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The gravitational wave (GW) interferometers Laser Interferometer Space Antenna (LISA) and the Einstein
Telescope (ET) are expected to be functional in the next decade(s), possibly around the same time. They will
operate over different frequency ranges, with similar integrated sensitivities to the amplitude of a stochastic
GW background (SGWB). We investigate the synergies between these two detectors, in terms
of a multiband detection of a cosmological SGWB characterized by a large amplitude, and a broad
frequency spectrum. We develop the notion of integrated sensitivity and propose a novel signal-to-noise ratio
optimal for characterization of the geometrical properties of the interferometer systems of LISA and the ET
operating simultaneously. By investigating various examples of SGWBs, such as those arising from
cosmological phase transition, cosmic string, and primordial inflation, we show that LISA and the ET
operating together will have the opportunity to assess more effectively the characteristics of the GW spectrum
produced by the same cosmological source, but at separate frequency scales. Moreover, the two experiments
in tandem can be sensitive to features of early Universe cosmic expansion before big bang nucleosynthesis
(BBN), which affects the SGWB frequency profile and which would not be possible to detect otherwise, since
two different frequency ranges correspond to two different pre-BBN (or postinflationary) epochs. Besides
considering the GW spectrum, we additionally undertake a preliminary study of the sensitivity of LISA and
the ET to soft limits of higher-order tensor correlation functions. Given that these experiments operate at
different frequency bands, their synergy constitutes an ideal direct probe of squeezed limits of higher-order
GW correlators, which cannot be measured operating with a single instrument only.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from astro-
physical sources by the LIGO-Virgo Collaboration in
2015 [1] opened up a new window into GW astronomy.
For cosmology, upcoming upgrades of LIGO-Virgo [2] and
proposed future detectors such as Laser Interferometer
Space Antenna (LISA) [3], BBO-DECIGO [4], the Einstein
Telescope (ET) [5,6], and Cosmic Explorer [7] will also
open up a new possible observational window into the
early Universe. Unlike photons, the gravitons (primordial
GWs) that were produced in the early Universe can
propagate freely throughout cosmic history and therefore
would constitute ideal messengers of the history of the
Universe [8–10].

In fact, the recent hints of detection of a stochastic
gravitational wave background (SGWB) in the nHz regime
by Pulsar Timing Array Collaborations [11–14] initiated
the era of experimental characterization of the SGWB. Still,
much has to be done to distinguish between different
sources of SGWB, astrophysical or cosmological (see,
e.g., Refs. [15,16] for recent topical reviews on SGWB
sources and detection techniques).
The next generation of GW detectors promises to

improve upon the current experimental sensitivity to
SGWB in frequency ranges between mHz and decahertz,
much higher than the nHz regime probed by pulsar timing
arrays. These higher-frequency regimes are more suitable
for detecting GWs produced by various early Universe
cosmic sources, such as those arising from phase transi-
tions, cosmic strings, cosmological inflation, etc. Early
Universe scenarios can lead to a SGWB with intriguing
properties such as a rich frequency profile, chirality, and
non-Gaussianity, all of which are important to accurately
characterise for future targets (see, e.g., Ref. [17] for a
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comprehensive recent review). It is essential to develop
tools to detect and better characterise the SGWB in a
frequency range which can be tested with high sensitivity
by future experiments, say, between 10−5 ≤ f=Hz ≤ 102.
In this work, we explore such a possibility of studying the
early-Universe sources of SGWB spanning this frequency
range by exploiting synergies between LISA [17–19] and
the ET [5,6,20,21] experiments, for a multiband detection
of the SGWB. Both experiments are planned to take data in
the next decade and will have similar sensitivities to the
amplitude of SGWB. Hence it is interesting to inquire what
we can gain from detecting a SGWB with both the
experimental facilities.
While LISAwill have its maximal sensitivity for frequen-

cies f in the mHz regime, the ET will be more sensitive to
signals in the decahertz range. If the SGWB has a broad
enough frequency profile and a sufficiently large amplitude,
it will be advantageous to have both the experiments
detecting its features in different frequency ranges. We
can then measure the properties of the GW source more
accurately and study aspects of early-Universe cosmology
which cannot be probed by each single experiment.
In the context of beyond the Standard Model (BSM) of

particle physics, there are several concrete predictions of
SGWBs over multiband frequency ranges as we will
discuss below. First, the very-well-understood temperature
anisotropies in the cosmic microwave background (CMB)
radiation superimposed on the perfectly smooth back-
ground implies that the Universe at the very beginning
has undergone an accelerated expansion, a phenomenon
also known as the cosmic inflation [22–25]. However, the
history of the primordial universe postinflation (plausibly
after temperature T ≤ 1014 GeV) and before the beginning
of big bang nucleosynthesis (BBN), that is the at temper-
ature above the Standard Model (SM) plasma temperature
of T≳ 1 MeV, remains unconstrained by any observa-
tional data at the moment. The standard assumption that
the pre-BBN universe is filled with radiation and becomes
radiation dominated after the end of the inflationary phase
is often challenged by open problems in the SM of particle
physics, e.g., the microscopic origin of dark matter (DM),
the explanation for the observed matter-antimatter asym-
metry, the flavor puzzle, or the ultraviolet SM Higgs field
dynamics, the strong CP problem (see, e.g., Refs. [26,27]
for a review). Introducing new BSM physics which
resolves these puzzles of modern particle physics and
cosmology often is associated with new energy scales
(other than the electroweak or Planck scales) and on many
occasions new degrees of freedom (like new particles) or
interactions which sometimes generate deviations from
the standard radiation domination era before the onset
of BBN.
We start our work with Sec. II explaining why and how

a detection of the SGWB in synergy between LISA and
the ET can improve the signal-to-noise ratio (SNR) on the

measurements of parameters characterizing a SGWBwith a
broad frequency spectrum. We then move on to Sec. III to
discuss and analyze several early-Universe scenarios that
are able to produce GWs spanning over a broad frequency
range. By means of a Fisher analysis, we quantitatively
demonstrate how a detection of GW with the two experi-
ments together can help us to measure specific model
parameters. Section IV discusses the notion of integrated
sensitivity curves, which offer a simple visual aid to
demonstrate the advantages of the synergy between the
two experiments with regard to detecting SGWB with
certain frequency shapes. Cosmological SGWB can be
characterized by non-Gaussian features, which motivate the
study of n-point correlation functions going beyond the
GW power spectrum and energy density. Given that
LISA and ET operate in different frequency ranges which
corresponding to different energy scales of tensor Fourier
modes, in Sec. V, we address the problem of the detect-
ability of soft limits of n-point correlation functions,
discussing the response function of the LISA-ET system
to such observables. We conclude in Sec. VI. A technical
Appendix complements our arguments. We work with
natural units c ¼ ℏ ¼ 1. We fix the h in the Hubble
parameter as h ¼ 0.67.

II. SYNERGIES BETWEEN LISA
AND THE EINSTEIN TELESCOPE

The aim of this section is to start discussing in practical
terms the possibility of making a synergetic detection of a
SGWB with the LISA and ET instruments. In the next
section, we will describe theoretical motivations to do so.

A. Gravitational waves and their detection

GWs are associated with spin-2 fluctuations hij of the
Minkowski metric:

ds2 ¼ −dt2 þ ðδij þ hijðt; x⃗ÞÞdxidxj: ð2:1Þ

We decompose hij into Fourier modes as

hijðt; x⃗Þ ¼
X
λ

Z þ∞

−∞
df

Z
d2n̂e−2πifn̂ x⃗e2πifteλijðn̂Þhλðf; n̂Þ;

ð2:2Þ

imposing the condition

hλð−f; n̂Þ ¼ h�λðf; n̂Þ; ð2:3Þ

which ensures that hijðt; x⃗Þ is a real function. The quantities
f, n̂, and λ denote, respectively, the GW frequency,
direction, and polarization (λ ¼ þ;×). In the previous
expressions, we have decomposed the GW momentum
as k⃗ ¼ 2πfn̂, with f being the GW frequency and n̂ being
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its direction. We assume that the polarization tensors eλij
are real quantities. We adopt a ðþ;×Þ basis and use the
normalization

P
ij e

λ
ije

λ0
ij ¼ 2δλλ

0
.

We assume in this section that the SGWB is isotropic,
stationary, and Gaussian. The GW energy density is
expressed in terms of the functionΩGWðfÞ, defined starting
from the two-point function for GW Fourier modes (see,
e.g., Ref. [28]). It is defined as

ΩGWðfÞ ¼
�
4π2

3H2
0

�
f3IðfÞ; ð2:4Þ

where the GW intensity IðfÞ is given by

hðhλðf;n̂ÞÞ�hλ0 ðf0;n̂0Þi¼δλλ
0

2

δðn̂− n̂0Þ
4π

δðf−f0ÞIðfÞ: ð2:5Þ

We shall now discuss how the interferometers LISA
and ET respond to the presence of GWs. Their behavior
depends on the so-called response functions and on the
sources of noise which affect a possible GW detection.
For the case of LISA, this topic is explained in a clear
and pedagogical way in Ref. [29], which we briefly review
here (see also Ref. [30] for a more systematic discussion).
We extend their analysis to include ET1 and the synergy
between the two detectors. We mainly use the notation
and conventions of Ref. [29], adapting them to the
present context.
We assume that both the LISA and the ET instruments

have shapes corresponding to equilateral triangles.2 The GW
is detected as an effect of the time difference between signals
measured at different vertices of the triangular interferom-
eter. We shall denote the three vertices of a triangle (it can be
the LISA or the ET instrument) with the combination of
letters ðabcÞ. Let us consider the vertex a as a reference. The
instrument measures the phase difference Φ,

Φabc ¼ Δφabc þ nabc ð2:6Þ
of the GW signals traveling along the arms ðabÞ and ðacÞ,
plus the contribution n of noise. In what follows, we will
neglect the time dependence of the positions of the detectors.
The interferometer response and the GW signal contri-

bution can then be expanded in Fourier modes as

ΔφabcðtÞ ¼
Z þ∞

−∞
dfe2πiftΔφ̃abcðfÞ; ð2:7Þ

where the signal Fourier mode Δφ̃ is given by the combi-
nation of the spin-2 mode hλðf; n̂Þ and the interferometer

response Fλ
abc , as contained in the following definition:

Δφ̃abcðfÞ ¼
X
λ

Z
d2nhλðf; n̂ÞFλ

abcðf; n̂Þ: ð2:8Þ

The quantity Fλ
abc is expressed as

Fλ
abcðf; n̂Þ ¼

e−2πifn̂·x⃗a

2
eλijðn̂Þ

h
F ijðblab · n̂; fÞ

− F ijðblac · n̂; fÞ
i
; ð2:9Þ

with the unit vector bl corresponding to the direction of the
detector arm. The geometry of the detector enters into the
functions F ij. Their expressions depend on the type of
interferometer one considers—space based (LISA) or
ground based (ET). For the case of LISA, they read

F ij
LISAðl̂ · n̂; fÞ

¼ l̂il̂j

2
e−ifð3þl̂·n̂Þ=ð2f⋆Þsinc

�
f

2f⋆
ð1− l̂ · n̂Þ

�
þ l̂il̂j

2
e−ifð1þl̂·n̂Þ=ð2f⋆Þsinc

�
f

2f⋆
ð1þ l̂ · n̂Þ

�
; ð2:10Þ

where the pivot scale f⋆ ¼ 1=ð2πLÞ—with L being the
length of the interferometer arms—is of the order of the mHz
frequencies probed by LISA. In contrast, the expression for
F is much simpler for a ground-based detector such as the
ET and corresponds to the following low-frequency limit of
the previous equation:

F ij
ETðbl · n̂; fÞ ¼ bliblj: ð2:11Þ

Starting from the above formulas, we can measure the
phase difference of signals traveling between the arms ðabÞ
and ðacÞ and correlate signals measured at different
vertices by computing their two-point functions. They
depend on the GW intensity IðfÞ [see Eq. (2.5)], weighted
by the instrument response to the GW signal, and on
possible noise sources. The signal two-point function in
Fourier space reads

hΦabcðfÞΦxyzðf0Þi

¼ δðf − f0Þ
2

½Rabc;xyzðfÞIðfÞ þ Nabc;xyzðfÞ�; ð2:12Þ

with Nabc;xyz being the correlated noise. The signal response
functions are

Rabc;xyzðfÞ ¼
Z

d2n̂
4π

h
Fþ
abcðf; n̂ÞFþ

xyzð−f; n̂Þ

þ F×
abcðf; n̂ÞF×

xyzð−f; n̂Þ
i
: ð2:13Þ

1For the case of ET, the arguments leading to the definition of
sensitivity curves are formally very similar, and we refer the
reader, e.g., to Refs. [21,31] for transparent discussions.

