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In the 1970s, Fulling, Davies, and Unruh demonstrated that the vacuum state perceived by an inertial
observer in Minkowski space appears as a thermal bath to a uniformly accelerated observer. We explore the
transformation of the Wigner distribution of a real scalar field from an inertial to a Rindler frame, utilizing
both Minkowski and Unruh modes. We present a general expression for the reduced Wigner distribution for
a specific set of massless scalar field configurations, and validate it against known distributions within this
set. This includes arbitrary Gaussian states of Unruh-Minkowski modes, the Minkowski vacuum state, the
Rindler vacuum, and the thermal bath of Unruh particles. Additionally, we analyze several other
distributions, such as a peaked frequency distribution, a slight deviation from the Minkowski vacuum,
and a distribution with a fermionic component in the Rindler frame. The conclusions are discussed.
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I. INTRODUCTION

The fundamental advancement of quantum field theory in
curved space-time has been significantly influenced by the
concept of how a system’s state, which associates an operator
with its expectation value in a linear manner, depends on
reference frames. A noteworthy application of this theory
arises when we restrict to a specific wedge, denoted as R,
within Minkowski space-time: R ≔ fx∈R1;3jx1 > jx0jg.
This wedge, referred to as Rindler spacetime is entangled
with the complementary left wedge and their union con-
stitutes a globally hyperbolic space-time. In Minkowski
spacetime, the existence of a unique Poincaré-invariant state,
known as the Minkowski vacuum, is firmly established.
Various global families of inertial observers in Minkowski
spacetime converge on a common understanding of particle
content within any given field state [1]. However, the one-
parameter group of Lorentz boost isometries can be used to
construct a Rindler spacetime. In the literature, Fulling [2,3]
first gave the Bogoliubov transformation of creation and
annihilation operators from the inertial frame to the Rindler
frame. The interpretation of particle content obtained by
Fulling using Bogoliubov transformation as a black body
spectrum was later given by Davies [4]. However, the correct
interpretation of these results was later developed by Unruh
[5]. It was shown that the vacuum state of an inertial observer
appears as a thermal bath for theRindler observer. Subsequent
advancements led to the development of various versions of

thermalization theorems [6]. In the literature, the behavior of
the thermal bath ofUnruhparticles in the inertial frameas seen
by a Rindler observer [7,8] has also been discussed. There are
also attempts to understand the Rindler vacuum [9]. The role
of Unruh effect in triggering QCD phase transitions has been
explored in [10]. The Unruh effect is thought to be the most
spectacular manifestation of the vacuum entanglement.
Recent advancements in our understanding of quantum
entanglement offer a unique avenue for scrutinizing the
quantum nature of gravity, as indicated by a study [11].
Furthermore, in the context of stochastic quantum field theory
in gravity, entanglement can be conveyed through the local
Unruh effect without necessitating the presence of gravitons
[12]. This, in turn, encourages us to delve deeper into the
intricacies of the Unruh effect.
In field theory description, the vacuum state is charac-

terized by being both pure and Gaussian. The vacuum for a
given observer depends upon the eigenfunctions/eigenm-
odes of the field operators defined with respect to the proper
time of that observer. Given the direct interaction between an
accelerated detector and Rindler modes, these modes
become the more suitable choice for quantizing the field
from the perspective of accelerated observers.Moreover, for
inertial observers, theMinkowskimodes are a natural choice
for quantizing the field [7]. Nevertheless, one can also
design an interaction Hamiltonian in a way that it couples
with Unruh modes. It is important to highlight that many of
the conclusions drawn from the Unruh Fock space can be
extended to the original Minkowski plane wave Fock space,
albeit requiring a basis transformation from plane waves to
wave functions defined in log x space. This dual approach
encourages one to leverage both Minkowski and Unruh
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modes in the comprehensive exploration of a wide range of
states.
In physical situations, such as the evolution of the Higgs

