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A B S T R A C T 

As solar coronal mass ejections (CMEs) propagate through the heliosphere, they expend energy in heating protons to compensate 
for the cooling that occurs due to expansion. CME propagation models usually treat energy dissipation implicitly via a polytropic 
index ( δ). Here, we calculate the power dissipation implied by a given δ and compare it with the power available in the turbulent 
velocity fluctuations. We make this comparison using near-Earth in situ observations of 27 of the most geoef fecti ve CMEs 
( D st < −75 nT) in solar c ycle 24. F or δ = 5 / 3, the power in the turbulent velocity fluctuations is ≈ 54 per cent smaller than 

what would be required to maintain the proton temperature at the observed values. If the power in the turbulent cascade is 
assumed to be fully expended in local proton heating, the most probable value for δ is 1.35. Our results contribute to a better 
understanding of CME energetics, and thereby to impro v ed CME propagation models and estimates of Earth arri v al times. 

Key words: turbulence – methods: data analysis – Sun: coronal mass ejections (CMEs). 

1

S  

o  

n  

t  

h  

o  

n  

a  

i  

w  

o  

w  

a  

t  

p  

w  

–  

a  

C  

T
(  

R  

o  

�

t  

T  

fl  

t  

p  

h  

m  

(  

i  

c  

p  

n  

s  

i  

e  

h  

T  

d  

1  

e
 

f  

T  

t  

h  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/540/3/2810/8152187 by Indian Institute of Astrophysics user on 17 June 2025
 I N T RO D U C T I O N  

olar coronal mass ejections (CMEs) aimed at the Earth are some
f the primary drivers of space weather disturbances. It is therefore
o surprise that predictions of CME arri v al times and speeds at
he Earth constitute one of the most active fields of research in
eliophysics (Gopalswamy et al. 2001 ; Riley et al. 2018 ). Models
f CME propagation through the heliosphere use observations of
ear-Sun CME launch times and speeds to predict when they will
rrive at the Earth. The energy contained in the CME magnetic fields
s usually considered to be the primary reservoir (Mandrini 2010 ),
hich is expended in (i) driving the CME through the heliosphere,
 v ercoming losses due to aerodynamic drag with the ambient solar
ind and (ii) in compensating for the cooling of the CME plasma

s it expands outwards. Unfortunately, the relative importance of
hese processes is not very well known. Consequently, basic model
arameters need to be tuned in order to obtain approximate agreement
ith CME Earth arri v al times. In this paper, we focus on item (ii)
local heating of the CME plasma (technically, only the protons)

s it propagates and expands outwards. It is well known that the
ME plasma is subjected to local heating as it propagates outwards.
his is borne out, for instance, by UVCS observations at ≈ 2 . 4 R �

Akmal et al. 2001 ; Ciaravella et al. 2001 ; Lee et al. 2009 ; Murphy,
aymond & Korreck 2011 ). CME propagation models typically use a
ne-fluid description, with no distinction between the constituents of
 E-mail: debesh.bhattacharjee@glasgow.ac.uk 
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he CME plasma, such as protons, electrons, and other heavier ions.
he term ‘plasma heating’ is taken to mean heating of the entire (one-
uid) plasma. Such models use a polytropic law ( P V 

δ = Constant )
o implicitly address the CME plasma heating rate. An isothermal
rocess ( δ = 1) suggests that the gas is connected with an external
eat reservoir, so that there is constant heat supply, enabling it to
aintain its temperature. On the other hand, for an adiabatic process

 δ = 5 / 3), the gas is thermally isolated from its surroundings and
ts internal energy changes in response to the work expended in
ompressing or expanding the gas. Values of δ ≈ 1 imply that the
lasma is nearly isothermal, so that the temperature is maintained at a
early constant value owing to continuous heat transfer from the hot
olar corona, without need for local heating. Conversely, δ ≈ 5 / 3
mplies that the CME plasma is nearly adiabatic (i.e. there is no
xternal heat supply), which would demand a relatively large local
eating rate to compensate for the cooling of the CME as it expands.
here is no consensus on the ‘correct’ value of δ to use, either in one-
imensional CME propagation models (Chen 1996 ; Kumar & Rust
996 ) or in 3D MHD simulations (Odstr ̌cil & Pizzo 1999 ; Lionello
t al. 2013 ; Pomoell & Poedts 2018 ; Odstrcil 2023 ). 

Several authors use scatterplots between density and temperature
rom in situ observations to calculate the polytropic index of protons.
otten, Freeman & Arya ( 1995 ) and Nicolaou et al. ( 2020 ) use this

echnique for the proton polytropic index in the solar wind. Os-
erovich et al. ( 1993 ) studied the thermodynamics inside interplan-
tary CMEs (ICMEs) using density–temperature scatterplots. They
ound that the proton polytropic index inside ICMEs is ≈ 1 . 2 and
lectron polytropic index is ≈ 0 . 48. Dayeh & Li v adiotis ( 2022 ) used
© 2025 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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ensity–temperature scatterplots for a set of 336 events to determine 
he polytropic index inside ICMEs, sheath, and the pre- and post-
v ent re gions. The y found that inside ICMEs, the polytropic index is

0 . 13 lower than the adiabatic value (5/3). F arrugia, Oshero vich &
urlaga ( 1995 ) found that self-similar radially expanding magnetic 
ux tube solutions for ICMEs require a polytropic index < 1, while
pheromak solutions require it to be 4/3. Using ICME observations 
etween 0.3 and 5.4 au, Liu, Richardson & Belcher ( 2005 ) found
hat the proton polytropic index in ICME protons is ≈ 1 . 15 and the
lectron polytropic index is ≈ 0 . 73. 

Wang, Zhang & Shen ( 2009 ), Mishra & Wang ( 2018 ), and
huntia et al. ( 2023 ) use the observed self-similar expansion of
MEs together with an assumption of self-similarity for the proton 
olytropic index to surmise that it varies from ≈ 5 / 3 near the Sun
o ≈ 1 . 2 near the Earth. In this paper, we use the polytropic index as
 free parameter and explicitly compute the predicted CME proton 
eating rate. We compare this prediction with the power available in 
he turbulent velocity fluctuation spectrum that can potentially heat 
he protons. 