2This is certain for LISA, and possible for the ET—see
Ref. [32] for a discussion of various possible ET configurations.
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At a given frequency f, we assume that there is neither
noise correlation nor contaminations between the two
detectors LISA and the ET (correlated noise is present
only between arms of the same interferometer); hence, the
functionsNabc;xyz are zero for correlations among vertices of
two different experiments. In this section, moreover, we do
not take into account correlations of the signal intensity
IðfÞ among arms of the two different interferometers.
In fact, the latter have the best sensitivities in different
frequency ranges; hence, we expect that at a given
frequency f the signal intensity can be at best probed by
one individual experiment only. Namely, we consider only
signal correlations to exist between the arms of each
interferometer. Under these hypotheses, the phase covari-
ance of the correlated signals among the different vertices
of the two equilateral triangles (LISA and the ET) results in
a block-diagonal 6 × 6 matrix:

0BBBBBBBBB@

C1 C2 C2 0 0 0

C2 C1 C2 0 0 0

C2 C2 C1 0 0 0

0 0 0 C3 C4 C4

0 0 0 C4 C3 C4

0 0 0 C4 C4 C3

1CCCCCCCCCA
: ð2:14Þ

The upper block corresponds to the LISA, and the lower
block corresponds to the ET equilateral triangle. The
quantities

Ci ¼ Si þ Ni

are combinations of (possible) GW signal (Si) and instru-
mental noise (Ni) at each detector. This matrix can easily
be diagonalized, leading to the definition of six orthogonal
channels. In analogy with the names traditionally assigned
to the LISA channels, these are called ðAl; El; Tl; Ae;
Ee; TeÞ. They are given by

CAl ¼ CEl ¼ C1 − C2; ð2:15Þ

CTl ¼ C1 þ 2C2; ð2:16Þ

CAe ¼ CEe ¼ C3 − C4; ð2:17Þ

CTe ¼ C3 þ 2C4: ð2:18Þ

Starting from these considerations, we can obtain the
response functions for the diagonal channels, in our

approximation of static setup.3 In the case of LISA, the
response functions depend on the frequency; in the small-
frequency limit, they can be expressed as

RAl ¼ REl ¼ 9

20
−

169

1120

�
f
f⋆

�
2

þOðf=f⋆Þ4; ð2:20Þ

RTl ¼ 1

4032

�
f
f⋆

�
6

þOðf=f⋆Þ8: ð2:21Þ

The complete frequency dependence of the response
functions RAl;El and RTl for LISA can be easily obtained
numerically, as explained in Ref. [29] (see Fig 1). Suitable
analytical approximations for these two quantities are

Rfit
Al;ElðfÞ ¼ 9

20

�
1þ

�
f

1.25f⋆

�
3
�

−2=3
; ð2:22Þ

Rfit
TlðfÞ ¼ 1

10

�
f

2.8f⋆

�
6
�
1þ

�
f

2.8f⋆

�
6
�

−4=3
; ð2:23Þ

which are also represented in Fig 1. The T channels Tl and
Te are either weakly sensitive or not sensitive at all to the
GW signal (and the sensitivity in any case vanishes in the
small-frequency limit). For the ground-based interferom-
eter ET, the response functions are independent from
frequency and are proportional to the zero-frequency limit
of Eqs. (2.20) and (2.21): see, e.g., Ref. [31] for details.

B. Optimal signal-to-noise ratio

After the characterization of the geometrical properties
of the interferometer system as described above, we
investigate the optimal SNR for detecting a SGWB with
the two instruments LISA and ET working together.
We assume that the two detectors take data approximately
for the same amount of time T (although not necessarily
simultaneously, exploiting the stationarity of the SGWB).
The optimal SNR for measuring a SGWB with LISA and
ET in synergy is built using techniques based on Wiener

3The results are obtained by performing the integrations in
Eq. (2.13). The integrals contain the relative positions of the
interferometer vertices. For definiteness, extending Ref. [29], we
set the positions of the LISA interferometer vertices as (with L
being the LISA arm length)

x⃗A¼f0;0;0g; x⃗B¼Lf1=2;
ffiffiffi
3

p
=2;0g; x⃗C¼Lf−1=2;

ffiffiffi
3

p
=2;0g:
ð2:19Þ

For simplicity, we choose the same arm directions for the triangle
forming ET, which of course has much shorter arm lengths. As
mentioned above, in this work, we do not consider effects of the
relative motion between LISA and ET detectors.
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filtering, combining information obtained from the inde-
pendent channels Al;e and El;e. We follow Ref. [29] (see
also Ref. [30]), extending it to the general case where we
work with two instruments together. Working in the weak-
signal limit, denoting with Si the signal on each indepen-
dent channel, with Ni the noise, and with Qi the filter, the
SNR in Fourier space reads

SNR ¼
ffiffiffiffi
T
2

r P
i

R
∞
−∞ dfSiðfÞQiðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

R
∞
−∞ dfN2

i ðfÞQ2
i ðfÞ

q ; ð2:24Þ

where the sums are over the four channels Al;e and El;e

which are most sensitive to the signal. As mentioned above,
the quantity T indicates the duration of the measurements,
which we consider to be comparable in the two experi-
ments. We now wish to determine the optimal filter which
maximizes Eq. (2.24). We define a positive definite inner
product,

ðPi;QiÞ ¼
X
i

Z
∞

−∞
dfPiðfÞQiðfÞN2

i ðfÞ; ð2:25Þ

which acts on the four vectors ðPiÞ, where i ¼ Al;e; El;e.
The SNR can then be expressed as

SNR ¼
ffiffiffiffi
T
2

r
ðSi=N2

i ; QiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQi;QiÞ
p ; ð2:26Þ

and the filter that maximizes the previous expression, up to
an overall factor, is Qi ¼ Si=N2

i . The optimal SNR is (we
now integrate over positive frequencies only)

SNR ¼
�
T
X

i¼Al;e;El;e

Z þ∞

0

df
S2i ðfÞ
N2

i ðfÞ
�
1=2

: ð2:27Þ

We can now decompose the integrand in the previous
formula as

X
i¼Al;e;El;e

S2i ðfÞ
N2

i ðfÞ
¼

��
RAlðfÞ
NAlðfÞ

�
2

þ
�
RElðfÞ
NElðfÞ

�
2
�
I2ðfÞ

þ
��

RAeðfÞ
NAeðfÞ

�
2

þ
�
REeðfÞ
NEeðfÞ

�
2
�
I2ðfÞ:

ð2:28Þ

It is convenient to assemble the above result as [recall that
ΩGW is defined in Eq. (2.4)]

X
i¼Al;e;El;e

S2i ðfÞ
N2

i ðfÞ
¼ Ω2

GWðfÞ
Σ2
LISAðfÞ

þ Ω2
GWðfÞ

Σ2
ETðfÞ

; ð2:29Þ

with

ΣLISAðfÞ ¼
�
4π2

3H2
0

�
f3
��

RAlðfÞ
NAlðfÞ

�
2

þ
�
RElðfÞ
NElðfÞ

�
2
�
−1=2

;

ð2:30Þ

and analogously for the ET.
The result depends on the instrument response R to the

signal and on the noise curve N for each independent
channel. The functions ΣLISAðfÞ and ΣETðfÞ are called
nominal sensitivity curves—see Ref. [33] for a general
discussion—and we represent them in Fig. 2 for the two
experiments under consideration. Besides the numerically
evaluated sensitivity curves, we also represent analytical
approximations for the curves in Fig. 2. The analytical fit
we use for LISA is obtained from Ref. [34], while the one
for ET is a new result of the present work, and we discuss
it in the Appendix. For each experiment, the function Σ
encapsulates a weighted combination of response functions
and noise on each channel and is useful for visually
understanding the sensitivity of the instruments. For an
extended discussion on sensitivity curves, see Sec. IV,
where we will also discuss the more refined notion of
integrated sensitivity curves in this context. To summarize,

FIG. 1. The numerical LISA response functions for A, E (left panel) and T (right panel) orthogonal channels (dashed lines) as well as
the corresponding analytical fits of Eqs. (2.22) and (2.23) (continuous lines).

EXPLORING COSMOLOGICAL GRAVITATIONAL WAVE … PHYS. REV. D 111, 103001 (2025)

103001-5



the square of the total SNR is the sum of the squares of the
individual SNRs:

SNRtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
Z

∞

0

df

�
Ω2

GWðfÞ
Σ2
LISAðfÞ

þ Ω2
GWðfÞ

Σ2
ETðfÞ

�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR2

LISA þ SNR2
ET

q
; ð2:31Þ

a formula which will be used in what follows. This
expression demonstrates that, by working in synergy, the
two detectors can reach higher values of SNR than each
experiment operating individually.
Interestingly, the very same results can be obtained in

terms of a likelihood function associated with a measure-
ment of ΩGW carried out by the two experiments together.
This method is also useful for applications to Fisher
matrix forecasts. We assume the structure for the
Gaussian likelihood,

lnL ¼ const −
1

2

Z
∞

0

df df0
�
Ω̂GWðfÞ −Ωth

GWðfÞ
�

× C−1ðf; f0Þ
�
Ω̂GWðf0Þ −Ωth

GWðf0Þ
�
; ð2:32Þ

where Ω̂GW is the measured value and Ωth
GW is the

theoretical prediction from various sources for the quantity
ΩGW we wish to test. The inverse of the covariance matrix
corresponding to the GW measurement by the two experi-
ments together is

C−1ðf; f0Þ ¼ Tδðf − f0Þ
�

1

Σ2
LISAðfÞ

þ 1

Σ2
ETðfÞ

�
: ð2:33Þ

Considering Ω̂GWðfÞ to be the quantity to measure, we can
compute the following quantity corresponding to a con-
tinuous version of the Fisher matrix:

Fðf; f0Þ ¼ −
δ2 lnL

δΩth
GWðfÞδΩth

GWðf0Þ
ð2:34Þ

¼ C−1ðf; f0Þ: ð2:35Þ

The optimal SNR can then be computed in terms of a
convolution integral:

SNR2
opt ¼

Z þ∞

0

df df0Ωth
GWðfÞΩth

GWðf0ÞFðf; f0Þ: ð2:36Þ

Substituting the inverse covariance function (2.33), this
result coincides with Eq. (2.31).
The concept of Fisher matrices, of course, can be

used more directly to make forecasts on the prospective
error bars associated with measured quantities; see, e.g.,
Refs. [35,36]. Suppose we are interested in measuring the
components of a parameter vector Θi, with i being an index
running over the number of model parameters we are
interested in. The corresponding Fisher matrix is

Fij ¼ −
δ2 lnL
δΘiδΘj

; ð2:37Þ

where we consider the quantity given in Eq. (2.32) as a
likelihood function. Then, the errors on the measurements
of Θi are at least

ΔΘi ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðFÞ−1ii

q
: ð2:38Þ

FIG. 2. Nominal sensitivity curves for LISA and the ET. For the latter, we represent the so-called ET-D curve. The approximate
analytical fit for ET is discussed in the Appendix. Recall that we take h ¼ 0.67.
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This is a standard formula that we utilize in later sections.
After discussing how to use the two instruments together
to measure SGWB signals, in the next section, we will
provide motivations and examples of broad multiband
SGWB sources, which can benefit from a joint detection
by LISA and the ET.