field in the early Universe, models of galaxy formation, and
fields around astrophysical objects, are not in a vacuum or
thermal equilibrium state [13–15]. One also ends up dealing
with nonvacuum states while trying to observe the Unruh
effect through analog models in a laboratory [16–27]. In
particular, [21] reported a study of superfluid hydrodynamics
of polaritons along a one-dimensional microstructure for the
detection of analog Hawking radiation. Reference [22] dis-
cussed the experimental realization of gravitational analog
using ultrashort laser pulse filaments. Furthermore, [23–27]
studied theoretically the analog Hawking radiation in Bose-
Einstein condensates. There are several other cases wherein
nonvacuum states are relevant. For example, states of low
energy states in Friedmann–Lemaître–Robertson–Walker
(FLRW) spacetimes has been introduced in [28,29].
References [30,31] discussed the notion of nonequilibrium
and local thermal equilibrium states. Later [32] applied the
concept of local thermal equilibrium states to the space-time
evolution of a hot bang at the origin of Minkowski space. It
has also been claimed that theKubo–Martin–Schwinger state
(KMS) property does not entail local thermal equilibrium
[33]. Further in the case of the retrieval of shock wave
memory of spacetime [34]. In most of these cases, it is the
relativity of states and their particle content interpretation as
seen from different frames which forms the crucial aspect in
all these investigations. This, in turn, motivates us to inves-
tigate the nonvacuum states from perspectives of different
observers, particularly in the context of the fundamental
phenomenon such as the Unruh effect.
The Rindler basis sees a monochromatic wave of

Minkowski modes as a nonchromatic superposition of
all frequencies. Due to this mode mixing property, explor-
ing beyond the single/double Minkowski particle state in
the Rindler frame becomes complicated analytically, and
indeed, the literature is scarce in this context [35,36].
Below, we highlight some of the special cases that were
explored earlier. The response of an accelerated detector
in de Sitter spacetime was discussed in [37], where
the effective temperature observed is found to be the
Pythagorean sum of the de Sitter temperature and the
acceleration temperature. [38] investigated the uniformly
accelerated observer in a thermal bath of Unruh particles in
Minkowski spacetime. The authors of [8] studied the
transformation of a thermal bath of Unruh particles from
an inertial frame to the Rindler frame using the density
matrix formalism and concluded an interesting indistin-
guishability of thermal and quantum fluctuations. While [8]
assumed thermality in only one of the Unruh modes. It
would be interesting to explore the possibility of consid-
ering the state to be thermal in both Unruh-Minkowski

modes that yield the same Rindler frequency and, more
importantly, analyze the corresponding state in terms
of Minkowski modes. Furthermore, (i) exploring a
Minkowski state which is close to vacuum but not exactly
the vacuum—this deviation could correspond to a genuine
source in the Minkowski frame or arise as some noise in the
system which is difficult to remove (ii) a uniform frequency
distribution state in Minkowski frame corresponding to a
band filter which would allow only certain frequencies to
pass through (iii) interplay between bosonic and fermionic
statistics—all such states to analyze from the perspective of
the Rindler observer is interesting and such an investigation
may form a basis to explore more complicated states.
In the present manuscript, we employ the Wigner func-

tional formalism [39–42], and provide a relatively simpler
and tractable treatment to investigate many nonvacuum
Minkowski states. In many situations, it is possible to
associate a unique density matrix with any state of a
system. The knowledge of density matrix can be used to
compute different correlations. It can also be used to find
out entropy and, hence, thermodynamic properties of the
system. There are many techniques in quantum optics that
have been used in quantum field theory in curved space
[43,44]. The Wigner functional, mainly used in quantum
optics, is a phase-space representation of the density
matrix, which simplifies calculations. The Wigner distri-
bution has also been used to transform the inertial-frame
vacuum state of a scalar field to the Rindler frame [45].
In Sec. II, we provide a brief overview of the Wigner

functional framework for the massless real scalar quantum
fields in flat spacetime. We then provide a general trans-
formation of the Wigner distribution of a massless scalar
field in Minkowski spacetime to that of the Rindler space-
time for a particular subset, yet broadly general, which
encompasses a large set of states of Minkowski and Unruh-
Minkowski modes including the nonvacuum states moti-
vated above. This subset is more formally defined in
Sec. II B and the detailed calculation of the transformation
is presented in Appendix A. Additionally, we highlight
several general features of the reducedWigner functional for
these states. We also provide a general expression for the
expectation value of the number density operator for each of
these Wigner functionals in Sec. II D. In Sec. III, we first
verify the general expression obtained for known cases such
as the vacuum Minkowski state and Rindler vacuum for
consistency, while also highlight some new findings in the
latter case. We then proceed to discuss several new dis-
tributions namely (i) a Minkowski state which is close to
vacuum but not exactly the vacuum, (ii) a peaked frequency
distribution state in Minkowski frame, (iii) a thermal bath in
both Unruh-Minkowski modes, and (iv) a state which offers
interplay between bosonic and fermionic statistics and their
corresponding reduced Wigner distributions in the Rindler
frame along-with expectation values of number density in
each. We summarize our results in the discussion Sec. IV.
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Use is made of natural units, namely ℏ ¼ c ¼ kB ¼ 1,
throughout the paper.