The rest of the paper is organized as follows: Section 2 describes
he polytropic model for the temperature evolution of CME protons. 

e also mention the formula for the power available in the turbulent
elocity spectrum in Section 3 . Section 4 and Section 5 describe
he data we use and the results obtained in this study , respectively .
ection 6 contains discussion and conclusions. 

 H E A  TING  R A  TE  PREDICTED  BY  A  

OLY TR  OP IC  PR  OCESS  

n this section we outline the procedure to estimate the power required
o compensate for cooling of protons as a CME expands. We assume
hat the CME plasma follows a polytropic law 

 V 

δ = Constant , (1) 

here P , V , and δ are the pressure, volume, and the polytropic
nde x, respectiv ely. We follow well-established treatments of energy 
onservation processes in the solar wind and obtain an expression for
he local energy dissipation rate corresponding to a gi ven v alue of δ.
he details are mentioned in Appendix A2 , and we quote the main

esult here, which concerns the evolution of proton temperature T : 

d T ( R) 

d R 

= 84 . 32 ( γ − 1) 
ε( R) 

U ( R) 
− 3( δ − 1) 

T ( R) 

R 

, (2) 

here R is the heliocentric distance in units of solar radii (so that
 = 215 at the Earth), U ( R) is the CME velocity in units of km s −1 ,
is the local plasma heating rate inside the CME in J kg −1 s −1 , 
≡ C p /C v is the adiabatic index, and δ is the polytropic index. The

rst term on the right-hand side involving ε represents ‘additional’ 
ocal heating due to an unspecified source. It can be due to small-scale 
econnection inside the CME plasma, or due to dissipation of energy 
ontained in turbulent fluctuations. Equation ( 2 ) is similar to equation 
9) of Vasquez et al. ( 2007 ), except that (i) it does not presume that
he CME plasma expands adiabatically; δ can take on any value, 
ncluding γ ≡ C p /C v , and (ii) the CME is assumed to expand in
 self-similar manner during its propagation, so that (as explained 
n Appendix A2 ) V ∝ R 

3 . Se veral observ ational studies sho w that
MEs expand self-similarly, at least beyond ≈10 R �. Subramanian 
t al. ( 2014 ) studied a well-observed sample of CMEs in the field
f view of the Sun–Earth Connection Coronal and Heliospheric 
nvestigation coronagraphs onboard the Solar Terrestrial Relation- 
hip Observatory (STEREO) satellite using the graduated cylindrical 
hell model (Thernisien 2011 ) and found that CMEs propagate self-
imilarly as they propagate through the solar wind. A recent study of
75 CMEs observed by the STEREO satellite reveals that the ratio
etween the CME propagation speed and lateral expansion speed is 
onstant, implying self-similar expansion (Balmaceda et al. 2020 ). 
 ̈ostl & Davies ( 2013 ) use the analytical Self-Similar Expansion

itting model (Davies et al. 2012 ) to estimate CME arri v al speeds and
imes at the Earth. Wang et al. ( 2009 ) investigate the thermodynamics
f CMEs by determining the heliocentric evolution of polytropic 
ndex, Lorentz force, and gas pressure force under the assumption of
elf-similar expansion of CMEs. 

With no additional local energy deposition inside the CME 

 ε = 0), and adiabatic expansion ( δ = γ , i.e. no connection to an
xternal heat reservoir), equation ( 2 ) predicts that a CME with a
roton temperature of 10 6 K at 1.05 R � will cool to ≈ 24 K when it
eaches the Earth. This highlights the need for additional local energy
eposition (i.e. ε �= 0) to account for the observed temperatures of

10 5 K at 1 au, if the CME is assumed to expand adiabatically.
n the other hand, if ε = 0 (no local heating) and the plasma is

sothermal (i.e. δ = 1 and it is implied that the CME plasma is
onnected to an external energy reservoir such as the solar corona),
quation ( 2 ) predicts that the proton temperature remains unchanged, 
s expected. 

As with most solar wind models, we assume that the proton
emperature in the CME varies as a power law with the heliocentric
istance as assumed in D ́emoulin ( 2009 ) and references therein. 

 = T 0 

(
R 

R 0 

)−α

, (3) 

here T 0 is the proton temperature at a reference heliocentric distance 
 0 . Using equation ( 3 ), the temperature evolution equation (equa-

ion 2 ) can be rewritten as 

( R) = [84 . 32 ( γ − 1)] −1 U ( R) T 0 R 

α
0 R 

−α−1 
[
3( δ − 1) − α

]
. (4) 

We assume that CMEs typically start out with a proton temperature
 0 = 10 6 K at R 0 = 1 . 05 R �. In situ measurements give the CME
peed U and proton temperature T near the Earth, using which
e can calculate α from equation ( 3 ). Using equation ( 4 ), we can
ow estimate the ‘additional local’ power ε ( J kg −1 s −1 ) needed to 
eat the CME protons for a given value of the polytropic index
. We would generally expect the power requirement to be higher
or adiabatic evolution ( δ ≈ 5 / 3), as compared to that for isothermal
volution ( δ ≈ 1). This is because for isothermal expansion, the CME
lasma expected to be thermally connected with an external reservoir 
uch as the solar corona. One possibility could be efficient thermal
onduction along large-scale magnetic fields connecting the CME 

ith the corona. The additional local heat input needed to maintain
he CME temperature is therefore expected to be negligible. On 
he other hand, for adiabatic expansion, the CME is expected to
e thermally isolated from its surroundings. Therefore, there needs 
o be substantial additional local heat input in order to maintain
he temperature. Similar treatments have been used to estimate the 
lasma heating rate in the solar wind (Li v adiotis 2019 ). 

