce
it to a two-level atom problem with coherent scattering in the
atom’s frame. PSP23 showed that when QV = 0 it is equiva-
lent to Hummer’s results for PRD RI−A (Hummer 1962). Fig. 1
displays the source functions for 1 ↔ 2 line, obtained with our
FNLTE method (coloured lines) and compared to the reference
RI−A PRD solution (open black circles) calculated using the FBF
method (Paletou & Auer 1995). The mean of the relative error
between these solutions is ≈0.31%. We are also able to reproduce
the results obtained by PSP23 for the f2 distribution function.

5.2. Benchmarking against multi-level CRD

Next, by forcing, in our new three-level FNLTE code, that f1 =
f2 = f3 = f M , we recover the well-known results of MALI-CRD
for Avrett’s hydrogen case (Avrett 1968, see also Paletou & Léger
2007). In Fig. 2, we show the optical depth variations of the
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Fig. 2. Optical depth variations of normalised source functions for each
line of a three-level hydrogen atom in CRD. Our three-level FNLTE
code (coloured lines) accurately reproduces reference solutions (open
black circle) computed with MALI-CRD.

source function calculated for each of the three lines using our
multi-level FNLTE code and the MALI-CRD method. Mean rel-
ative errors of about 0.12% for 1 ↔ 2, 0.33% for 1 ↔ 3, and
0.32% for 2 ↔ 3 lines are reported, and they more likely come
from completely different numerical schemes.

5.3. Benchmarking against XRD

On the basis of the theoretical work of HOSI & HOSII, the
FNLTE approach of radiative transfer presented in Sect. 2
appears, at present, as the most complete approach (however, the
QED approach of Bommier 2016 goes beyond the semi-classical
picture of HOS formalism used here). In the past, indeed, numer-
ous attempts have been made to incorporate it in more advanced
radiative models, but with several simplifying assumptions. As a
result of this, none of them could solve all the kinetic equations
self-consistently with the RTE. The case where only resonance
scattering is taken into account, namely the case of standard
PRD, was studied by Hubený (1985). When Raman scattering
is taken into account, we speak of ‘cross-redistribution’ (this
term was used by Milkey et al. 1975 to describe this scatter-
ing process) or XRD (e.g. Hubený & Lites 1995; Sampoorna
et al. 2013; Uitenbroek 1989). In all cases, these approaches were
incomplete, with persisting approximations: (i) all absorption
profiles and (ii) scattering integrals Ji j were calculated using
Maxwellian VDFs, (iii) di ≈ ni(Di − QV,i)8 in the Boltzmann
equations, and (iv) there is no coupling between the VDFs; in
other words, to calculate fi, we assumed that f j = f M ∀ j , i.
Considering these assumptions, the Boltzmann equations pre-
sented in Eq. (31) reduce to (assuming QV = 0 again), for all
atomic excited levels,

f2 ≈
f M

n2P2

{
[n3(A32 +C32) + n1C12] + n1B12J12(u)

}
(40)

8 Without v.c.c., we have niDi =
∫

di(u)d3u. Assuming di ≈ niDi is
equivalent to assuming that

∫
di(u) f (u)d3u ≈

∫
di(u)d3u ×

∫
f (u)d3u.

Fig. 3. Optical depth variations of normalised source functions for
the 1 ↔ 3 line of a three-level hydrogen atom in the frame of XRD
approximation. We compare FNLTE results (coloured lines) for various
frequencies x = 0, 1, 2, 3, 4 with XRD reference solutions (open black
circle) computed using the MALI-XRD method of Sampoorna et al.
(2013). The dashed black line shows the CRD solution computed using
the MALI-CRD method.

and

f3 ≈
f M

n3P3

{
[n1C13 + n2C23]+ n1B13J13(u)+ n2B23J23(u)

}
, (41)

where Pi are defined as

Pi =
∑
j,i

(Ai j + Bi jJi j +Ci j). (42)

From these analytical expressions, we can deduce a general
expression for the emission profiles (see Appendix B for more
details):

ψ ji =
φ∗Mi j

n jP j

niBi j J̄M
i ji +
∑
l,i, j
l< j

nlBl jP̄M
l ji

+

niCi j +
∑
k,i, j

nk(Ak j +Ck j)