III. EXAMPLES OF SGWB WITH BROAD
FREQUENCY PROFILES

In this section, we discuss examples of cosmological
SGWB sources, which are able to produce a broad GW
signal with a sizeable amplitude spanning several decades
in frequency. We consider, in succession, GW sources from
first-order cosmological phase transitions, cosmic strings,
and primordial inflation. We are interested in SGWB
spectra enhanced within the broad frequency band

Btot ¼ 10−5 ≤ f=Hz ≤ 445: ð3:1Þ

The lower part of the interval (3.1) corresponds to the
region of maximal sensitivity of LISA (mHz), while the
upper part corresponds to the region (decahertz) where
the ET is more sensitive to a GW signal (see both panels of
Fig. 2). We intend to demonstrate that important physical
information about the GW source and the Universe’s
evolution history can be extracted by measuring in synergy
the SGWB within the broad frequency interval (3.1).
We are not interested, though, in measuring the finer

details of the frequency dependence of the GW spectrum
(for methods to do so, see, e.g., Refs. [34,37]). Instead,
we wish to characterize the overall frequency profile of the
spectrum, including the properties of a SGWB which
extends all the way between the lower and the upper
regions of the frequency band in Eq. (3.1). A GW spectrum
is particularly interesting for us if it has a structure evolving
in frequency throughout the entire interval (3.1). In such a
case, the synergy between the two experiments LISA and
ET can be especially useful for better characterizing the
signal and extracting its physical properties, compared
to measurements made with a single instrument (LISA
or the ET). We explore this topic quantitatively by means of
Fisher forecasts on the detectability of the properties of the
SGWB shape.
A useful SGWB template to keep in mind for the GW

energy density of Eq. (2.4), with the properties we need is
the so-called broken power-law (BPL) function which well
describes, at least up to first approximation, GW spectra
produced by several early-Universe phenomena [38]. This
template applies well to GW spectra from phase transitions
and cosmic strings (see Secs. III A and III B). We adopt the
frequency shape parametrization of Ref. [39]:

ΩGWðfÞ ¼ Ω⋆

�
f
f⋆

�
n1
�
1

2
þ 1

2

�
f
f⋆

�
σ
�n2−n1

σ

: ð3:2Þ

The quantities f⋆ and Ω⋆ in Eq. (3.2) control the position
of the break and the amplitude of the spectrum around the
break. The quantities n1;2 are related to the spectral indices
before and after the break, while σ controls the smoothness
of the break—the smaller σ is, the smoother the transition
is. If the break occurs somewhere the middle of band (3.1),
it will be interesting to detect it with the two experiments
in synergy for the possibility of measuring both the
indices n1 and n2.
If n1 and n2 have opposite sign, the break position fbreak

and the corresponding value of Ωbreak
GW are given by

fbreak ¼ ð−n1=n2Þ1=σf⋆; ð3:3Þ

Ωbreak
GW ¼ Ω⋆

�ð−n2=n1Þn1=ðn1−n2Þ
2

þ ð−n1=n2Þn2=ðn2−n1Þ
2

�ðn2−n1Þ=σ
: ð3:4Þ

Currently, we have an indirect bound on the amplitude of
a cosmological SGWB signal in the frequency band (3.1)
because its amplitude should not exceed the BBN bound
ΩGW ≤ 1.7 × 10−6 [40]. Moreover, at the frequency scales
of ground-based interferometers—around decihertz—the
LIGO-Virgo-KAGRA Collaboration currently sets the
upper bound ΩGW ≤ 6 × 10−8 at the reference ground-
based frequency of 25 Hz [41], for a flat GW spectrum.
In this work, we consider the BBN bound as reference for
the maximal amplitude of the SGWB even when studying
GW sources active after BBN.
After these preliminary considerations, we can start

looking at concrete early-Universe sources of GW. We
do not plan to be exhaustive but to discuss selected
examples of sources which lead to a broad GW spectrum,
whose detection would benefit from synergies between
LISA and the ET. We focus on the theoretical aspects of the
discussion and also present Fisher estimates on the capability
of the two instruments together to better detect properties
of the SGWB profile. Although the template (3.2) is simple
and general enough to accommodate several early-Universe
sources—as discussed in Secs. III A and III B—for selected
cases in the context of inflation, we go beyond the profile of
Eq. (3.2), and we consider a different broad ansatz for
ΩGW—the so-called log-normal profile—to better describe
the frequency dependence of the SGWB (see Sec. III C).

A. Cosmological phase transitions

Several well-motivated models of particle physics pre-
dict the existence of scalar sectors beyond the Standard
Model, whose potentials are characterized by local minima.
The energy release of strong first-order phase transitions
(PTs) between different vacua produces a stochastic back-
ground of GW. The detection of such a background would
provide invaluable information on physics beyond the
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Standard Model and on the early cosmic evolution of our
Universe. We refer to Refs. [17,39,42,43] for complete
discussions and reviews on PT and their consequences for
different aspects of GW production. There are essentially
three mechanisms4 for GW production: collisions among
bubbles of different vacua [45–47], sound waves in the
primordial plasma [48,49], and turbulent motion [50–52].
The resulting shape in frequency of the SGWB spectrum
has a characteristic peak structure associated with the
duration and properties of the PT responsible for the
GW emission. The SGWB from strong first-order PT
increases from small toward large frequencies, reaches a
maximum associated with the Hubble size during the PT in
the early Universe, and then decreases in amplitude.
According to the recent discussion in Ref. [39], in the

first case of bubble collisions, we can expect a SGWB with
a broken power-law profile as in Eq (3.2), while the other
two cases are better described by a double broken power-
law template. At first approximation—since as mentioned
earlier we are not interested in fine details of the SGWB
frequency dependence but only on its overall structure
within the broad interval (3.1)—we do not take into
account the differences between the latter and the former
template. We consider the BPL profile in Eq. (3.2) as
describing reasonably well the overall frequency depend-
ence of a SGWB from first-order PT, which can in principle
span over the frequency band (3.1). In this context, the
parameters in the template (3.2) depend on the GW
production mechanisms as well as on the particle physics
models sourcing the PT in the first place (see the recent
work [39] for a more detailed analysis).

1. Position and height of the peak

For the case of bubble collisions, many studies over the
years have clarified the role of bubble dynamics and
surrounding relativistic fluid shells for GW production
(see, e.g., Ref. [43], which contains a complete review).
The dynamics of fluid shells might be important, requiring
going beyond the so-called thin-shell approximation (see
Refs. [53,54] for latest developments). In the limit of strong
phase transitions, the inverse duration of the transition,
denoted as β=H⋆ (normalized against the Hubble parameter
at the transition epoch), and the temperature T� at transition
are related to the BPL amplitude Ω⋆ and break position f⋆
by the formulas [39]

Ω⋆ ≃
2H2�
106β2

;
f�
Hz

≃
1

108
ffiffiffiffiffiffiffi
Ω⋆

p
�

T�
100 GeV

�
: ð3:5Þ

We refer to Ref. [39] for details. Hence, by tuning
appropriately the transition temperature and its duration,

the position of the break [see Eq. (3.3)] might be placed
freely within the band (3.1).
A precise measurement of the value of fbreak informs

us of when the PT occurs during cosmological history and
the timescale of its duration. For an explicit example, let us
assume n1 ¼ −n2 ≥ 0 (so that fbreak ¼ f⋆) and a high
SGWB amplitude Ω⋆ ¼ 10−6. The transition temperature
corresponds to the electroweak value—T� ¼ 102 GeV—
for a break in the LISA band at f⋆ ¼ 10−5 Hz, the lower
extremum of the interval (3.1). On the other hand, we find
an intermediate scale of T� ¼ 109 GeV for a break within
the ET band at f⋆ ¼ 5 × 102 Hz, the upper extremum of
the interval (3.1) (see the recent discussion in Ref. [55]).
Such intermediate-case PTs are very well motivated
from scenarios of BSM involving axion physics with
classic Peccei-Quinn symmetry breaking scales around
109–1011 GeV [56–59]. Interestingly, for this first-order
PT, the energy scale of new physics the ground-based
detectors are sensitive to, roughly coincides with the lowest
possible energy scale at which the Peccei-Quinn (PQ)
symmetry Uð1ÞPQ has to be broken in QCD axion models
which also address the strong CP problem of the SM
[60–63]. The involved axion scalar field is a viable cold
DM candidate [64–66], and even more generally, axionlike
particles are well motivated, since they are naturally present
as pseudo Nambu-Goldstone bosons in many BSM exten-
sions with a spontaneously broken global Uð1Þ symmetry,
e.g., in several string theory avatars [67–69]. Yet another
motivation for intermediate-scale PT comes from neutrino
mass generation also known as seesaw mechanism con-
nected to the scale of baryogenesis via leptogenesis; see,
e.g., Refs. [70–74]. In fact, while standard thermal lepto-
genesis is a simple and elegant mechanism, it requires a
small window of right-handed neutrino masses in the high-
energy regime 109–1011 GeV. Hence, GW detectors could
probe these energy ranges which cannot be probed by
accelerator experiments (see the analysis in Ref. [75] in
terms of existing GW data).
Moreover, it is also possible to push T⋆ to high values

considering nonminimal Higgs scenarios, or scalar setups
belonging to dark sectors beyond the Standard Model (see,
e.g., Ref. [76], and also see Ref. [77] for an early, complete
analysis of the possibility of tuning the scale of the
transition to intermediate values and its consequences for
interferometer detections and physics beyond the standard
model). The possibility of detecting a break in the spectrum
somewhere within the entire range (3.1) would be an
important opportunity to study the physics of PTs and
probe high-energy physics beyond the electroweak scale.

2. The spectral indices and our benchmark scenarios

Interestingly, the values of the tilts n1;2 and of the
smoothing quantity σ depend more specifically on the
PT scenario and GW source under consideration.

4Recently, Ref. [44] pointed out a fourth source, namely,
particle production from bubbles sources GW during first-order
PT.
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Measuring both indices n1 and n2 accurately is then
essential to reconstruct the details of the physics leading
to the PT: such a measurement can be achieved by the
synergy of LISA and the ET, as we are going to demon-
strate. We analyze two benchmark scenarios, PT1 and PT2,
as summarized in Table I. For uncorrelated primordial
sources, one finds a slope n1 ¼ 3 in the deep infrared (see,
e.g., Ref. [78] for a detailed analysis). But more generally,
the slope depends sensitively on the GW production. We
first consider a benchmark scenario PT1, with spectral
index n1 ¼ 3 in the infrared; in the UV, we consider
n2 ¼ −1 as predicted in scenarios where GWs are produced
by sound waves of the bubble surrounding plasma or by
effects of turbulent behavior in the fluid. For the second
benchmark scenario, PT2, we consider the model of
Ref. [79] in the context of highly relativistic fluid shell
dynamics, which finds n1 ¼ −n2 ≃ 2.4 and σ ≃ 1.2. These
two scenarios are presented in the left panel of Fig 3.