 POWER  AVAI LABLE  IN  T U R BU L E N T  

ELOCI TY  FLUCTUATI ONS  

aving estimated the power requirement for proton heating, we 
urn our attention to the possible source(s). Turbulence in the solar
ind is e xtensiv ely studied (Bruno & Carbone 2013 ; Cranmer &
inebarger 2019 ) and the power in turbulent fluctuations is often

nvoked as the source for extended heating (Chandran & Hollweg 
009 ; Li v adiotis 2019 ; Smith & Vasquez 2021 ; Shankarappa, Klein &
MNRAS 540, 2810–2819 (2025) 
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artinovi ́c 2023 ). The interiors of CMEs are also similarly turbulent
Bhattacharjee et al. 2023 ; Shaikh 2024 ), and turbulent fluctuations
re often invoked as a source of CME heating (Liu et al. 2006 ;
orriso-Valvo et al. 2021 ). The cascade rate ( εt ) represents the power
er unit mass contained in the inertial range of the turbulent velocity
pectrum, and this is potentially available for proton heating at small
cales such as the proton inertial length or the proton gyroradius (Liu
t al. 2006 ; Sasikumar Raja et al. 2021 ). We use the well-known
olmogorov turbulent cascade rate εt ∝ �U 

3 
k k (e.g. chapter 6, Pope

000 ), which relates the power per unit mass ( εt ) in the turbulent
ascade to the fluid velocity fluctuations �U k at scale k −1 . Using
 dimensionless constant of proportionality C 0 , the Kolmogorov
ascade rate becomes 

t = C 0 k ( �U k ) 
3 J kg −1 s −1 , (5) 

nd we adopt C 0 = 0 . 25 follo wing Ho wes et al. ( 2008 ) and Chandran
t al. ( 2009 ). The quantity �U k denotes the turbulent plasma velocity
uctuation at (spatial) wavenumber k, and is e v aluated as the root-
ean-square (rms) velocity fluctuation inside a moving box of tem-

oral extent t box . The wavenumber is expressed as k ≡ 2 π/ ( t box U MO ),
here U MO 

is the running average velocity of the magnetic obstacle
MO) inside the given t box . The Magnetic Field Investigator (MFI)
ata we use has a time resolution of 1 min; ho we ver, when used
ith the Solar Wind Experiment (SWE) data, it provides a time

esolution of ≈ 92 s. We take two values for t box : 40 and 60 min,
especti vely. These v alues for t box ensure that the wavenumbers are
ell within the expected inertial range. We note that the equation for

t used in Chandran et al. ( 2009 ) differs from ours by a factor
f ρ (the plasma mass density), since their definition has units of
 cm 

−3 s −1 . The power available in the turbulent velocity spectrum
 εt , equation 5 ) can be compared with the power required to heat the
ME protons ( ε, equation 4 ). Several studies (Liang et al. 2012 ; Li
t al. 2016 ; Scolini et al. 2024 ) suggest that the inertial range turbulent
pectrum in ICMEs is Alfv ́enic. Although Alfv ́enic fluctuations
nvolv e fluid v elocity as well as magnetic field fluctuations, we
ave only considered the available power in the turbulent velocity
uctuations in writing equation ( 5 ), as Chandran et al. ( 2009 ) do,
or instance. Strictly speaking, �U k should denote the fluid velocity
uctuations perpendicular to the large-scale magnetic field, but we

gnore this point for simplicity. For an Alfvenic spectrum (assuming
olmogorov scaling), one could also consider the available power

n the turbulent magnetic field fluctuations, �B 

2 
k /μ0 ρ, which is on

he same footing as �U 

2 
k (e.g. Leamon et al. 1999 ). F or Alfv enic

uctuations, �U 

2 
k = �B 

2 
k /μ0 ρ. Since �U 

3 
k = ( �U 

2 
k ) 

3 / 2 , it follows
hat adding the available power in turbulent magnetic fluctuations
ould mean replacing the quantity C 0 with 2 3 / 2 C 0 . 

 DATA  

or this study, we select a sample of well-observed near-Earth
CMEs detected by the WIND spacecraft ( https:// wind.nasa.gov/ )
uring solar cycle 24 that resulted in geomagnetic storms with
 st < −75 nT. This yields a list of 27 events, which are listed in

able A1 . The CMEs in solar cycle 24 are found to expand more than
hose in solar cycle 23, probably due to an o v erall ( ≈ 40 per cent )
eduction of the total pressure in the heliosphere in solar cycle
4 (Gopalswamy et al. 2014 ). Although the o v ere xpansion would
ilute the stored magnetic energy in these CMEs (Gopalswamy
t al. 2014 ), some of them still caused geomagnetic storms with
 st indices as high as −198 nT. This makes the geoef fecti ve storms

n cycle 24 an interesting data set to study. Table A1 also mentions
he classification of the event based on its magnetic field profile
NRAS 540, 2810–2819 (2025) 
Nieves-Chinchilla et al. 2016 , 2018 ). Because of the diversity of the
agnetic field configurations associated with ICMEs as observed

sing in situ spacecraft, Nieves-Chinchilla et al. ( 2018 ) introduced
he term ‘magnetic obstacles’ or ‘MOs’. MOs are defined as plasma
tructures in closed magnetic loops embedded in ICMEs (Nieves-
hinchilla et al. 2018 ). The complex magnetic structures that do not

ollow the definition of magnetic clouds or flux rope configuration
an also be considered as MOs. The MOs associated with the ICMEs
re classified into different categories depending upon how well the
bserved magnetic field directions fit the expectations of a static
ux rope configuration (Nieves-Chinchilla et al. 2016 , 2018 ). Fr
vents indicate MOs with a single magnetic field rotation between
0 ◦ and 180 ◦, F + events indicate MOs with a single magnetic field
otation greater than 180 ◦, and F − events indicate MOs with a single
agnetic field rotation less than 90 ◦. Events labelled ‘complex’ (Cx)

ave more than one magnetic field rotations, while the ‘ejectas’
Ejs) do not hav e an y particular rotation (Nieves-Chinchilla et al.
019 ). For this study, we use the 1-min cadence data from the MFI
Lepping et al. 1995 ), which when measured with SWE (Ogilvie et al.
995 ) data provide us with a time resolution of ≈ 92 s. These two
nstruments (MFI and SWE) are onboard the WIND spacecraft. The