 ,

(43)

where the notation XM means that quantities were calculated
using a Maxwellian VDF, in particular for the generalised
redistribution functions, Ri jk, contained in the definition of the
diffusion integrals J̄i ji and P̄l ji. This last equation is completely
equivalent to Eq. (11) of Sampoorna et al. (2013) obtained in
XRD; i.e. considering resonance and Raman scattering effects.
Whether one works directly with the emission profiles (XRD)
or solves the uncoupled kinetic equations (namely Eqs. (40)
and (41)) self-consistently with the transfer equations, respective
results should be identical. We show that, within the framework
of the approximations presented above, there is an equivalence
between our FNLTE formalism and the XRD formalism used
by Sampoorna et al. (2013), whose numerical implementation is
inspired by the MALI-PRD method developed by Paletou (1995).

The source functions obtained with these two methods are
shown in Figs. 3 and 4, respectively, for the 1 ↔ 3 and 2 ↔ 3
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Fig. 4. Same as Fig. 3, but for 2↔ 3 line.

lines. For the 1 ↔ 3 line, we measure a mean relative error
between our degraded FNLTE code solution and the XRD solu-
tion of about 0.23%. For 2↔ 3, it is about 0.37%. We chose not
to show the source function associated with the 1 ↔ 2 line, as
it differs only slightly from the solution shown in Fig. 1 (a rel-
ative maximum difference of 4.6% with respect to the two-level
atom solution). However, XRD results are very well reproduced
for this line with our FNLTE code, with a mean relative error
between these two solutions of about 0.23%.

In Fig. 4, at the surface and at high frequency, we observe
an overshoot; i.e. S 23/BW > 1. The possibility that we are fac-
ing a numerical problem has been explored, in particular because
we explored regions where the optical depths become very tiny.
However, this feature is reproduced identically by the two differ-
ent numerical methods. Furthermore, as the numerical problems
remain identical, no similar behaviour has been observed in any
of the other cases studied (such as MALI-CRD and MALI-PRD;
the latter is discussed in Appendix C). This characteristic seems
to be specific to XRD, which suggests that the consistency of
some of its assumptions would need to be discussed further.
However, as we see in Sect. 6, this artefact disappears when one
finally deals with the complete problem. The above-mentioned –
and very satisfactory – tests now lead us with confidence towards
new results, using the full description.

6. New results

Hereafter, we used the same model and parameters as the ones
used for our previous tests; in particular, velocity-changing col-
lisions continue to be neglected (although their treatment does
not present any numerical additional difficulty). Firstly, the S 12
source function for the 1 ↔ 2 line changes very slightly com-
pared to the results obtained by PSP23 with a two-level atom
with a mean relative error between these solutions of the order
of 1.92%. This can be explained by the fact that atomic levels
are much less populated when their energy is higher. In other
words, we have n1 ≫ n2 ≫ n3 ≫ ... Thus, the source function
for the 2 ↔ 1 transition is largely dominated by radiative pro-
cesses populating level 2 from level 1 and vice versa. The impact
of multi-level modelling on this line is therefore marginal. On the
other hand, the 1↔ 3 and 2↔ 3 lines are substantially affected
by FNLTE effects. In Figs. 5 and 6, we show the S 13 and S 23
source functions obtained for these lines. Differences can be seen
at the surface with XRD, comparing Figs. 5 and 6, respectively,
with Figs. 3 and 4. We know that it is at the surface that non-LTE

Fig. 5. Optical depth variations of normalised source functions for 1↔
3 line of a three-bound-level hydrogen atom. It shows FNLTE results
(coloured lines) obtained for various frequencies: x = 0, 1, 2, 3, 4. The
dashed black line represents the MALI-CRD solution.

Fig. 6. Same as Fig. 5, but for 2↔ 3 line.

effects are more pronounced. It is therefore not surprising that
any change in the approach, describing all deviations from LTE,
modifies the characteristics of the atmosphere in this region. As
we explain in the previous section, the overshoot observed using
XRD for the S 23 source function now disappears. This is because
the frequency variations of the source function are mainly due to
the ratio between the emission and the absorption profile:

ρi j(x) =
ψ ji(x)
φi j(x)

. (44)