3. What can we learn about PT by LISA
and the ET in synergy?

In both of the aforementioned benchmark models, the
position of the break of the broken power-law spectrum is

located somewhere in the middle between LISA and ET
bands; see Fig. 3. The plots suggest that a measurement
in synergy between LISA and ET would allow us to get
important information on the position of the break and the
value of the spectral tilts, and thereby on particle physics
models leading to a first-order PT. Notice that, importantly,
the signal profile lies well below the nominal sensitivity
curve of both experiments. Nevertheless, it can be detected
by integrating over frequencies: recall the expression for
the SNR [Eq. (2.27)]. Such an integration allows one to
acquire sufficiently high values of SNR even if the signal
lies well below the nominal sensitivity curves of the
experiment. In fact, this property suggests the definition
of broken power-law sensitivity curve, as depicted with
light green color in Figs. 3 and 5, left and middle panels: the
GW signals lie well above such a curve. We will reconsider
this topic in Sec. IV, in the context of frequency-integrated
sensitivity curves.
In fact, we can carry out a Fisher analysis using a

likelihood whose structure is given in Eq. (2.32) and
assuming the BPL ansatz (3.2) with the aforementioned
two sets of benchmark values for the parameters, summa-
rized in Table I. The benchmark values of Ω⋆ are selected
in a such a way as to show how the two instruments
together can achieve good accuracy in the measurements of
the template parameters. The results are shown in Fig. 4.
From now on, we will present Fisher plots obtained using
the GetDist package [80].
For both the scenarios PT1 and PT2 as shown in Fig. 4,

each of the two experiments—LISA and the ET—can
measure with good accuracy only one of the two spectral
indices n1 or n2. The two experiments in synergy, though,
can measure both these quantities well, with an accuracy of
at least 10%. Apart from the spectral indices, the parameter
σ controlling the degree of smoothness of the transition can
also be measured accurately by the synergy of the two
experiments. This implies that, by working with LISA
and the ET together, we can obtain much richer infor-
mation on the physics of PToccurring at high temperature
scales. Additionally, for both scenarios, the ET experi-
ment by itself cannot accurately measure the amplitude
of the SGWB. Only in synergy with LISA can it do so,
measuring with a 10% accuracy all the parameters
characterizing our benchmark models. Moreover, the
synergy of the two experiments can help in alleviating
degeneracies in the parameter measurements—see, for
example, the measurement of σ and Ω⋆ by the ET only in
the second row of Fig. 4.
The correlations, shown by the ellipses, are an indication

of how the parameters covary according to the constraints
on LISA or the ET. Let us first consider the case of PT1.
We can estimate that the break in the signal occurs at a
frequency of approximately 0.046 Hz, which is within the
LISA band. This break is farther within the LISA band than
in the case of PT2, wherein the break occurs around 0.2 Hz.

FIG. 3. Examples of SGWB from phase transitions (PT); see
Sec. III A. The purple curves correspond to the LISA and ET
nominal curves, the green curve corresponds to the integrated
sensitivity curve for broken power-law scenarios discussed in
Sec. IV, and the blue and green lines represent the benchmark
scenarios in Table I.

TABLE I. Benchmark values for the scenarios corresponding to
cosmological phase transitions.

Ω⋆ n1 n2 σ f⋆

PT1 1 × 10−10 3 −1 7.2 0.04
PT2 1 × 10−8 2.4 −2.4 1.2 0.2
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Therefore, the ET cannot effectively constrain σ or n1 on
its own. Moreover, due to the low amplitude of the signal
and the resultant low SNR, even LISA is unable to

constrain the quantity σ well. ET mainly gathers its
SNR from the part of the signal after the break. If this
part of the signal becomes steeper—that is, if n2 becomes a

FIG. 4. Fisher forecasts for the phase transition benchmark scenarios PT1 and PT2, summarized in Table I.
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larger negative number—then in order to compensate for
this fact and accumulate adequate SNR, the amplitude of
the signal should become larger. This behavior is manifest
in the correlation between n2 and Ω⋆ for the ET.
Considering the combination LISAþ ET, if the slope n2
alone become steeper, the total SNR decreases. Because of
the low overall amplitude of the signal, making n2 very
steep could result in the total SNR falling below the value
of 5, the minimum SNR value we consider in this work for
the detectability of a signal. Hence, the Ω⋆ has to increase,
for allowing for the total SNR to cross such a thresh-
old value.
To elucidate this point further, we consider the case

of PT2 also. As mentioned earlier, in this case, the break in
the signal occurs within the LISA band, around 0.2 Hz.
Because of the relatively higher amplitude of the signal
compared to PT1, LISA by itself can constrain n1 and σ
quite well. However, the ET cannot constrain sufficiently
well either of these parameters on its own. Considering the
case of ET only, if the part of the signal after the break
becomes steeper—that is, if n2 becomes a large negative
number—then the signal amplitude has to become larger in
order to compensate for this fact and accumulate adequate
SNR. This is what we learn in the correlation between n2
andΩ⋆ for the ET. Such behavior is similar to what we find
for PT1. However, when considering the combination
LISAþ ET—which includes adequate SNR from the
LISA band—by increasing Ω⋆, we would increase the
total combined SNR to very large values, even though
the SNR for the ET alone might remain the same.
Therefore, the correlation pattern is reversed. We see that
the SNR for PT2 is much higher with respect to PT1. The
values are 42 to 48 times larger for PT2 than for PT1, (see
Table II). In conclusion, this analysis demonstrates quanti-
tatively, by means of the Fisher plots of Fig. 4, the
advantages of measuring the profile of SGWB over a
broad interval, for reconstructing the physics of the PT and
the details of the frequency profile around the peak.

B. Cosmic strings

Another opportunity for determining the pre-BBN cos-
mic history of the Universe is associated with the detection
of GW sourced by a network of cosmic strings. Cosmic
strings are basically one-dimensional objects produced by
the spontaneous breaking of a Uð1Þ symmetry in the early
Universe [81,82] or sometimes considered as fundamental
objects, for instance, in superstring theory [83–87]. The

essential feature in the GWemitted by the cosmic strings is
that they are sources of very long-standing over the entire
history of the evolution of the Universe [88–93]. Let us try
to understand why; after the formation of the network of
cosmic strings, it assumes a constant fraction of the total
energy budget of the Universe, and this is very popularly
known as the scaling regime [94–99]. Consequently, as
long as the strings exist in the Universe, it will keep on
emitting GW during the scaling regime and this happens
through most of the Universe’s history. Since the frequency
of cosmic sources of GW represents time in the early
Universe (higher frequency means earlier time), this gen-
erates a GW spectrum spanning many orders of magnitude
in frequencies. Therefore, a possible measurement of the
GW spectrum from high to lower frequencies will determine
the Universe expansion rate from early to later times by
investigating the features on the cosmic string GW spectrum
[100–105]. A detailed study of the impact of various pre-
BBN cosmological epochs on the GW spectrum emitted
from local and global cosmic strings was carried out in
Ref. [105], which clearly predicts the multiband frequency
spectrum of the GW detectors. In fact, the SGWB from
cosmic strings can be conveniently studied in synergy
between LISA and ET. (See, e.g., Refs. [106,107] and
references therein for a recent assessment in the context of
LISA physics.)
The process of string loop formation, evolution, and

decay into GWs is quite complex. It is usually studied
numerically, although accurate semianalytical fits for the
frequency shape of the SGWB can be determined (see,
e.g., the recent account [107]). The SGWB characteristics
depend on the string tension ðGμÞ, normalized against the
gravitational constantG, and on the loop size α, normalized
against its time of formation. Typically, the SGWB fre-
quency profile initially increases during the first phase of
the decay of string loops into GWs, up to a maximum at the
frequency [38]

fmax ≃ 3 × 10−8
�

Gμ
10−11

�
−1

Hz: ð3:6Þ

The value of the quantity Gμ is quite model dependent,
but fmax usually occurs at frequencies well below the
band (3.1) we are interested in. For example, for a specific
model of loop distribution, the LIGO-Virgo-KAGRA
Collaboration sets a bound Gμ ≤ 4 × 10−15 [108]. Then,
at larger frequencies, the SGWB becomes nearly constant,
or slightly decaying with an approximately constant slope.
We refer the reader to Ref. [38] for a more complete
discussion and references therein. As a consequence, if
future measurements favor a SGWB entering from the left
side of the band (3.1) with a negative slope, they will
provide circumstantial evidence for a cosmic string origin
of the signal. Going beyond the discussions of local cosmic
strings as above, there are several additional instances of
CS sources such as metastable cosmic strings [109], global

TABLE II. Calculated SNR values for the scenarios corre-
sponding to cosmological phase transitions.

LISA ET LISAþ ET

PT1 SNR 11 13 17
PT2 SNR 528 544 758
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cosmic strings [110] or cosmic superstrings [111], current-
carrying [112] and superconducting strings [113]. Various
other topological defects like monopoles and textures can
interact with cosmic strings [114]; a separate dedicated
analysis would be required since for each of them carries
features of top of the standard flat spectrum, which can be
tested and searched for in the broadband interval of Eq. (3.1).
Motivated by the previous considerations, we shall now

discuss two benchmark models. In our first cosmic string
benchmark scenario—CS1—we assume a constant power-
law profile in the frequency band (3.1), with a spectral
index n1 ¼ −0.1. If the amplitude of ΩGW, proportional to
ðGμÞ2=H2

0, is sufficiently large, then such a power-law
profile can be probed with both the LISA and the ET
instruments. We present this case in Fig. 5. Note that the
constant slope lies well below the nominal sensitivity
curves. Nevertheless, as mentioned above, it can be
detected with sufficient SNR by integrating over frequen-
cies. For this reason, we represent in the same plot in light
green the corresponding broken-power-law sensisitivity
curve, more on this in the next section.
Let us also consider another interesting possibility offered

by the synergy of LISA with the ET, an accurate test of the
early expansion of our Universe. Bymeasuring the frequency
profile of the spectrum, we can probe (or constrain) early
epochs of nonstandard cosmic expansion, preceding big bang
nucleosynthesis. Early matter domination eras, kination
domination, or the early presence of extra degrees of freedom
beyond the Standard Model can modify the string network
evolution, and the corresponding dynamics of GW produc-
tion (see, e.g., Ref. [115] and references therein for a compre-
hensive review and Ref. [105] for a dedicated analysis).

Nonstandard early cosmological epochs lead to sudden
changes, as breaks and features in slope at frequency5 [38]

fbreak ≃ ð9 × 10−3 HzÞ
�
TRD

GeV

��
10−12

αGμ

�
1=2

: ð3:7Þ

By making appropriate choices of the string network proper-
ties, the break position can occur within the interval (3.1).
Right after the break, the slope of the spectrum changes to a
slope depending on ω—the equation of state during the
nonstandard cosmological expansion. Forω ≥ 1=4, the tiltn2
is given by n2 ¼ −2ð3ω − 1Þ=ð3ωþ 1Þ [107]. Hence,
knowledge of the spectral tilts n1;2 and of the break position
fbreak offers us crucial information not only on the cosmic
string properties but also on the evolution of the Universe
prior to BBN. In Fig. 5, we show an explicit example of this
phenomenon for the benchmark scenario dubbed CS2 in
Table III, where we have chosen ω ¼ 5=9.
Other than continuous symmetries which when broken

leads to GW (as discussed above), domainwalls (DWs) [116]
are topological defects and are formed when a discrete
symmetry in some BSM scenario is broken after inflation.
As is well studied, during the scaling regimewhen the DW
network evolves and expands along with its surroundings,
the energy density stored is ρDW ¼ cσH [82,117], where σ
is the surface tension of the wall and c ¼ Oð1Þ is a scaling
parameter. DWs keep on emitting GWs until they anni-
hilate at a temperature given by T ¼ Tann [118–121]. The
peak frequency of the resulting GW spectrum from DW
annihilation tells us about the horizon size at the time
of DW annihilation, fpeak ¼ fHðTannÞ. Another important
feature is that for frequencies f ≫ fpeak the amplitude of
the GW spectrum scales as f−1. Studying closely, the
approximation for the GW spectrum at the formation time
takes the form T ¼ Tann are shown in Refs. [117,122],
from which it can be understood the GW spectrum
depends on α� ≡ ρDWðTannÞ=ρrðTannÞ, which is the energy
density in the domain walls relative to the radiation energy
density ρr of the Universe at the time of DWannihilation.
The microscopic physics parameters of the DWmodel are
the relative energy density inDWs, α�, and the temperature
at which they annihilate, Tann. Depending upon if the DWs

FIG. 5. Examples of SGWB from cosmic strings (CS); see
Sec. III B. The purple curves correspond to the LISA and ET
nominal curves, the green curve corresponds to the integrated
sensitivity curve for broken power-law scenarios discussed in
Sec. IV, and the blue and green lines represent the benchmark
scenarios in Table III.

TABLE III. Benchmark values for each cosmic string scenario.

Ω⋆ n1 n2 σ f⋆

CS1 4 × 10−13 −0.1 −0.1 � � � 0.02
CS2 2.5 × 10−12 −0.1 − 1

2
3 2

5Here, TRD is the Universe temperature at the transition
between nonstandard evolution and radiation domination. We
do not take into account in this formula possible effects of extra
degrees of freedom beyond the Standard Model active at early
epochs.
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annihilate completely into dark radiation or into visible
sector radiation (SM radiation), the energy density can
be constrained as the equivalent number of neutrino
species [122] ΔNeff , which is constrained by BBN
(ΔNeff < 0.33) [123] and CMB (ΔNeff < 0.3) [124,125].
We point out that the symmetry-breaking scale probed

by GW in this context is different than in PT scenarios, due
to the different microscopic physics involved; see compar-
ative analysis in Ref. [126].