IND ICME catalogue ( wind.nasa.go v/ICMEinde x.php ) (Niev es-
hinchilla et al. 2018 ) provides the event details along with the

tart and end times for each of the MO listed in Table A1 . The
lasma velocity profile as a function of time inside the MO for
ach of these events is provided by the WIND/SWE instrument. We
se the time series of the proton temperature from the OMNI data
ase ( https:// omniweb.gsfc.nasa.gov/ ) (King & Papitashvili 2005 )
onsidering the 1-min cadence data associated with the WIND
lasma Ke y P arameters (KP). This is because the data from the
FI and SWE instruments ( https:// wind.nasa.gov/ mfi swe plot.php )

o not provide us with the time profile of proton temperature. We
ote that one can also derive temperature indirectly from the proton
hermal speed ( v th ) measured by the WIND/SWE. Ho we ver, this

ethod requires assumption on whether to use v th as the mean,
ms, or most probable speed of the distribution. We compute the
agnitudes of velocity fluctuation inside the ICMEs following the
ethod adopted by Bhattacharjee et al. ( 2023 ). The fluctuations

re rms deviations around the mean inside a moving window of
uration t box . The spatial wavenumber corresponding to a value of
 box is k = 2 π/l, where the length-scale for a given t box is defined as
 = U MO t box . U MO is the running average of plasma velocity inside
he MO for a given t box (Bhattacharjee et al. 2023 ). The magnitude of
he corresponding velocity fluctuation in the MO is �U k . These are
sed in equation ( 5 ) to calculate the power in the turbulent velocity
uctuations. We use the terms ‘MO’ and ‘CME’ interchangeably, in

he rest of the paper. 

 RESULTS  

ig. 1 shows a time series of εt (equation 5 ) for two representative
vents in our sample (Table A1 ) using t box = 40 and 60 min
Bhattacharjee et al. 2023 ). We choose these two time boxes because
hey correspond to wavenumbers that are well within the inertial
cale of the turbulent spectrum (Bhattacharjee et al. 2023 ), and are
hus suitable to e v aluate the turbulent energy cascade rate. Using
 box = 40 min yields ≈ 55 data points within the MO, while t box = 60
in yield ≈ 40 data points. Similar plots for all the events are

ncluded in the supplementary material of this paper. Fig. 2 depicts
istograms of 〈 εt 〉 for the events listed in Table A1 using t box = 40
nd t box = 60. The most probable value (mpv) is relevant for such
kewed histograms. Since the mpv is somewhat sensitive to the

https://wind.nasa.gov/
https://wind.nasa.gov/ICMEindex.php
https://omniweb.gsfc.nasa.gov/
https://wind.nasa.gov/mfi_swe_plot.php
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Figure 1. Time profiles of turbulent energy cascade rate ( εt , equation 5 ) for 
event 1 (top panel) and event 9 (bottom panel) of the ICME list (Table A1 ). 
The blue and orange scatterplots represent εt using t box = 40 and 60 min, 
respectively. The black vertical lines mark the MO boundaries and the red 
vertical line shows the ICME start ( wind.nasa.go v/ICMEinde x.php ). The 
brown horizontal line inside represents the average εt using t box = 60 min and 
the black dotted horizontal line represents the required power ( ε, equation 4 ) 
using δ = 5 / 3. 

Figure 2. Histograms showing 〈 εt 〉 for events listed in Table A1 using t box = 

40 min and t box = 60 min respectively. The mean, median, and most probable 
value for t box = 40 are 7646, 2674, and 1686 J kg −1 s −1 , respectively. The 
mean, median, and most probable value for t box = 60 are 7750, 3486, and 
1850 J kg −1 s −1 , respectively. 
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Figure 3. Histogram of E ad (equation 6 ) for t box = 60 min. The mean, 
median, and mpv are 53.25, 25.24, and −53.8, respectively. 
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istogram bin size, we use the ‘auto’ option in matplotlib for bin size
election (following Ghuge, Bhattacharjee & Subramanian 2025 ), 
hich chooses the smaller of the bin sizes recommended by the 
turges and Freedman-Diaconis methods. The mpv for the t box = 40 
istogram is 1686 J kg −1 s −1 and that for the t box = 60 histogram
s 1850 J kg −1 s −1 . These numbers represent the (mpv of) power
nput to the protons. They may be compared with the power in the
urbulent cascade that is potentially available for the dissipation on 
rotons. Equation ( 5 ) represents a simple calculation of the turbulent
o wer, and representati ve results from this calculation are sho wn in
ig. 1 . More detailed calculations of the available turbulent power in
MEs can be found, for instance, in Sorriso-Valvo et al. ( 2021 ). 
Since the gross trends for εt are not very sensitive to the value

f t box , we use t box = 60 min henceforth. The brown horizontal
ine in Fig. 1 denotes the average value of εt inside the MO (with
 box = 60 min), while the black horizontal line denotes the value of ε
equation 4 ) with δ = 5 / 3 and R = 215 R �. For the event depicted in
he upper panel of Fig. 1 , εt > ε, while εt ≈ ε for the event depicted
n the lower panel. 

Next, we compare the turbulent energy cascade rate ( εt ) estimated
nside MOs with the required proton heating rate ( ε) for δ = γ =
 / 3. This value for δ presumes adiabatic expansion and is commonly
sed in several studies, e.g. global 3D MHD simulations (Riley et al.
003 ; Wu et al. 2016 ), studies of CME–CME interaction (Lugaz,
anchester IV & Gombosi 2005b ), studies of CME expansion 

Lugaz, Manchester IV & Gombosi 2005a ), and many more. We
efine 

 ad ≡ 100 
εt − ε

ε
per cent , (6) 

hich is the relative (percentage) difference between the power 
vailable in the turbulent velocity fluctuations (equation 5 ) and the
ower required for proton heating if they are assumed to remain
diabatic (equation 4 with R = 215 and δ = 5 / 3). The histogram for
 ad for all the events in our sample using t box = 60 min is shown in
ig. 3 . The mpv of E ad (which is the rele v ant quantity for a skewed
istribution such as this one) is −54 per cent . In other words, Fig.
 suggests that the power in the turbulent velocity fluctuations is

54 per cent lower than what is required to heat the protons if they
re adiabatic. Needless to say, the value of E ad will be quite different
or other assumed values of δ, but δ = 5 / 3 is a reasonable reference
alue considering how often it is used in the literature. 