With XRD, we have ρ23 ≫ 1 precisely in this region close to
the surface and far from the line centre where the overshoot is
observed, as can be seen from the left panel of Fig. 7. According
to XRD assumptions, all absorption profiles are calculated using
a Maxwellian. However, we see in Sects. 2 and 3 that the absorp-
tion profile φ23 should also be determined in a self-consistent
way with all the other radiative quantities; i.e. calculated with
f2 , f M . It therefore seems contradictory to use f2 to determine
the emission profile, ψ21, but ignore this fact for the absorp-
tion profile, φ23. This suggests that XRD’s assumption about
absorption profiles is largely responsible for the overshoot. This
characteristic is no longer present when φ23 is self-consistently
calculated, and, quantitatively, we can see that ρ23 decreases
significantly in the very same regions (see the right panel of
Fig. 7).
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Fig. 7. Frequency variations of ρ23 ratio for 2↔ 3 line of a three-bound-level hydrogen atom. We show the XRD (left plot) and FNLTE (right plot)
results obtained for different optical depths: τ = 10−12, 10−10, 10−8, 10−5, 1.

A more detailed examination of the influence of each of the
four XRD assumptions (see Sect. 5.3) taken separately shows
that the assumption on absorption profiles has a major impact
on the S 23 source function. Quantitatively, we measure a mean
relative difference between the solution thus obtained and the
FNLTE solution of the order of 65%. Qualitatively, and as dis-
cussed above, this assumption considerably increases the S 23
source function in the areas where the overshoot is observed
in XRD. However, the amplitude of the overshoot is increased
by a factor ≈2. This hypothesis alone does not fully explain
this behaviour. Another XRD hypothesis must therefore have the
opposite effect, by reducing the S 23 source function near the
surface and at high frequency. This is precisely the qualitative
effect of the hypothesis on the coupling between the VDFs in the
Boltzmann equations. The inclusion of these two assumptions
alone explains the appearance of this overshoot, with a maximum
relative deviation between the solution thus obtained and the
XRD solution of the order of ≈3%. The other assumptions have
a much smaller impact, of the order of a few percent on average.
However, what is more important is that the FNLTE approach
allows us to get rid of all these assumptions and solves the XRD
overshooting issue. It is important to note that the XRD over-
shooting problem seen in the present work (see Fig. 4) is also due
to the use of a three-level model atom with infinitely sharp levels.
More specifically, the overshoot in S 23 from the XRD hypothesis
is a pathological feature of RI (Hummer 1962) and PI (Hubený
1982) and does not occur with RII and PII , which include the nat-
ural broadening of energy levels. Indeed, the latter has been ver-
ified using the MALI-XRD method of Sampoorna et al. (2013).
Moreover, in a more realistic case including more atomic lev-
els, one would expect to observe a strong influence of the higher
levels on level 3, modifying the behaviour near the surface.

Finally, it has been emphasised throughout this paper that the
FNLTE approach for radiative modelling deals not only with the
possible deviations of the radiation field and atomic populations
from their equilibrium distributions, but also for the deviation of
the VDFs from Maxwellian. Therefore, in addition to the usual
source functions, we are now able to obtain all VDFs, fi , f M ,
of the excited levels. As S 21, we find that f2 varies only slightly
from the two-level results previously obtained by PSP23. Indeed,

Fig. 8. Normalised atomic velocities variations of f3 velocity distri-
bution of the second excited level of a three-bound-level hydrogen
atom. Results (coloured lines) were obtained for different optical depths:
τ31 = 0.5, 1, 10, 102, 108, 5 · 108, 1012. The dashed black line shows the
Maxwellian limit f3(u) = f M(u).

we measure a mean relative deviation of 0.084% between these
two solutions. However, the velocity distribution associated with
level 3 is a new feature introduced by the FNLTE approach, as
displayed in Fig. 8. The higher the atomic velocity modulus u is,
the more f3 deviates from the Maxwellian. In deeper layers, as
f3 → f M the atmosphere tends to be thermalised. We also note
that the variations in f3 are very similar to those in ρ23 (XRD),
which is perfectly understandable given the explicit dependence
of the profiles on the distribution functions (especially because
ψ32 is calculated using f3).

7. Conclusions

Although they were thoroughly formulated more than forty years
ago by Hubený et al. (1983a,b) (see also Oxenius 1986), FNLTE
effects for a multi-level atom had never been computed before
the present study. As a first step, we restricted ourselves to a sim-
ple three-bound-level model atom, based on parameters initially
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provided by Avrett (1968), and infinitely sharp levels for several
benchmark purposes.