1. What can we learn about CS from synergies
between LISA and the ET?

The two benchmark scenarios CS1 and CS2—a single
power law and a broken power law—are summarized in
Table III. Again, the value ofΩ⋆ in the two cases (and f⋆ in
CS2) are selected with the aim of demonstrating the
advantages offered by the synergy of the two instruments.
The corresponding Fisher analysis is collected in the plots in
Fig. 6. Similar to the case of phase transitions, this plot
demonstrates the advantages of synergetic measurements
with the two experiments for accurately measuring the
parameters of each benchmark scenario. Only the two instru-
ments together canmeasurewith a 10%accuracy the entire set
of parameters. Moreover, a detection in synergy can reduce
apparent degeneracies characterizing thedetectionwith single
instruments for the case CS1 (see Fig. 6, first row).

C. Cosmological inflation

Cosmological inflation is a well-studied early Universe
phenomenon capable of producing a stochastic background
of gravitational waves (see, e.g., Ref. [127] for a textbook
account). While the simplest models of inflation predict
a SGWB amplitude too small to be detected by LISA, there
are several well-motivated scenarios capable of raising
the amplitude of the spectrum to an observable level within
the band (3.1). These scenarios are based on multiple field
dynamics involving vector and axion fields [128,129],
spontaneous breaking of space-time symmetries [130–132],
or secondary effects associated with primordial black
hole production (PBH) [133,134] (for reviews, see, e.g.,
Refs. [135,136]). Various inflationary sources can provide
distinct frequency profiles for ΩGW, which can be distin-
guished when detected by GW experiments. In general, the
frequency profile of a SGWB produced by inflation is much
richer in features than SGWB produced by other phenom-
ena, and it cannot be described by the broken power-law
ansatz of Eq. (3.2). It may include a log-normal profile,
multiple peaks, or shapes characterized by oscillatory
features (see, e.g., Ref. [137] for examples, and a classi-
fication of SGWB templates suitable for describing GW
from different inflationary scenarios). Moreover, quite inter-
estingly, the SGWB characteristics depend on the very early
cosmological history preceding BBN, which are imprinted
in the SGWB frequency spectrum. Hence, before focusing
on developing forecasts to detect a specific template of

inflationary SGWB by means of synergies of LISA and the
ET, we theoretically further motivate how frequency profiles
of SGWB originating from inflation—more general than
Eq. (3.2)—may provide information on the early Universe
evolution prior to BBN.

1. Inflationary first-order tensor perturbations

The primordial spectral index nT , defined in terms of log
derivative of the power spectrum along the momentum scale,
is a crucial quantity for characterizing the inflationary
primordial tensor power spectrum. Standard single-field
slow-roll inflation models predict a red-tilted spectrum, with
nT satisfying the slow-roll consistency relation nT ≈ −r=8
[138]. However, there exist several more complex scenarios
characterized by blue-tilted spectra (nT > 0), originating from
various cosmological models involving high energy scales
[139–146]. Since the primordial GW background, after being
produced during inflation, exists all throughout cosmic
history, the spectrum is a perfect target for the multiband
frequency study we carry on in our analysis.
Just like the GW spectrum from cosmic strings, GW

from inflation are also ideal targets for probing the period
of pre-BBN history, i.e., the Universe barotropic parameter
w in the postinflationary era. Let us discuss some examples
where the background equation of state deviates from the
standard prediction for radiation domination (1=3). We can
consider models of quintessential inflationary theories
[147–150], or nonoscillatory inflation models [151]. In
these cases, the scalar field (the inflaton or some spectator
field) keeps rolling for a long time even after inflation ends.
As a consequence of this process, the primordial Universe
experiences a phase known as kination [152,153], during
which the scalar kinetic energy fraction becomes the
dominant component of energy budget in the Universe.
This phase is not too long lasting, as the corresponding
energy decreases fast as ρϕ ∝ a−6 before the onset of the
standard radiation-domination phase. The corresponding
background equation of state during kination is given
as w ¼ 1, stiffer than the barotropic parameter during
radiation-dominated (RD) (w ¼ 1=3) or during matter
domination (w ¼ 0). Inflationary tensor perturbations reen-
tering the horizon during this phase receive a boost in their
amplitude with respect to modes reentering the horizon
during RD. See, e.g., Refs. [154–160]. More in general, we
can consider a stiff era when the barotropic parameter of the
Universe lies in the range 1=3 < w < 1. Such phenomena
were investigated in Ref. [161], finding that in order to get a
detectable signal in LISA the stiff period in the postinfla-
tionary epochs must be in the range 0.46≲ w≲ 0.56with a
high inflationary scale Hinf ∼ 1013 GeV and the reheating
temperature in the range 1 MeV≲ Treh ≲ 150 MeV
assuming no blue-tilting (nT ∼ 0). A realization of this
possibility in UV-complete inflationary models was
actively studied in details in Refs. [162,163] along with
other interesting predictions. Moreover, subsequent
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cosmological eras can imprint signatures on the resulting
GW spectrum [114,153,155,157,164,165]. Other well-
studied examples of such scenarios include: a long-
lived heavy scalar field generating an early matter
era [103,115,166–171]; a very fast rolling scalar field

generating a kination era [147,153,156,165,172–176]; a
supercooled phase transition [70,177–186]; an extended
particle physics sector undergoing decays and scatterings, or
a broad distribution of PBHs evaporating in the early
Universe, as studied in detail in Refs. [187–191].

FIG. 6. Fisher forecasts for the cosmic string benchmark scenarios CS1 and CS2, as summarized in Table III.
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2. Scalar-induced GW

Yet another important and well studied source of
cosmological GWs is the so-called scalar induced
SGWB (second-order tensor perturbation) [133,134,192–
195] particular with boosted interests in very recent times
[196–220] due to the connection with dark matter in the
form of primordial black holes.
Just as for the cosmic strings or the first-order inflationary

GW, the induced SGWB is also a very well-recognized tool
to test the thermal history of the Universe but leading to
different spectral shapes controlled by different aspects of
microphysics. Reference [215] extends the investigations
of the induced SGWB for radiation-dominated and early
matter-dominated Universes to more arbitrary barotropic
parameters w > 0 and predicts a multiband GW frequency
spectrum including motivations for primordial black hole
domination and its evaporation [190,191]. In Ref. [215], it is
shown that for an adiabatic perfect fluid the shape of the peak
of the spectrum depends on the value of w. Along similar
lines, Ref. [221] shows the impact in the GW spectrum due
to the change in the effective degrees of freedom in thermal
history, like those occurring during the QCD and electro-
weak phase transitions in the early Universe. In a more
general setup, Ref. [222] shows that the infrared side of the
GW spectrum has a universal slope given a certain w.
The broad frequency profile of scalar induced GW is

related with the epochs at which the high-density scalar
fluctuations reenter the horizon (and may collapse to form
PBH). In this manner, scalar-induced GWs probe the
thermal history of the Universe; see Ref. [223]. We remark
that the difference between this probe of cosmic history
with that of inflationary first-order and cosmic strings lies
in the shape of the resultant GW spectrum as well as the
microphysics involved.

3. Particle production during and after inflation

Axion or more general pseudoscalar inflation models with
particle production [224–237] are characterized by a pseu-
doscalar inflaton χ which respects an approximate shift
symmetry [231] and a Chern-Simons coupling of the form
χFF̃ to a Uð1Þ gauge field. F denotes the field strength of
the gauge field, and F̃ is its dual. Such Chern-Simons
couplings lead to a tachyonic production of a transverse
mode of the gauge fields generating a boosted primordial
GW spectrum [128,144,238–252]. Going beyond axion
inflation setup, even in models in which an axion or an
axionlike particle is not the inflaton, a SGWB can be
produced [253–259]. After the axion starts rolling, it induces
a tachyonic instability for one of the dark photon helicities,
causing vacuum fluctuations to grow exponentially. This
effect generates a time-dependent anisotropic stress in the
energy-momentum tensor, which ultimately sources
the tensor perturbations. The GW formation ends when

the tachyonic band closes at temperature T� ≈
1.2

ffiffiffiffiffiffiffiffiffi
maMP

p
g1=4� ðαθÞ2=3

where α is the coupling with the dark photon, θ is the
initial misalignment angle, and ma is the mass of the axion
[253]. For well-motivated and suitable values of axion mass
and coupling, we can get a broad multiband frequency
profile detectable by LISA and the ET; see Eq. (3.8).

4. Our ansatz

After discussing theory motivations aimed at underlying
how the detection of GW from inflation can help in
characterizing the thermal history of the Universe, we
now focus on forecasting the detectability of a specific
SGWB template, with a log-normal profile,

ΩGW ¼ Ω⋆ exp

�
−
ln2ðf=f⋆Þ

2ρ2

�
: ð3:8Þ

The previous equation is characterized by three free
parameters: Ω⋆, f⋆, and ρ. These parameters control the
amplitude, position, and sharpness of the peak, respec-
tively. The log-normal ansatz (3.8) is qualitatively different
from the BPL profile of Eq. (3.2). The SGWB profile of
Eq. (3.8) can be generated by the axion or axion spectator
models of inflation [260–262] described above. Hence, it is
theoretically well motivated. We nevertheless emphasize
that other cosmic inflation models lead to different SGWB
frequency profiles; hence, they require separate dedicated
analyses. See, e.g., the recent work [137] for a classification
of possible inflationary SGWB shapes. Explicit particle
physics models leading to Eq. (3.8) are based on the
dynamics of the aforementioned models based spectator
axion field χ, which rolls during a fraction ΔN of e-folds
of inflation. In this epoch, the axion excites vector gauge
fields, through the coupling χFF̃. The dynamics and energy
density of the latter produces a sizeable SGWBwith the log-
normal profile (3.8). The SGWB peak f⋆ occurs at scales
corresponding to modes leaving the horizon during the
epoch of fastest roll of χ. The height of the peak is sensitive
to the quantity χ̇, while its width depends on ΔN. Hence,
each of the parameters characterizing the ansatz (3.8) has a
clear physical interpretation in terms of quantities character-
izing well-motivated underlying scenarios.
In Table IV, we collect two representative scenarios

(Inf1 and 2) and the associated benchmark values for the
parameters corresponding to the log-normal ansatz (3.8).
We present their profiles in the right panel of Fig. 7, where
we also depict in blue the corresponding log-normal
sensitivity curve (to be discussed in the next section).

TABLE IV. Benchmark values for cosmological inflation
scenarios described by ansatz (3.8).

Ω⋆ f⋆ ρ

Inf1 3 × 10−10 0.2 0.45
Inf2 7 × 10−13 0.25 1.6
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The parameters are selected such that their profiles peak in
the middle between the LISA and ET bands, with different
amplitudes and different peak sharpness. In Fig. 8, we plot
the corresponding Fisher forecasts. LISA alone would be
able to measure the parameters with good accuracy in
scenario Inf1. On the other hand, scenario Inf2 would
benefit much from the synergy between the two experiments.
In conclusion, the synergy between LISA and the ET can

help in distinguishing and characterizing early-Universe
sources of SGWB. In the next two sections, we develop and
expand upon this topic, considering further concepts and
observables to exploit the potential of making detections
with the two experiments together.

IV. NOTION OF INTEGRATED
SENSITIVITY CURVES

Is there a simple, intuitive way to know whether a
given SGWB profile can be detected by GW experiments?
The answer is affirmative, thanks to the notion of a
sensitivity curve. In this section, we discuss various
versions of sensitivity curves for LISA, the ET, and the
two experiments operating together.
The concept of a nominal sensitivity curve offers a visual

tool to intuitively understand whether a certain GW source
with its frequency profile can be detected by a GW
experiment. If a given GW signal has a sufficiently large
amplitude to cross the sensitivity curve, it will automati-
cally be detected by the particular experiment with a signal-
to-noise ratio of greater than unity. The frequency profile of
the nominal sensitivity curve depends on the noise sources
affecting a given experiment and on the response of the
latter to a GW input. We already discussed and represented
the nominal sensitivity curves in Sec. II (see Fig. 2).