None the less, it is not (a priori) clear what value should be used for
he polytropic index ( δ) in a CME propagation model. The preceding
iscussion suggests that the adiabatic expansion for the protons could 
e too ‘demanding’, in that the energy in the turbulent velocity
pectrum is not enough to provide the required local heating. On
he other hand, the power required for local proton heating would
e low if the protons were nearly isothermal. By way of estimating
he ‘correct’ value for δ at a specific heliocentric distance and for a
iv en wav enumber, we equate the power in the velocity fluctuations
or a certain wavenumber ( εt , equation 5 ) to the power required for
roton heating ( ε, equation 4 ) at that specific heliocentric distance.
sing the estimates of εt and ε at the location of the WIND spacecraft
MNRAS 540, 2810–2819 (2025) 
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M

Figure 4. Histogram of estimated time-averaged polytropic index consider- 
ing the turbulent energy cascade as the source of proton heating inside the 
near-Earth MOs ( 〈 δ〉 MO , equation 7 ) for t box = 60 min. The mean, median, 
and mpv of this histogram are 1.72, 1.59, and 1.35, respectively. 

Figure 5. A scatterplot between 〈 δ〉 MO (equation 7 ) and E ad (equation 6 ) 
for the events in this study. The yellow line shows the best linear fit between 
these two parameters. The red vertical line is at 〈 δ〉 MO = 1 . 35, while the blue 
horizontal line denotes E ad = 0. 
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Figure 6. Same as Fig. 4 , for different values of the initial temperature 
T 0 . For T 0 = 10 6 K the mean, median, and mpvs are 1.72, 1.59, and 1.35, 
respectively; for T 0 = 1 . 5 × 10 6 K the mean, median, and mpvs are 1.74, 
1.60, and 1.37, respectively; and for T 0 = 2 × 10 6 K: the mean, median, and 
mpvs are 1.75, 1.61, and 1.39, respectively. 

Figure 7. Histograms of 〈 δ〉 MO for different values of κ . For κ = 0 . 5, the 
mean, median, and mpv of the histogram are 2.11, 2.03, and 1.52, respectively. 
For κ = 1 (self-similar evolution, where the CME minor radius a ∝ r), they 
are 1.72, 1.59, and 1.35, respectiv ely. F or κ = 1 . 5, the y are 1.56, 1.52, and 
1.28, respectively. For κ = 2, they are 1.45, 1.41, and 1.23, respectively. 
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 ≈1 au or R = 215 R �), we can therefore compute the following: 

 δ〉 MO 

= 

1 

3 

[
α + 3 + 84 . 32( γ − 1)( U ( R) R 

α
0 T 0 ) 

−1 R 

α+ 1 〈 εt 〉 
]

, 

(7) 

here 〈 εt 〉 denotes the time-averaged value εt inside an MO and
 δ〉 MO 

the time-averaged value of the polytropic index inside the MO.
he histogram of 〈 δ〉 MO 

with R = 215 R � and t box = 60 min (Fig.
 ) shows that it ranges from 1.25 to 3, with a mpv of 1.35. We have
oted that ε generally exceeds εt with δ = 5 / 3 (Fig. 3 ). It is therefore
ot surprising that the mpv of 〈 δ〉 MO 

(which is obtained by equating
with εt ) is lower than 5/3. Fig. 5 shows a scatterplot between

 δ〉 MO and E ad . The linear fit between 〈 δ〉 MO and E ad (depicted by the
ellow line) has an intercept of −39.7 per cent at 〈 δ〉 MO = 1 . 35 (the
ed vertical line in Fig. 5 ). In other words, at 〈 δ〉 MO = 1 . 35, the power
tored in the turbulent fluctuations is ≈ 40 per cent lower than the
ower required to heat the protons assuming adiabatic expansion.
quation ( 7 ) shows that 〈 δ〉 MO 

depends on the initial temperature
 T 0 ) we assume. In order to check the sensitivity of 〈 δ〉 MO 

to T 0 ,
e compute it using three different initial temperatures: T 0 = 10 6 K,
 . 5 × 10 6 K, and 2 × 10 6 K, respectively, and t box = 60 min. The
esults are shown in the histograms of Fig. 6 . The mpv of 〈 δ〉 MO 

ncreases by ≈ 3 per cent upon doubling the initial temperature (i.e.
NRAS 540, 2810–2819 (2025) 
 0 = 2 × 10 6 K instead of 10 6 K). This implies that 〈 δ〉 MO 

depends
nly weakly on the assumed initial temperature ( T 0 ). 
If the CME did not expand in a self-similar manner, i.e. if the
inor radius ( a) were to follow a ∝ r κ (instead of a ∝ r as we have

ssumed, r being the radial distance of the CME from the Sun), the
hange in CME volume, d V / d r , would be = (2 κ + 1) V /r instead
f 3 V /r and the number 3 in the second term on the right-hand
ide of equation ( 2 ) would be replaced with 2 κ + 1. The histograms
n Fig. 7 show how 〈 δ〉 MO 

varies with changes in κ . We adopt four
if ferent v alues for κ ( κ = 0 . 5 , 1 . 0 , 1 . 5 , and 2.0). We note that κ = 1
orresponds to self-similar expansion (i.e. a ∝ r). For κ = 2, the mpv
f 〈 δ〉 MO 

is 8 per cent lower than that for κ = 1. For κ = 1 . 5, the mpv
f 〈 δ〉 MO 

is 5 per cent lower than that for κ = 1, while it is 13 per cent
igher for κ = 0 . 5. Our findings therefore suggest that the polytropic
ndex decreases with the cross-sectional expansion of the CMEs (see
ig. 7 ). If the volume evolution were more involved than a situation

hat can be accommodated by the a ∝ r κ prescription, we would
ave to prescribe d V / d r accordingly in going from equation ( A8 ) to
quation ( A9 ). 

Equation ( 7 ) also shows that 〈 δ〉 MO 

is approximately proportional
o 〈 εt 〉 . This suggests that the closer 〈 δ〉 MO 

is to its isothermal
alue of 1, the lower the requirement for local heating via turbulent
issipation. This is expected because, if the protons in the MO are
lose to isothermal, it implies that they are thermally well connected
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Figure 8. A scatterplot between the mean temperature ( 〈 T 〉 MO ) and average 
turbulent energy cascade rate ( 〈 εt 〉 MO ) inside the MOs associated with the 
events listed in Table A1 . The equation of the straight line fit is y = 0 . 056 x −
0 . 125. The Pearson’s correlation coefficient ( r) is 0.93 with a p -value of 
2 . 04 × 10 −12 . 
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o an external heat reservoir (such as the solar corona). Good thermal
connection’ would imply a high thermal conductivity. Careful 
stimates of thermal conductivity in the turbulent collisionless solar 
ind plasma would be needed to justify this. 