As our preliminary solutions to the multi-level FNLTE prob-
lem cannot be directly compared with other studies, we verified
our ability to reproduce several ‘degraded’ problems with accu-
racy. This also led us to point out some inconsistencies of the
quite advanced still XRD modelling.

The level of realism of the atomic and scattering models will
need to be improved in order to take into account the natural
broadening of excited atomic levels. However, the major con-
ceptual jump from two to three or more levels has already been
made, and the Sampoorna et al. (2024) step will be generalised
further.

In the longer term, we could also consider non-Maxwellian
free electrons in a self-consistent way as other massive parti-
cles. Cases where stimulated emission is not negligible could
also be explored, although this would involve major changes in
the calculation of atomic profiles.

Finally, we are aware that realism comes at a high computa-
tional price. For this purpose, we need to develop a more efficient
numerical scheme. However, another study of ours (Lagache
et al. 2025) shows that it is possible to adapt approximate opera-
tor methods (see e.g. Hubený 2003; Paletou & Auer 1995) to the
two infinitely-sharp-level FNLTE problem. Therefore, in the near
future, a robust and convergent method similar to these ones will
be adapted to our new multi-level, multi-distribution problem.
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Appendix A: Derivation of observer’s frame
profiles

The absorption and emission profiles in the observer’s frame are
given by the Eqs. (4) and (5). For infinitely sharp levels, we have
given the form of the atomic profiles in the Eqs. (26) and (27).
Thus, with j > i, we write (for example for ψ but the calculation
is completely analogous for φ):

ψ ji(ν ji) =
∮

dΩ ji

4π

∫
f j(u)δ(ξ ji − ν0,i j)d3u . (A.1)

Using the definitions of the reduced frequency x ji, the nor-
malised velocity u and the Doppler-Fizeau effect given in Eq. (6),
we obtain:

ψ ji =
1
∆ ji

∮
dΩ ji

4π

∫
f j(u)δ(x ji − u ·Ω ji)u2dudΩu . (A.2)

Noticing that:∮
dΩ ji

4π
δ(x ji − u ·Ω ji) =

1
2u

H(u − |x ji|) , (A.3)

with H the Heaviside function, then:

ψ ji(x ji) =
1

2∆ ji

∫ ∞
|x ji |

f j(u)udu . (A.4)

Appendix B: Derivation of a general expression for
emission profiles in the XRD approximations

The aim here is to obtain a general expression for the emis-
sion profiles within the framework of the approximations of
the so-called XRD approach of the non-LTE radiative transfer.
These approximations are described in detail in Sect. 5.3. Before
applying this set of assumptions, we propose a more general for-
mulation based on the kinetic equations given in Eq. (13). For
this purpose, we rewrite these equations as:

niΠi(u) fi = Li , (B.1)

with,

Πi(u) = QV,i +
∑
j,i

[
R̃i j(u) +Ci j

]
, (B.2)

and, following HOSI, we introduce Li, the density correspond-
ing to the ensemble of processes populating naturally or not the
atomic level i in the phase space:

Li = niQV,i f M +
∑
j,i

n j f j

[
R̃ ji(u) +C ji

]
. (B.3)

Analogously, Πi(u) is related to the density corresponding to
the set of processes depopulating the level i in phase space9. In
the previous equations, R̃i j(u) is the radiative rate dependent on

9 Velocity-changing collisions cannot populate a given level i from a
level j. However, they change the velocity of the atom inducing a transi-
tion from one state (position and velocity) to another in phase space.
These collisions therefore populate a level by creating or destroying
particles in phase space.

the velocity associated with the transition i→ j. It is defined as:

R̃i j(u) =
{

Bi jJi j(u) if i < j ,
Ai j if i > j .

(B.4)

Integration over all velocities of this quantity, i.e.:

Rab =

∫
d3u fa(u)R̃ab(u) , (B.5)

leads to the standard radiative rate which appear in the IKEE
defined as:

Ri j =

{
Bi jJi j if i < j ,

Ai j if i > j .
(B.6)

Also, with velocity-changing collisions, we define Pi as:

Pi = QV,i +
∑
j,i

(Ri j +Ci j) , (B.7)

where stimulated emission is neglected. Then, we can write the
β ji atomic emission profiles describing the j→ i transition (this
formula was adapted from HOSI; see also our Sect. 2.3) as:

β ji = prob(→ j∗)r ji +
∑
l< j

prob(→ l∗ ⇒ j) jl ji

+
∑

k<l< j

prob(→ k∗ ⇒ l⇒ j) jkl ji

+
∑

m<k<l< j

prob(→ m∗ ⇒ k ⇒ l⇒ j) jmkl ji + ...