By inspecting Fig. 2, we can see that the frequency
regions of maximal sensitivity for LISA and the ET are
different (we call them BLISA and BET) and span the ranges

BLISA ≃ 10−5 ≤ f=Hz ≤ 10−1; ð4:1Þ

BET ≃ 100 ≤ f=Hz ≤ 445: ð4:2Þ

At face value, the detectors do not cover well (due to
poor sensitivity) the intermediate region in between say
8 × 10−2 ≤ f=Hz ≤ 2. Also, the minimal nominal sensi-
tivity of LISA toΩGW is around 1 order of magnitude larger
than the ET. We have cut off the upper limit of the
frequency range for the ET at 445 Hz because, beyond
this frequency, the sensitivity of the instrument decreases
beyond the previously mentioned BBN limit of ΩGW ≤
1.7 × 10−6, and therefore those frequencies are not of
interest to us in this work.
However, in representing the nominal sensitivity curves

as discussed above, we do not make use of the crucial fact
that the SGWB signal is extended over decades of
frequency ranges. If such a broad frequency profile exists,
we may integrate over the entire frequency range to allow
us obtain more crucial information on the signal by having
more large SNR. A broad frequency profile suggests that
we can integrate over the frequency range, allowing us to
obtain further information on the signal by collecting more
SNR [see formula (2.31)]. We already came across this
feature while discussing Fisher forecasts in Sec. III. For this
reason, Ref. [263] introduced the notion of power-law
sensitivity curve6 as a useful visual device to understand
whether a given signal can be detected by a GW experi-
ment. Following Ref. [263], we start by assuming that a
given signal is described by a power-law profile,

ΩGW ¼ Ω⋆ðf=f⋆ÞnT ; ð4:3Þ

over the frequency band we are interested in, with f⋆ a
given reference frequency. The spectral tilt nT is not exactly
known, though; we assume that it can vary over an interval
between two fiducial values. For each value of the tilt, we
can determine the minimal value of the signal amplitudeΩ⋆
ensures that the corresponding SNR overcomes a certain
threshold. We shall consider

SNR ¼ 5; T ¼ 3 years: ð4:4Þ

Then, we determine the envelope of the resulting curves
associated with the various spectral tilts and draw for each

FIG. 7. Examples of SGWB from cosmic inflation; see Sec. III C.
The purple curves correspond to the LISA and ET nominal curves,
the turquoise curve corresponds to the integrated sensitivity curve
for log-normal scenarios discussed in Sec. IV, and the blue and
green lines represent the benchmark scenarios in Table IV.

6For certain signals like phase transition which carries a peak,
peaked integrated sensitivity may fare better than power-law
sensitivity; see Ref. [264] for details. However, in this paper, we
focus to the former case for overall comparison purposes.
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frequency the maximal signal amplitude after scanning
over all the tilts.
The result is the so-called power-law-sensitivity curve

(PLS), which we represent in Fig. 9. We allow nT to vary

between −9=2 < nT < 9=2, with these numbers chosen for
better visualization purposes. The left and central panels
show the standard PLS curves associated with LISA and
the ET, built following the aforementioned algorithm.

FIG. 8. Fisher forecasts for the cosmic inflation benchmark scenarios Inf1 and Inf2, as summarized in Table IV.
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Every power-law spectrum passing above these curves can
be detected by LISA (left panel) or the ET (central panel)
with SNR > 5. In drawing these curves, we have assumed
that the signal is a power law over the entire range of
frequencies (3.1), but we measure it with one experiment
only. Notice that, differently from the nominal curves, the
integration over frequencies associated with the notion of
PLS curves leads to a sensitivity for the ET comparable
with that of LISA.
In plotting the combined PLS in the right panel of Fig. 9,

we take advantage of the fact that both LISA and the ET
can measure the same signal independently; hence, they
can provide a multiband detection of a given SGWB.
Again, we assume that the SGWB signal is a power law for
the entire frequency range (3.1). We form the total SNRtot
using Eq. (2.31) and use this quantity to draw the combined
PLS in the right panel of Fig. 9.
The plots in Fig. 9 demonstrate that the PLS curves gain

orders of magnitude in sensitivity with respect to the
nominal curves. If a power-law SGWB signal passes above
the PLS (but below the nominal sensitivity curve), it can
nevertheless be detected by the experiment. Notice that
when LISA and the ET operate together, the PLS has a low
amplitude also within the frequency interval between the
sensitivity bands of the individual instruments, where
the system would seem to have low sensitivity [see the
comment after Eq. (4.2)]. In fact, if a power-law profile
crosses in the middle of each of two experiment bands, e.g.,
ΩGW ∼ 10−10 at a frequency f ∼ 10−2 (above the PLS of the
plot of Fig. 9, right panel), it certainly crosses the sensitivity
curve of one or the other experiment, as it grows toward
larger or smaller frequencies through the band (3.1). This
feature, due to our hypothesis that the signal is a power law
in the entire band (3.1), explains the much improved PLS

sensitivity in the intermediate regions in the right panel
of Fig. 9, when compared to the PLS sensitivity of the
individual experiments.

A. Broken power-law and log-normal
sensitivity curves

After reviewing the concept of power-law sensitivity
curves, we shall now discuss the other families of integrated
sensitivity curves. As discussed in Sec. III, we are inter-
ested in SGWB profiles described by a broken power law,
with the frequency dependence given by the function (3.2),
or log-normal profiles associated with ansatz (3.8). For this
reason, we go beyond the concept of the PLS curve [263]
analyzed above, and we discuss the concept of BPLS
sensitivity curve as introduced in Ref. [265]. (See also
Ref. [264] for previous related arguments.) We can ask
what is the sensitivity of GWexperiments toward detecting a
SGWB with a particular SNR detection threshold, assuming
a broken power-law profile within the range (3.1).
In this case, there are several parameters we can vary: the

spectral tilts n1;2 of the growing and decreasing part of the
spectrum, the position f⋆ of the break, and the parameter σ
controlling the smoothness of the transition. We independ-
ently vary over the spectral tilts n1;2 in the interval
−9=2 ≤ n1;2 ≤ 9=2, over 1 < σ < 10.2, as well as over
the values of f⋆ in the ranges of sensitivity of the system.
We determine the minimal amplitude in Eq. (3.2) to ensure
we reach an SNR ¼ 5 for each set of values of the
parameters we examine, and we draw the envelope of
the corresponding curves. In the left and central panels of
Fig. 10, we focus on the individual experiments LISA and
the ET, varying f⋆, respectively, within the BLISA and BET
bands of Eq. (4.1). On the right panel, we consider the two

FIG. 9. Orange lines: PLS curves for LISA (left panel), the ET (central panel), and the two experiments combined (right panel). For the
nominal sensitivity curves in purple, we use the analytical fits of the Appendix.
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experiments together and vary the break position f⋆ over
the entire range (3.1).
While for the LISA-only and ET-only cases, the BPLS

curves result in similar shapes and amplitude as the PLS
curves in the previous subsection (compare the left and
central panels of Figs. 9 and 10), the BPLS curve for the
two experiments together is very different compared to the
PLS curve for the two experiments (compare the right
panels of Figs. 9 and 10). The reason for this difference is
that the break of the BPL might occur in between the LISA
and ET bands, where the sensitivity is reduced, and BPL
spectra with large spectral tilts (in absolute value) might
enter only partially within the sensitivity region of an
experiment. Nevertheless, the plot suggests that we can
accurately detect BPL SGWB profiles with a break in the

middle of LISA and ET bands and with a relatively small
amplitude at the break position. This is a property that we
have already explored in the previous section with a Fisher
analysis of selected benchmark models for phase transition
and cosmic string scenarios.
The method outlined above can also be applied to

other SGWB profiles, such as the log-normal described
by ansatz (3.8). In fact, we can build integrated sensitivity
curves varying over the parameters characterizing Eq. (3.8).
We do so in Fig. 11, varying over 0.4 < ρ < 1, while f⋆
varies over the sensitivity bands of the experiments as
described in the BPLS case. We notice that in this case
the sensitivity of the combined LISAþ ET system is not
as good as the BPLS curves of Fig. 10 in the inter-
mediate band between LISA and ET maximal sensitivities.

FIG. 10. Representation of the broken power-law (BPLS) sensitivity curves, as discussed in the main text.

FIG. 11. Log-normal integrated sensitivity curves, built following the method discussed in the main text.
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This could be because a log-normal spectrum with a sharp
peak in the intermediate band may not enter the sensitivity
regions of either of the two experiments at all. Nevertheless,
it is important to include both profiles and carefully study
the differences in their detection prospects. If we compare
Fig. 3 with Fig. 7, we can see that a GW spectrum detected
with a peak in the range 10−9 ≲ ΩGW ≲ 5 × 10−7 and
0.1 Hz≲ f ≲ 0.9 Hz is much more likely to be a broken
power-law spectrum than a log-normal one. Once we know
the shape of the spectrum, we can extract the parameters in
the functional forms of the profiles [cf. Eqs. (3.2) and (3.8)]
and use them to understand important information regard-
ing the underlying physics, as explained in the sections
delineating the two profiles. Since the different parameters
correspond to different physical processes, an accurate
theoretical modeling of the signal template is important for
making forecasts.
As we have learned, the concept of integrated sensitivity

curves offers an immediate tool to understand (or guess) the
results of more sophisticated analyses based on Fisher
forecasts, regarding the combined sensitivity of LISA and
the ET to SGWB signals. It allows us to visually under-
stand, in a semiquantitative manner, why the two experi-
ments operating together are more powerful for detecting
and characterizing a SGWB. Besides the ΩGW profile, we
shall now proceed to discussing another observable which
can benefit from joint GW detection: the non-Gaussianity
of the SGWB.

V. CASE OF A NON-GAUSSIAN SIGNAL

In this section, we wish to discuss at a preliminary level
yet another observable which can benefit from synergies
between LISA and the ET: the non-Gaussian features of the
SGWB. Non-Gaussianities arise whenever nonlinearities

are important in the formation and characterization of the
SGWB. It is a well-studied theme in the context of the
cosmic microwave background. Yet, its physics needs to be
developed further for SGWB sources.
We focus here on non-Gaussianities in the GW statistics

produced during inflation (but see Ref. [266] for related
studies in the context of PT). See, e.g., Ref. [267], Sec. V,
for a review. It is well known that intrinsic non-
Gaussianities of the SGWB are difficult to directly measure
with interferometers [202,268]. In fact, Shapiro time-delay
effects ruin phase correlations that are essential for char-
acterizing most of the non-Gaussian shapes which are
possible to directly detect through n-point function mea-
surements. Exceptions are shapes corresponding to soft
limits of correlation functions, such as squeezed [269,270]
or collapsed limits [271] of three- or higher-point functions.
In this case, momenta characterizing the Fourier modes
entering correlation functions get aligned and avoid the
previously mentioned dephasing time-delay effects (see
Refs. [270,271] for extended discussions of aspects of the
physics involved).7

Intuitively, the synergy between the LISA and ET
detectors—which operate at well-separated frequency
scales—represents an invaluable opportunity to probe soft
limits of GW higher-point functions. Soft limits contain a
large wealth of physics information (see, e.g., Ref. [276]),
which would be interesting to acquire. Here, we take a
small step in this direction and investigate the response of
the LISA-ET system to the collapsed limit of the four-point
function (the system has vanishing response to the
squeezed limit of three-point function [277]). We assume
that the GW four-point correlator is described by the
following ansatz:

hhλ1ðf1; n̂1Þhλ2ðf2; n̂2Þhλ3ðf3; n̂3Þhλ4ðf4; n̂4Þif1≪f3

¼ δλ1λ2δλ3λ4

2
δðf1 − f2Þδðf3 − f4Þδð3Þðn̂1 þ n̂2Þδð3Þðn̂3 þ n̂4Þδð3Þðn̂1 − n̂3ÞSðf1; f3Þ: ð5:1Þ

The above four-point correlator in Fourier space describes a
closed quadrilateral with momenta aligned and two-by-two
equal in magnitude, enhanced in a soft countercollinear
limit with a frequency f1 much smaller than f3. Since
fLISA ≪ fET, such a soft regime can be probed by our
setup. We shall not discuss theoretical motivations and
model building perspectives leading to the ansatz (5.1).
This will be covered elsewhere, including further analysis
of its consequences for GW experiments. Instead, we shall
enquire how the LISA-ET system in synergy responds to
the collapsed correlator described by Eq. (5.1). We wish to

measure the four-point amplitude Sðf1; f3Þ in synergy
between LISA and the ET. The response of the system
can be obtained by a generalization of the analysis reviewed
in Sec. II.