 SU M M A RY  A N D  C O N C L U S I O N S  

.1 Summary 

MEs are observed to expand as they propagate through the helio- 
phere. Such expansion will be accompanied by plasma cooling, with 
eating/cooling processes being typically treated (implicitly) via a 
olytropic index ( δ). If the expansion is adiabatic ( δ close to 5/3),
he CME plasma temperature will be as low as a few tens of Kelvin
hen it reaches the Earth. Since observed proton temperatures in 
ear-Earth CMEs are ≈ 10 5 K, this calls for significant local heating 
s CMEs propagate. If, on the other hand, the CME plasma maintains
ignificant thermal contact with the solar corona, it can be expected 
o be nearly isothermal ( δ ≈ 1) and the local heating requirement is
inimal. Since the CME magnetic fields are usually considered to be 

he basic energy reservoir, a higher demand on local heating translates 
o a lesser energy available for propagation, and vice versa. The 
alue of δ adopted in a CME propagation model thus substantially 
ffects the predictions of the Sun–Earth propagation time and the 
arth arri v al speed. In this paper, we obtain an expression relating

he local heating rate ( ε) corresponding to the polytropic index δ
equation 4 ). The quantity ε can be regarded as the local heating rate
equired by a model that uses a given polytropic index δ. On the
ther hand, the turbulent fluctuations in CMEs are often invoked as
 plausible source of proton heating. Using observations of 27 well- 
bserved geoef fecti ve CMEs in solar cycle 24, we compute the power
 εt ) available in the turbulent velocity fluctuations (equation 5 ). The
uantity εt can be thought of as the power that is potentially available
o heat the CME plasma. Our main findings upon comparing ε with 
t are as follows: 

(i) The av ailable po wer ( εt ) is ≈ 54 per cent lo wer than the po wer
 ε) required with δ = 5 / 3 (Fig. 3 ). 

(ii) If, instead, the required power ( ε) is taken to be equal to the
v ailable po wer ( εt ), the mpv for δ is 1.35 (Fig. 4 ). 
nterestingly, we find a strong correlation between the average 
issipation rate ( 〈 εt 〉 ) and the temperature ( 〈 T 〉 ) in the CME (Fig. 8 ).
he Pearson correlation coefficient between 〈 εt 〉 and 〈 T 〉 is 0.93,
ith a low p -value of 10 −12 , which implies that the correlation

s significant and reliable. We note that our results regarding the
omparison of εt with ε and the estimate of 〈 δMO 

〉 are valid only
ear the Earth. In principle, equation ( 2 ) holds for any heliocentric
istance R, provided the CME velocity U and temperature T is
nown. If the correlation between 〈 εt 〉 and 〈 T 〉 generally holds
rue, it will allow us to estimate δMO 

for heliocentric distances 
etween the Sun and the Earth, using reasonable models for T ( R) and
( R). 

.2 Discussion 

stimates of CME arri v al time and velocity (at the Earth) are vital
nputs to space weather prediction. CME propagation models that 
alculate these quantities usually invoke CME magnetic fields and 
urbulent fluctuations as energy reservoirs. The polytropic index is 
ften taken to be an adjustable parameter in such models. Our results
how the relation between the polytropic index ( δ), CME velocity
 U ), proton temperature ( T ), and the local energy dissipation rate
 εt ). 

Assuming that the power in the turbulent velocity fluctuations 
artially provides for the work expended in CME expansion close 
o the Earth, we arrive at an estimate for the mpv of the polytropic
ndex in near-Earth CMEs, 〈 δ〉 MO = 1 . 35. This can be taken to be a
uggestion for the polytropic index to be adopted in CME propagation
odels. The most probable estimate of 1.35 is likely to be an upper

imit for δ, for not all the power in the turbulent velocity fluctuation
pectrum is likely to be expended in proton heating. Incidentally, 
umar & Rust ( 1996 ) obtain δ = 1 . 33 by assuming that the energy

nput (d Q ) to the CME is a fraction of the energy contained in the
ME magnetic fields (without specifying the mechanism by which 
agnetic energy is converted into plasma heating). 
We have so far used assumed values of T 0 = 10 6 K at R = 1 . 05 R �

nd observed values for the CME velocity ( U ), velocity fluctuations
 �U k ), and proton temperature ( T ) to calculate α (equation 3 ), 〈 εt 〉
equation 5 ), and δ (equation 7 ). Ho we ver, it is also worth examining
ome of the parametric dependencies from equation ( 7 ). These are
s follows: 

(i) All else remaining fixed, the CME velocity increases with a 
ecrease in δ. Specifically, using fiducial values of T 0 = 10 6 K,
 = 1 . 05 R �, and 〈 εt 〉 = 10 4 J kg −1 s −1 , equation ( 7 ) shows that
ecreasing δ from 1.38 to 1.3 (a decrease of 5 per cent) results
n an increase in the CME velocity (at R = 215 R �) from 250
o 500 km s −1 (an increase of 100 per cent). This confirms what
ME modellers recognize; assuming a thermodynamic equation of 

tate that is close(r) to isothermal generally results in faster CMEs.
hese findings are also in agreement with those of Khuntia et al.
 2024 ). 