(B.8)

Next, according to HOSI, we can write:

prob(→ j∗) =
1
L j

n j f MQV, j +
∑
p, j

np fp(Ap j +Cp j)

 . (B.9)

The term in the numerator relates to all processes that naturally
populate level j. From the denominator, we retrieve the term L j,
the meaning of which we have already discussed. Also, the prob-
ability that level j is non naturally populated from a level l < j
is10:

prob(→ l∗ ⇒ j) = prob(→ l∗) ×
nl flBl jJl j(u)

L j
. (B.10)

We also have:

prob(→ k∗ ⇒ l⇒ j) = prob(→ k∗ ⇒ l) ×
nl flBl jJl j(u)

L j
, (B.11)

and,

prob(→ m∗ ⇒ k ⇒ l⇒ j) = prob(→ m∗ ⇒ k ⇒ l)

×
nl flBl jJl j(u)

L j
.

(B.12)

In Sect. 3, we have neglected all processes involving three
or more photons. In other words, we have implicitly made the
assumption that prob(→ k∗ ⇒ l⇒ j) = 0, ∀k, l, j with k < l < j.
We must therefore have nl flBl jJl j(u) = 0 which is absurd as none

10 For l = 1, 2, we get Eqs (7.4), (7.7) and (7.8) of HOSI.
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of these quantities can be zero or, prob(→ k∗ ⇒ l) = 0, imply-
ing11 prob(→ l∗) = 1. Thus, to satisfy this last condition, we must
assume that all levels l such that l < j are naturally populated.
This assumption only applies to the calculation of a given emis-
sion profile. For example, at three levels, the calculation of β31
and β32 is made by assuming that level 2 is naturally populated
(which is factually false because radiative absorption 1→ 2 does
not lead to natural population of level 2). On the other hand, for
the calculation of β21, level 2 will not be considered to be natu-
rally populated in any circumstances. With this clarification, we
write the atomic emission profiles as:

β ji = prob(→ j∗)r ji +
∑
l< j

prob(→ l∗ ⇒ j) jl ji . (B.13)

Finally, the emission profile in the observer’s frame ψ ji now
writes, using Eq. (5) and neglecting velocity-changing collisions,
as:

ψ ji =

∮
dΩ ji

4π

∫
d3u

f j(u)
L j

r ji

∑
p, j

np fp(Ap j +Cp j)

+
∑
l< j

prob(→ l∗) × nl flBl jJl j(u) jl ji

 .
(B.14)

To continue, we use the Boltzmann equations i.e. Eq. (B.1) and
our assumption on the natural population of atomic levels l < j,
namely, prob(→ l∗) = 1; which is a consequence of the assump-
tion on processes with three or more photons. We then have:

ψ ji =

∮
dΩ ji

4π

∫
d3u

n jΠ j(u)

r ji

∑
p, j

np fp(Ap j +Cp j)

+
∑
l< j

nl flBl jJl j(u) jl ji

 .
(B.15)

In order to retrieve usual non-LTE transfer approximations
(including XRD), we use Πi ≈ Pi (equivalent to assumption (iii)
– see Sect. 5.3; see also HOSI for more details), and the above
equation reduces to:

ψ ji =
1

n jP j

∮
dΩ ji

4π

∫
d3u

r ji

∑
p, j

np fp(Ap j +Cp j)

+
∑
l< j

nl flBl jJl j(u) jl ji

 .
(B.16)

We recall that jl ji =
∫

Il jrl jidξl j/Jl j(u) and the generalised scat-
tering integrals denoted Rl ji are defined as:

Rl ji(xi j) =
∮

dΩl j

4π

∫
Il j

Rl
l ji(xi j, xl j)

φM∗
i j

dxl j , (B.17)

with φk∗
i j the absorption profile in the observer’s reference frame

calculated with the VDFs fk and Rl
l ji the generalised redistri-

bution function integrated in angle and velocity (and calculated
with fl). Following HOSII, they are defined respectively as:

φk∗
i j =

∮
dΩ ji

4π

∫
d3u fk(u)r ji , (B.18)