7Another possibility, which we will not further explore in this
context, is to avoid correlating the GW signal directly but to
instead form three- (or higher-)point functions of the SGWB
anisotropies [272,273]. Interestingly, cross-correlations between
CMB and SGWB anisotropies can also be used to test infla-
tionary mixed tensor-scalar non-Gaussianities [274,275].
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The four-point function corresponding to the measured
signal—the generalization of Eq. (2.12) to higher point
correlations—is

hΦa1;b1c1
ðf1ÞΦa2;b2c2

ðf2ÞΦa3;b3c3
ðf3ÞΦa4;b4c4

ðf4Þi

¼ δðf1 − f2Þδðf3 − f4Þ
2

½Rð4Þðf1; f3ÞSðf1; f3Þ þ N�;
ð5:2Þ

with Rð4ÞðfiÞ being the four-point response function and N
being the noise (to avoid cumbersome expressions, we drop
indices labeling the interferometer channels). In writing the
previous formula, we make use of our assumption (5.1)
for the GW response function. Geometrically, the above
quantity correlates measurements made at two arms of
LISA and two arms of the ET, in the limit f1 ≪ f3. Rð4ÞðfÞ
is a generalization of the two-point response function of
Eq. (2.13), formally given by the integral

Rð4Þðf1; f3Þ ¼
Z

d2n̂
4π

h
Fþ
a1b1c1

ðf1; n̂ÞFþ
a2b2c2

ð−f1; n̂Þ þ F×
a1b1c1

ðf1; n̂ÞF×
a2b2c2

ð−f1; n̂Þ
i
LISA

×
h
Fþ
a3b3c3

ðf3; n̂ÞFþ
a4b4c4

ð−f3; n̂Þ þ F×
a3b3c3

ðf3; n̂ÞF×
a2b4c4

ð−f3; n̂Þ
i
ET
: ð5:3Þ

As for the case of two-point response functions, orthogo-
nal channels can be found, and orthogonal response
functions can be numerically evaluated. The complication
is that the response function we are dealing with is a four-
dimensional tensor. It has four indices corresponding to
each interferometer channel we correlate in the soft limit—
two for LISA and two for the ET. The result depends on the
relative positions among all arms. As a very first step to
address the subject, here we shall fix the ET arms along the
directions ðabÞ and ðacÞ of Eq. (2.19), and we do not
attempt to diagonalize the channels in the ET sector. We
instead diagonalize the two remaining indices correspond-
ing to the LISA channels.
We again call the orthogonal LISA channels Al, El,

and Tl. The computation of such a four-point response
function is similar to the diagonalization discussed in
Sec. II, although the results have different amplitude and
frequency dependence with respect to the two-point ones.
The reason is that we have to deal with extra angular
integrations when computing the integrals in Eq. (5.3). For
definiteness, we fix the positions of the vertexes of the
interferometer as in footnote 4. It would be interesting and

important to extend our analysis to more general arm
orientations.
In the small-frequency limit, the four-point response

for the orthogonal channels Al ¼ El and Tl channels
results in

Rð4Þ
Al ¼ REl ¼ 27

140
þOðf=f⋆Þ2; ð5:4Þ

Rð4Þ
Tl ¼ −

17

295680

�
f
f⋆

�
4

þOðf=f⋆Þ6: ð5:5Þ

Notice that their amplitudes are different from the two-
point cases of Eqs. (2.20) and (2.21), and the RTl now starts
at small frequencies with a ðf=f⋆Þ4 contribution, instead
of a ðf=f⋆Þ6 as in Eq. (2.21). The complete frequency
dependence of the response functions can be easily
obtained numerically; see Fig. 12. Suitable analytical
approximations for these two quantities are given by

Rð4Þ
Al;ElðfÞ ¼ 27

140

�
1þ

�
f

1.1f⋆

�
3
�

−2=3
; ð5:6Þ

FIG. 12. The response function for the collapsed four-point function, as measurable by the LISA and the ET system, for the A, E (left
panel), and T (right panel) channels in the LISA sector. Dashed lines: numerical results. Continuous lines: the analytical approximations
of Eqs. (5.6) and (5.7).
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Rð4Þ
Tl ðfÞ ¼

�
f

3.3f⋆

�
4
�
0.00315

�
f
f⋆

�
− 0.0104

�
×

�
1þ

�
f

3.3f⋆

�
7.2
�

−1
: ð5:7Þ

These formulas provide the starting point for probing soft
limits of GW correlation functions by considering syner-
gies among detectors operating at different frequencies.
This is a topic with several theoretical and phenomeno-
logical ramifications that we plan to develop elsewhere.

VI. OUTLOOK

In the next decades, the GW interferometers LISA and
the ET will hopefully be working around the same time.
They will operate over different frequency ranges but will
have similar integrated sensitivities to the amplitude of the
SGWB. It is important to embark on the quest to investigate
what new physics we may learn from synergies between
these two detectors. We take a first small step toward that
direction in this paper. Particularly, we have focused on
cosmological sources of GWs, leading to a SGWB char-
acterized by a large-amplitude and a broad-frequency
spectrum spanning several decades in frequency. Operating
at different frequency scales, LISA and the ET together will
have the opportunity to detect distinct features of GWs
produced by the same cosmological source. We quantita-
tively demonstrated this possibility by discussing various
early-Universe examples motivated by phase transitions,
cosmic strings, and inflation, showing that the synergy
of the two detectors can improve our measurements of
the parameters characterizing a cosmological GW source.
Moreover, the two experiments operating in tandem can be
sensitive to features of early-Universe cosmic expansion
before big bang nucleosynthesis, which affect the SGWB
frequency profile. This probe of the early Universe of the
pre-BBN epoch is challenging if not impossible to test
otherwise. Besides considering the GW spectrum, we
additionally made a preliminary study of the sensitivity
of LISA and the ET to soft limits of higher-order GW
correlation functions. Given that these experiments operate
over different frequency bands, their synergy constitutes an
ideal direct probe of squeezed limits of non-Gaussian GW
correlators and of its rich physical content.
We leave the important discussion of astrophysical

SGWB and/or astrophysical noise sources to a future study.
It is well known that astrophysical sources of SGWB can
also lead to a broad spectrum of GWs, typically charac-
terised by a broken power-law profile. Its shape is con-
trolled by the type of sources of GWs (see, e.g., Ref. [278]
for a review). To extract the signal and distinguish between
a cosmological SGWB from the one generated by the
astrophysical foregrounds, it is necessary to subtract the

astrophysical signals expected with sensitivities of
Big Bang Observatory (BBO) and ET or Cosmic
Explorer windows of frequency ranges [279,280]. As is
well known, a binary white dwarf galactic and extra-
galactic astrophysical foreground also present in LISA is
the dominant component as shown in Refs. [33,281,282].
This issue is quite well studied for the case of galactic white
dwarfs in the LISA band (see, e.g., Ref. [283] for a recent
analysis). Therefore, it should be possible to subtracted it
[284–286] in order to disentangle our alluded-to cosmo-
logical effects and signal. In the entire analysis in our
present work, we assume that such subtractions will be
possible. If LISA and the ET operate in synergy, and if the
cosmological sources lead to a sufficiently broad GW
spectrum, it would be possible to obtain extra information
about the signal at ET frequencies in order to “dig out” the
properties of GWs in the LISA band through matched
filtering techniques.
Other important simplifications we made are related to

the fact that we neglected the relative motion between the
two detectors, and we made simplifying assumptions about
the directions of the interferometer arms. Also, we con-
sidered the noise models to be fixed, and we did not
marginalize over the noise parameters. All these hypotheses
will need to be extended in a more complete analysis. We
leave all these interesting questions to future studies.
Ushering in the era of gravitational wave astronomy with

the planned network of GW detectors worldwide aspires to
and perhaps will be able to achieve measurement precisions
that are orders of magnitude better with respect to the
present day detectors. This new era of GW detectors,
particularly with LISA and the ET, will make the dream of
testing fundamental BSM microphysics, e.g., scales of new
physics symmetry breaking, the scale of primordial cosmic
inflation, and probing pre-BBN cosmic epochs, a reality
forthcoming in a not-so-distant future.
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APPENDIX: ANALYTICAL FITS TO NOMINAL CURVES

For LISA, we use the analytical fits to the nominal sensitivity curve of Ref. [34], using h ¼ 0.67 (see Fig. 2, right panel).
In this appendix, we report the expressions for the fit to the nominal ET-D8 sensitivity curve for the Einstein Telescope,
which we have presented in the left panel of Fig. 2. The fit is given by

ΩGWðfÞ ¼ 0.88 × ðt1 þ t2Þ × t3t4t5t6; ðA1Þ

with

t1 ¼ ½9x−30 þ 5.5 × 10−6x−4.5 þ 28 × 10−13x3.2� ×
�
1

2
−
1

2
tanh ð0.06ðx − 42ÞÞ

�
;

t2 ¼ ½1 × 10−13x1.9 þ 20 × 10−13x2.8� × 1

2
tanh ð0.06ðx − 42ÞÞ;

t3 ¼ 1 − 0.475 exp

�
−
ðx − 25Þ2

50

�
;

t4 ¼ 1 − 5 × 10−4 exp

�
−
ðx − 20Þ2

100

�
;

t5 ¼ 1 − 0.2 exp

�
−
ððx − 47Þ2Þ0.85

100

�
;

t6 ¼ 1 − 0.12 exp

�
−
ððx − 50Þ2Þ0.7

100

�
− 0.2 exp

�
−
ðx − 45Þ2

250

�
þ 0.15 exp

�
−
ðx − 85Þ2

400

�
;

where x ¼ f=1 Hz.
We determined this fit by trial and error. Note that the nominal sensitivity curve provided for the Einstein Telescope,

which we are fitting with the above function, is for a pair of interferometers with an opening angle of 90° [6]. To obtain the
fit for the ET-D triangular configuration with an opening angle of 60°, we have to multiply the expression (A1) with a factor
of 0.8162.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo, 1M2H, Dark
Energy Camera GW-E, DES, DLT40, Las Cumbres
Observatory, VINROUGE, and MASTER Collaborations),
A gravitational-wave standard siren measurement of the
Hubble constant, Nature (London) 551, 85 (2017).

[2] J. Aasi et al. (LIGO Scientific and Virgo Collaborations),
Characterization of the LIGO detectors during their sixth
science run, Classical Quantum Gravity 32, 115012
(2015).

[3] P. Amaro-Seoane et al. (LISA Collaboration), Laser
Interferometer Space Antenna, arXiv:1702.00786.

[4] K. Yagi and N. Seto, Detector configuration of DECIGO/
BBO and identification of cosmological neutron-star
binaries, Phys. Rev. D 83, 044011 (2011).

[5] M. Punturo et al., The Einstein Telescope: A third-
generation gravitational wave observatory, Classical
Quantum Gravity 27, 194002 (2010).

[6] S. Hild et al., Sensitivity studies for third-generation
gravitational wave observatories, Classical Quantum Grav-
ity 28, 094013 (2011).

[7] B. P. Abbott et al. (LIGO Scientific Collaboration), Ex-
ploring the sensitivity of next generation gravitational
wave detectors, Classical Quantum Gravity 34, 044001
(2017).