(ii) All else remaining fixed, a decrease in δ results in a decrease
n α (equation 3 ), which means that the proton temperature decreases
lower with heliocentric distance. Using fiducial values of T 0 = 10 6 

, R = 1 . 05 R �, 〈 εt 〉 = 10 4 J kg −1 s −1 , and a CME velocity of 400
m s −1 at R = 215 R �, equation ( 7 ) shows that decreasing δ from
.38 to 1.3 (a decrease of 5 per cent) results in α decreasing from 0.85
o 0.6 (a decrease of 29 per cent). In other words, the rate of decrease
f the proton temperature (with heliocentric distance) is slower. 
his will be manifested as a relatively higher proton temperature 
t the Earth. This trend is borne out by solar wind simulations (e.g.
ayank, Vaidya & Chakrabarty 2022 ) where the predicted proton 
MNRAS 540, 2810–2819 (2025) 



2816 D. Bhattacharjee et al. 

M

t  

t
 

S  

fl  

fl  

U  

k  

r  

w
 

w  

a  

e  

t  

o

A

T  

(  

s  

P  

i

D

T  

w  

a  

w

R

A  

B  

B  

B
C
C  

C
C  

C
D
D
D
F  

G
G  

G  

H  

K  

K  

K  

K  

K
L  

L
L
L  

L  

L  

L
L  

L
L
L
M  

 

M
M
M
M
N  

N  

N  

 

N  

O
O
O
O  

P
P
R  

R
S  

S  

S
S
S
S  

S  

T
T
V  

V  

W
W  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/540/3/2810/8152187 by Indian Institute of Astrophysics user on 17 June 2025
emperature at the Earth is higher for polytropic indices that are closer
o 1. 

(iii) As mentioned in the discussion following equation ( 5 ) in
ection 3 , including the power potentially available in magnetic
uctuations (in addition to the power potentially available in velocity
uctuations) results in the quantity C 0 being replaced by 2 3 / 2 C 0 .
sing 〈 εt 〉 = 2 3 / 2 × 10 4 J kg −1 s −1 , and a CME velocity of 400
m s −1 at R = 215 R � in equation ( 7 ) gives δ = 1 . 45 (which can be
egarded as an increase of ≈ 7 . 4 per cent over the mpv of δ = 1 . 35,
hich was obtained without the factor of 2 3 / 2 ). 
(iv) An alternative approach to the one we have taken in this paper

ould be to observationally determine the polytropic index in MOs
nd their sheaths using fits to a T ∝ n δ−1 scatterplot (e.g. Katsavrias
t al. 2025 ). Equation ( 7 ) could then be used to compute the power
hat needs to be dissipated on the protons, as implied by this value
f the polytropic index. 
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PPEN D IX  A :  APPENDIX  

1 Relating the proton polytropic index to the local heating rate 

e modify the treatment of Verma, Roberts & Goldstein ( 1995 )
nd Vasquez et al. ( 2007 ) to obtain an equation for the evolution
f proton temperature in a CME by accounting for a polytropic 
quation of state. As in Verma et al. ( 1995 ), we start with the energy
onservation equation 

 Q = d U 

′ + P d V , (A1) 

here d Q is the change in energy added to (or taken from) the
ME, d U 

′ 
is the change in internal energy, P d V is the work done

n expanding/contracting the CME volume. The change in internal 
nergy can be written as 

 U 

′ = NC v d T , (A2) 

here V and N are the volume of the CME and the number of
oles contained in it, d T is the change in temperature and C v is

he specific heat at constant volume. Introducing K ≡ d Q/P d V and
sing equation ( A2 ), equation ( A1 ) can be rewritten as 

 K − 1) P d V = dU 

′ = NC v d T . (A3) 

e introduce the polytropic law 

 V 

δ = C (A4) 

nd differentiate it to get 

d P 

P 

+ δ
d V 

V 

= 0 . (A5) 

imilarly, differentiating the the ideal gas law P V = NRT (where
 ≡ C p − C v ) and using equation ( A3 ) gives 

1 − ( γ − 1)( K − 1)] 
d V 

V 

+ 

d P 

P 

= 0 , (A6) 
where γ ≡ C p /C v is the usual adiabatic index. Comparing equa- 
ion ( A6 ) and equation ( A5 ) gives 

 ≡ d Q 

pd V 

= 

δ − γ

1 − γ
. (A7) 

he energy conservation equation (equation A1 ) does not include 
external’ contributions from sources such as turbulent dissipation. 
ccounting for such contributions and using equations ( A2 ) and

 A7 ), the energy conservation equation becomes 

εd t = d U 

′ + P d V − d Q = NC v d T + P d V 

1 − δ

1 − γ
(A8) 

he quantity M represents the CME mass, d t the time elapsed,
nd ε ( erg g −1 s −1 ) the time rate per unit mass of additional energy
eposition. The additional energy deposition term M ε d t is not
ccounted for in the original energy conservation equation (equa- 
ion A1 ). It is ‘additional’ in the sense that it represents heating due to
dditional sources such as small-scale reconnection events inside the 
ME plasma, or from dissipation of turbulent fluctuations. We next 
ifferentiate equation ( A8 ) with respect to r and write d r / d t ≡ U ( r ),
o that U ( r) represents the CME velocity. If the CME flux rope
s idealized as a curved cylinder of cross-sectional radius a and
ength ∝ r , its volume V ∝ a 2 r . Since most CMEs expand in a self-
imilar manner with a ∝ r , it follows that V ∝ r 3 , which means that
 V / d r = 3 V /r . This yields 

M 

NC v 

ε

U 

= 

d T 

d r 
+ 3 

1 − δ

1 − γ

P 

NC v 

V 

r 
. (A9) 

sing the ideal gas law ( P V = NRT ), R ≡ C p − C v , and
/ ( NC v ) = ( γ − 1) m p /k B ( m p is the proton mass and k B is the

oltzmann constant) in equation ( A9 ), we get 

d T ( R) 

d R 

= 84 . 32 ( γ − 1) 
ε( R) 

U ( R) 
− 3( δ − 1) 

T ( R) 

R 

, (A10) 

here R = r/R � and U ( R) is the CME velocity in units of km s −1 .
f we use δ = γ = 5 / 3 and 2 in place of 3 in the second term on
he right-hand side, equation ( A10 ) is identical to equation (9) of
asquez et al. ( 2007 ). 

2 Relevant tables 

his section contains two tables. Table A1 gives details of the 27
vents that are used in this paper. Table A2 lists ε (equation 4 ),
 εt 〉 MO 

(equation 5 ), 〈 δ〉 MO 

(equation 7 ), and E ad (equation 6 ) for all
he events listed in Table A1 . 
MNRAS 540, 2810–2819 (2025) 
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Table A1. The list of the near-Earth ICME events we use in this study. The arri v al date and time of the ICME at the position of the WIND 

measurement and the arri v al and departure dates and times of the associated magnetic clouds (MOs) are taken from the WIND ICME catalogue 
( wind.nasa.gov/ICMEindex.php ). The time between the ‘ICME start time’ and ‘MO start time’ is taken as the sheath duration. 