11 Because prob(→ k∗ ⇒ l) + prob(→ l∗) = 1

and,

Rl
l ji(xi j, xl j) =

∮
dΩ ji

4π

∫
d3u fl(u)rl ji . (B.19)

The emission profile ψ ji is then finally written as:

ψ ji =
φM∗

i j

n jP j

∑l< j

nlBl jR
l
l ji +
∑
p, j

np(Ap j +Cp j)
φ

p∗
i j

φM∗
i j

 . (B.20)

By distinguishing Raman and resonance scattering, and noting
Rl

l ji = P̄l
l ji and Ri

i ji = J̄i
i ji respectively their generalised scattering

integrals, we have:

ψ ji =
φM∗

i j

n jP j

niBi j J̄i
i ji +
∑
l,i, j
l< j

nlBl jP̄l
l ji +

∑
p, j

np(Ap j +Cp j)
φ

p∗
i j

φM∗
i j

 .
(B.21)

Finally, we make the last assumption of the XRD approxima-
tion: to calculate fi, we assume that f j = f M ∀ j , i. Thus, the
quantities defined in Eqs. (B.18) and (B.19) are calculated using a
Maxwellian VDF and we simply obtain, after manipulating sums
and indices:

ψ ji =
φM∗

i j

n jP j

niBi j J̄M
i ji +
∑
l,i, j
l< j

nlBl jP̄M
l ji

+

niCi j +
∑
k,i, j

nk(Ak j +Ck j)


 ,

(B.22)

which is completely equivalent to Eq. (43).

Appendix C: Benchmarking against standard PRD

We are fully aware that cross-redistribution (XRD) is a mech-
anism still rarely invoked in radiative modelling. As an extra
validation test, we propose here to study the case of standard
Hummer’s PRD, which is absolutely central to explaining the
observed properties of the 1↔ 2 and 1↔ 3 lines of the Sun (see
Hubený & Lites 1995; Heinzel et al. 1987). In the present case,
we consider a hydrogen atom with three infinitely sharp levels for
which only Hummer’s PRD effects will be considered for the two
resonance lines (1 ↔ 2 and 1 ↔ 3 lines), and where the CRD
approximation will be used for 2 ↔ 3 line i.e. ψ32 = φ23. For
1 ↔ 2 and 1 ↔ 3 lines, an emission profile is calculated with-
out taking into account the effects of cross-redistribution. This
is equivalent to considering the second term of Eq. (43) as zero,
i.e. P̄M

l ji = 0. For 1 ↔ 2 line, this consideration has no impact
and so f2 will always be given by Eq. (40). On the other hand,
for 1↔ 3 line, we must now calculate f3 with J23(u) = J23 = 0.
Note, moreover, that according to the IKEE, we have:

n1C13 + n2C23 = n3P3 − n2B23J23 − n1B13J13 , (C.1)

and we finally write:

f3 = f M +
f M

n3P3

[
n1B13(J13(u) − J13)

]
. (C.2)
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Fig. C.1. Optical depth variations of normalised source functions for
1↔ 3 line of a three-level hydrogen atom. We compare FNLTE results
(coloured lines) for various frequencies x = 0, 1, 2, 3, 4 with PRD ref-
erence solutions (black open circle) computed using the MALI-PRD
method of Paletou (1995). The black dashed line shows the CRD solu-
tion computed using MALI-CRD method.

Fig. C.2. Optical depth variations of normalised source functions for
2↔ 3 line of a three-level hydrogen atom. We compare FNLTE results
(red line) with PRD reference solutions (black open circle) computed
using the MALI-PRD method of Paletou (1995). The black dashed line
shows the CRD solution computed using MALI-CRD method.

The combination of Eqs. (40), (C.2) then allows us to compare
the results given by our FNLTE multi-level code with the refer-
ence results calculated using the MALI-PRD method developed
by Paletou (1995). The results are shown in Fig. C.1 for the 1↔ 3
line and in Fig. C.2 for 2↔ 3 line. We do not show the results for
1 ↔ 2 line for the same reasons explained in Sect. 5.3. Finally,
we see that the expected results are very well reproduced, with a
mean relative error between the two solutions equal, for 1 ↔ 2,
1↔ 3 and 2↔ 3 lines respectively, to about 0.22%, 0.37% and
0.34%.
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