[8] B. Allen, The Stochastic gravity wave background:
Sources and detection, in Les Houches School of Physics:
Astrophysical Sources of Gravitational Radiation (1996),
pp. 373–417, arXiv:gr-qc/9604033.

[9] C. Caprini and D. G. Figueroa, Cosmological backgrounds
of gravitational waves, Classical Quantum Gravity 35,
163001 (2018).

[10] P. Simakachorn, Charting cosmological history and
new particle physics with primordial gravitational waves,
Ph.D. thesis, Hamburg University (main), 2022.

8http://www.et-gw.eu/index.php/etsensitivities

EXPLORING COSMOLOGICAL GRAVITATIONAL WAVE … PHYS. REV. D 111, 103001 (2025)

103001-23

https://doi.org/10.1038/nature24471
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/11/115012
https://arXiv.org/abs/1702.00786
https://doi.org/10.1103/PhysRevD.83.044011
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1088/1361-6382/aa51f4
https://arXiv.org/abs/gr-qc/9604033
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
http://www.et-gw.eu/index.php/etsensitivities
http://www.et-gw.eu/index.php/etsensitivities
http://www.et-gw.eu/index.php/etsensitivities
http://www.et-gw.eu/index.php/etsensitivities


[11] G. Agazie et al. (NANOGrav Collaboration), The NANO-
Grav 15 yr data set: Evidence for a gravitational-wave
background, Astrophys. J. Lett. 951, L8 (2023).

[12] D. J. Reardon et al., Search for an isotropic gravitational-
wave background with the Parkes pulsar timing array,
Astrophys. J. Lett. 951, L6 (2023).

[13] H. Xu et al., Searching for the nano-hertz stochastic
gravitational wave background with the Chinese pulsar
timing array data release I, Res. Astron. Astrophys. 23,
075024 (2023).

[14] J. Antoniadis et al. (EPTA and InPTA Collaborations),
The second data release from the European pulsar timing
array—III. Search for gravitational wave signals, Astron.
Astrophys. 678, A50 (2023).

[15] N. Christensen, Stochastic gravitational wave back-
grounds, Rep. Prog. Phys. 82, 016903 (2019).

[16] A. I. Renzini, B. Goncharov, A. C. Jenkins, and P. M.
Meyers, Stochastic gravitational-wave backgrounds:
Current detection efforts and future prospects, Galaxies
10, 34 (2022).

[17] P. Auclair et al. (LISA Cosmology Working Group),
Cosmology with the laser interferometer space antenna,
Living Rev. Relativity 26, 5 (2023).

[18] P. Amaro-Seoane et al. (LISA Collaboration), Laser
Interferometer Space Antenna, arXiv:1702.00786.

[19] M. Colpi et al., LISA definition study report, arXiv:2402
.07571.

[20] A. Sider et al., E-TEST prototype design report, arXiv:
2212.10083.

[21] M. Maggiore et al., Science case for the Einstein
Telescope, J. Cosmol. Astropart. Phys. 03 (2020) 050.

[22] A. H. Guth, The inflationary universe: A possible solution
to the horizon and flatness problems, Phys. Rev. D 23, 347
(1981).

[23] A. D. Linde, A new inflationary universe scenario: A
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982).

[24] A. Albrecht and P. J. Steinhardt, Cosmology for grand
unified theories with radiatively induced symmetry break-
ing, Phys. Rev. Lett. 48, 1220 (1982).

[25] Y. Akrami et al. (Planck Collaboration), Planck 2018
results. X. Constraints on inflation, Astron. Astrophys.
641, A10 (2020).

[26] J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L.
Senatore, A. Strumia, and N. Tetradis, The cosmological
Higgstory of the vacuum instability, J. High Energy Phys.
09 (2015) 174.

[27] Y. Gouttenoire, Beyond the Standard Model Cocktail,
Springer theses (Springer, Cham, 2022), 10.1007/978-3-
031-11862-3.

[28] M. Maggiore, Gravitational wave experiments and early
universe cosmology, Phys. Rep. 331, 283 (2000).

[29] T. L. Smith and R. Caldwell, LISA for cosmologists:
Calculating the signal-to-noise ratio for stochastic
and deterministic sources, Phys. Rev. D 100, 104055
(2019).

[30] J. D. Romano and N. J. Cornish, Detection methods for
stochastic gravitational-wave backgrounds: A unified
treatment, Living Rev. Relativity 20, 2 (2017).

[31] G. Mentasti and M. Peloso, ET sensitivity to the
anisotropic stochastic gravitational wave background,
J. Cosmol. Astropart. Phys. 03 (2021) 080.

[32] M. Branchesi et al., Science with the Einstein Telescope: A
comparison of different designs, J. Cosmol. Astropart.
Phys. 07 (2023) 068.

[33] C. J. Moore, R. H. Cole, and C. P. L. Berry, Gravitational-
wave sensitivity curves, Classical Quantum Gravity 32,
015014 (2015).

[34] R. Flauger, N. Karnesis, G. Nardini, M. Pieroni, A.
Ricciardone, and J. Torrado, Improved reconstruction of
a stochastic gravitational wave background with LISA,
J. Cosmol. Astropart. Phys. 01 (2021) 059.

[35] M. Tegmark, A. Taylor, and A. Heavens, Karhunen-Loeve
eigenvalue problems in cosmology: How should we tackle
large data sets?, Astrophys. J. 480, 22 (1997).

[36] D. Coe, Fisher matrices and confidence ellipses: A quick-
start guide and software, arXiv:0906.4123.

[37] C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini, M.
Peloso, M. Pieroni, A. Ricciardone, and G. Tasinato,
Reconstructing the spectral shape of a stochastic gravita-
tional wave background with LISA, J. Cosmol. Astropart.
Phys. 11 (2019) 017.

[38] S. Kuroyanagi, T. Chiba, and T. Takahashi, Probing
the universe through the stochastic gravitational
wave background, J. Cosmol. Astropart. Phys. 11
(2018) 038.

[39] C. Caprini, R. Jinno, M. Lewicki, E. Madge, M. Merchand,
G. Nardini, M. Pieroni, A. Roper Pol, and V. Vaskonen
(LISA Cosmology Working Group), Gravitational waves
from first-order phase transitions in LISA: Reconstruction
pipeline and physics interpretation, J. Cosmol. Astropart.
Phys. 10 (2024) 020.

[40] L. Pagano, L. Salvati, and A. Melchiorri, New constraints
on primordial gravitational waves from Planck 2015, Phys.
Lett. B 760, 823 (2016).

[41] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Search for the isotropic stochastic background using
data from Advanced LIGO’s second observing run, Phys.
Rev. D 100, 061101 (2019).

[42] C. Caprini et al., Science with the space-based inter-
ferometer eLISA. II: Gravitational waves from cosmo-
logical phase transitions, J. Cosmol. Astropart. Phys. 04
(2016) 001.

[43] C. Caprini et al., Detecting gravitational waves from
cosmological phase transitions with LISA: An update, J.
Cosmol. Astropart. Phys. 03 (2020) 024.

[44] R. Jinno, B. Shakya, and J. van de Vis, Gravitational waves
from feebly interacting particles in a first order phase
transition, arXiv:2211.06405.

[45] A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational
radiation from colliding vacuum bubbles, Phys. Rev. D 45,
4514 (1992).

[46] A. Kosowsky and M. S. Turner, Gravitational radiation
from colliding vacuum bubbles: Envelope approxima-
tion to many bubble collisions, Phys. Rev. D 47, 4372
(1993).

[47] M. Kamionkowski, A. Kosowsky, and M. S. Turner,
Gravitational radiation from first order phase transitions,
Phys. Rev. D 49, 2837 (1994).

ALISHA MARRIOTT-BEST et al. PHYS. REV. D 111, 103001 (2025)

103001-24

https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.3847/2041-8213/acdd02
https://doi.org/10.1088/1674-4527/acdfa5
https://doi.org/10.1088/1674-4527/acdfa5
https://doi.org/10.1051/0004-6361/202346844
https://doi.org/10.1051/0004-6361/202346844
https://doi.org/10.1088/1361-6633/aae6b5
https://doi.org/10.3390/galaxies10010034
https://doi.org/10.3390/galaxies10010034
https://doi.org/10.1007/s41114-023-00045-2
https://arXiv.org/abs/1702.00786
https://arXiv.org/abs/2402.07571
https://arXiv.org/abs/2402.07571
https://arXiv.org/abs/2212.10083
https://arXiv.org/abs/2212.10083
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1007/978-3-031-11862-3
https://doi.org/10.1007/978-3-031-11862-3
https://doi.org/10.1016/S0370-1573(99)00102-7
https://doi.org/10.1103/PhysRevD.100.104055
https://doi.org/10.1103/PhysRevD.100.104055
https://doi.org/10.1007/s41114-017-0004-1
https://doi.org/10.1088/1475-7516/2021/03/080
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/1475-7516/2021/01/059
https://doi.org/10.1086/303939
https://arXiv.org/abs/0906.4123
https://doi.org/10.1088/1475-7516/2019/11/017
https://doi.org/10.1088/1475-7516/2019/11/017
https://doi.org/10.1088/1475-7516/2018/11/038
https://doi.org/10.1088/1475-7516/2018/11/038
https://doi.org/10.1088/1475-7516/2024/10/020
https://doi.org/10.1088/1475-7516/2024/10/020
https://doi.org/10.1016/j.physletb.2016.07.078
https://doi.org/10.1016/j.physletb.2016.07.078
https://doi.org/10.1103/PhysRevD.100.061101
https://doi.org/10.1103/PhysRevD.100.061101
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2020/03/024
https://doi.org/10.1088/1475-7516/2020/03/024
https://arXiv.org/abs/2211.06405
https://doi.org/10.1103/PhysRevD.45.4514
https://doi.org/10.1103/PhysRevD.45.4514
https://doi.org/10.1103/PhysRevD.47.4372
https://doi.org/10.1103/PhysRevD.47.4372
https://doi.org/10.1103/PhysRevD.49.2837


[48] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Gravitational waves from the sound of a first order
phase transition, Phys. Rev. Lett. 112, 041301 (2014).

[49] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Numerical simulations of acoustically generated
gravitational waves at a first order phase transition, Phys.
Rev. D 92, 123009 (2015).

[50] A. Kosowsky, A. Mack, and T. Kahniashvili, Gravitational
radiation from cosmological turbulence, Phys. Rev. D 66,
024030 (2002).

[51] A. D. Dolgov, D. Grasso, and A. Nicolis, Relic back-
grounds of gravitational waves from cosmic turbulence,
Phys. Rev. D 66, 103505 (2002).

[52] C. Caprini, R. Durrer, and G. Servant, The stochastic
gravitational wave background from turbulence and mag-
netic fields generated by a first-order phase transition,
J. Cosmol. Astropart. Phys. 12 (2009) 024.

[53] T. Ghosh, A. Ghoshal, H.-K. Guo, F. Hajkarim, S. F. King,
K. Sinha, X. Wang, and G. White, Did we hear the sound
of the Universe boiling? Analysis using the full fluid
velocity profiles and NANOGrav 15-year data, J. Cosmol.
Astropart. Phys. 05 (2024) 100.

[54] H.-k. Guo, F. Hajkarim, K. Sinha, G. White, and Y. Xiao,
A precise fitting formula for gravitational wave spectra
from phase transitions, J. Cosmol. Astropart. Phys. 02
(2025) 056.

[55] C. Caprini, O. Pujolàs, H. Quelquejay-Leclere, F.
Rompineve, and D. A. Steer, Primordial gravitational wave
backgrounds from phase transitions with next generation
ground based detectors, Classical Quantum Gravity 42,
045015 (2025).

[56] P. S. B. Dev, F. Ferrer, Y. Zhang, and Y. Zhang, Gravita-
tional waves from first-order phase transition in a simple
axion-like particle model, J. Cosmol. Astropart. Phys. 11
(2019) 006.

[57] L. Delle Rose, G. Panico, M. Redi, and A. Tesi, Gravi-
tational waves from supercool axions, J. High Energy
Phys. 04 (2020) 025.

[58] B. Von Harling, A. Pomarol, O. Pujolàs, and F.
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