ICME ICME start date MO start MO end Flux D st 

event and time[ UT ] date and date and rope index 
number (1 au) time [ UT ] time [ UT ] type (nT) 

1 2010-04-05, 07:55 2010-04-05, 11:59 2010-04-06, 16:48 Fr −81 
2 2010-05-28, 01:55 2010-05-28, 19:12 2010-05-29, 17:58 Fr −80 
3 2011-05-28, 00:14 2011-05-28, 05:31 2011-05-28, 22:47 F + −80 
4 2011-10-24, 17:41 2011-10-25, 00:21 2011-10-25, 23:31 Cx −147 
5 2012-03-08, 10:32 2012-03-08, 19:55 2012-03-11, 07:26 Cx −145 
6 2012-06-16, 09:03 2012-06-16, 22:01 2012-06-17, 11:23 F + −86 
7 2012-07-08, 02:10 2012-07-08, 07:58 2012-07-10, 01:41 Cx −78 
8 2012-07-14, 17:39 2012-07-15, 06:14 2012-07-17, 03:21 Fr −139 
9 2012-09-30, 10:14 2012-09-30, 12:14 2012-10-02, 02:53 Cx −122 
10 2012-10-08, 04:12 2012-10-08, 15:50 2012-10-09, 17:17 Fr −107 
11 2012-10-12, 08:09 2012-10-12, 18:29 2012-10-13, 09:14 Fr −90 
12 2012-11-12, 22:12 2012-11-13, 08:23 2012-11-14, 08:09 F + −108 
13 2013-03-17, 05:21 2013-03-17, 14:09 2013-03-19, 16:04 Fr −132 
14 2013-03-06, 02:09 2013-06-06, 14:23 2013-06-08, 00:00 F + −78 
15 2013-06-27, 13:51 2013-06-28, 02:23 2013-06-29, 11:59 Fr −102 
16 2013-07-04, 17:17 2013-07-05, 04:05 2013-07-07, 14:24 Cx −87 
17 2014-09-12, 15:17 2014-09-12, 21:22 2014-09-14, 11:38 F- −88 
18 2015-01-07, 05:38 2015-01-07, 06:28 2015-01-07, 21:07 F + −99 
19 2015-06-22, 18:07 2015-06-23, 02:23 2015-06-24, 13:03 Cx −198 
20 2015-11-06, 17:46 2015-11-07, 07:11 2015-11-08, 16:47 Fr −79 
21 2015-12-19, 15:35 2015-12-20, 13:40 2015-12-21, 23:02 Fr −155 
22 2016-01-19, 03:31 2016-01-19, 11:23 2016-01-20, 14:19 Fr −93 
23 2016-10-12, 21:37 2016-10-13, 06:27 2016-10-14, 16:19 F + −110 
24 2017-05-27, 13:45 2017-05-27, 22:50 2017-05-29, 11:05 F + −125 
25 2017-09-06, 22:21 2017-09-07, 09:13 2017-09-08, 06:35 Ej −122 
26 2017-09-07, 16:17 2017-09-08, 00:19 2017-09-09, 16:57 Ej −109 
27 2018-08-25, 01:02 2018-08-25, 12:04 2018-08-25, 12:19 F + −175 
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Table A2. The first column is the serial number of the event, taken from Table A1 . The second column is the average proton 
temperature inside the MO. The third column is the required power ( ε) using equation ( 4 ). The fourth column is the average 
turbulent cascade rate ( 〈 εt 〉 MO 

). The fifth column is the average polytropic index ( 〈 δ〉 MO 

) obtained from equation ( 7 ). The 
sixth column is the percentage difference between ε and 〈 εt 〉 MO 

using equation ( 6 ). 

ICME Average ε 〈 εt 〉 MO 

〈 δ〉 MO 

E ad (per cent) 
event proton temperature in MO t box = 60 min t box = 60 min t box = 60 min 
number (K) (J kg −1 s −1 ) (J kg −1 s −1 ) (at 1 au) (at 1 au) 

1 42661 .07 3154 .98 6198 .88 2.12 96 .48 
2 37577 .24 1522 .35 437 .40 1.35 −71 .27 
3 44599 .27 2712 .16 3486 .56 1.80 28 .55 
4 95528 .45 6100 .42 10501 .63 2.06 72 .15 
5 77455 .27 5599 .40 4188 .05 1.54 −25 .21 
6 64545 .57 3562 .04 4802 .49 1.84 34 .82 
7 32580 .03 1523 .78 1656 .03 1.71 8 .68 
8 48978 .26 2852 .42 3614 .58 1.59 32 .66 
9 56799 .44 2427 .59 2540 .65 1.61 −19 .13 
10 46820 .43 2252 .08 8700 .73 3.01 286 .23 
11 55167 .73 3189 .94 8729 .32 2.51 173 .65 
12 73696 .42 3509 .89 1075 .31 1.35 −69 .63 
13 46340 .17 2885 .91 4453 .36 1.92 54 .32 
14 33756 .76 1629 .67 353 .49 1.35 −78 .39 
15 25589 .45 1086 .06 767 .25 1.54 −29 .38 
16 27901 .36 1040 .41 1840 .02 1.89 76 .86 
17 74488 .79 5546 .86 6947 .34 1.76 25 .25 
18 31567 .11 1589 .26 1246 .12 1.57 −19 .12 
19 150787 .24 12288 .69 9877 .82 1.56 56 .32 
20 43552 .77 2692 .16 1320 .31 1.43 −50 .96 
21 45858 .42 2148 .55 1133 .49 1.42 −47 .24 
22 37522 .46 1556 .93 4473 .13 2.53 105 .96 
23 34547 .13 1544 .09 2265 .36 1.80 46 .72 
24 54687 .12 2360 .98 453 .71 1.28 −80 .78 
25 471530 .44 42419 .50 21387 .22 1.35 85 .28 
26 260728 .26 25678 .55 8641 .99 1.28 −31 .36 
27 51986 .37 2527 .93 1108 .91 1.35 −46 .14 
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