II. VACUUM AND NONVACUUM MINKOWSKI
STATES IN RINDLER FRAME

We begin by introducing the Wigner functional frame-
work particularly for the massless real scalar quantum
fields in flat spacetime.

A. Wigner functional—Setup

One can describe physical systems in terms of density
function operator ρ, which is a non-negative hermitian
operator of trace unity acting on a Hilbert space H [46].
The components of ρ expanded in a complete set of basis
eigenstates constitute the density matrix. There exist
numerous scenarios, one such example being coherent
states of photons, where the uncertainty relation is mini-
mized. It makes the coherent state to be concentrated along
classical trajectories. In this paper, we use the basis of
coherent states to describe the quantum states. The phase-
space representation of the density matrix, which is a
pseudo-probability distribution, is known as the Wigner
distribution [47]. One uses c-number correspondence to get
a c-number function corresponding to any operator [47].
The Wigner functional approach serves the closest analog
to classical physics, having roots in quantum theory. One
can refer to [39–41] for a detailed study of the Wigner
functional approach. It can be said that this feature makes
the classical field limit more transparent compared to other
formulations. For a quantum harmonic system, one can
express the Wigner distribution in the following form for
the nth number state of the harmonic oscillator [45].

WðnÞðαÞ ¼ hnj2e−2ðâ†−α�Þ;ðâ−αÞjni

¼ 1

n!
h0jðâÞn2e−2ðâ†−α�Þ;ðâ−αÞðâ†Þnj0i ð2:1Þ

Here ; denotes Schwinger operator ordering, â and â†

denote the annihilation and creation operators, and
α; α� ∈C with α being eigenvalue of annihilation operator.
The above expression can be formally thought of as a
derivative acting on vacuum Wigner distribution. One can
also think of the Wigner distribution as the expectation
value of the displaced parity operator.
We consider a system of massless real scalar field in the

background Minkowski spacetime and apply the Wigner
functional approach to analyze how the functional trans-
forms between inertial and Rindler bases states. It is, in
general, known how to transform Wigner distribution from
one set of complete bases to a new one, corresponding to
different reference frames of different observers. We will be
dealing with the Wigner distribution based on coherent
states [45] because it practically simplifies the relevant
calculations. In general, one could adopt the Wigner

functional approach to explain the dynamics of almost
all quantum field systems where the notion of a density
matrix can be suitably defined [39]. We begin by express-
ing the massless real scalar field in terms of the basis of the
Minkowski plane wave mode solution of the Klein-Gordon
equation, as follows:

ϕ̂ðt;xÞ ¼
Z Z Z

V

d3k

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffi
2ωk

p ½âkeikx þ â†ke
−ikx�: ð2:2Þ

Here âk, â
†
k are standard annihilation and creation oper-

ators corresponding to the Minkowski mode k, and ft;xg
are standard Minkowski coordinates. The above expansion
is not formally convergent and lacks the notion of being an
observable associated with a spacetime point; however, one
can interpret of it as an operator-valued distribution [48]. In
the momentum representation, the quantum field is essen-
tially a collection of simple harmonic oscillators, which
allows one to apply the Wigner function formalism as
described in Eq. (2.1) for each mode k. For the sake of
simplicity and analytical tractability, we work in (1þ 1)
dimensions for the rest of the paper. We begin by choosing
a particular form for the Minkowski-Wigner distribution
function, which represents a wide set of initial quantum
states. The motivation for such a choice comes from the fact
that the Wigner distribution of a thermal bath and Gaussian
quantum states, which play a significant role in several
areas of theoretical and experimental physics, form a subset
of the form chosen. We consider the form of the Wigner
distribution in the Minkowski basis to be

WM ¼ N̄ exp

�
−2

Z þ∞

−∞

Z þ∞

−∞

dkdk0

4π2
a�k0akfðk; k0Þ

�
; ð2:3Þ

where the subscriptM represents an inertial frame, N̄ is the
normalization factor, a�k0 and ak are c-numbers correspond-
ing to creation and annihilation operators in an inertial
frame, obtained by Wigner-Weyl correspondence [45]. One
can refer to [39] for a discussion of the Wigner functional
for thermal equilibrium states in the field representation.
The function fðk; k0Þ is a two-point function, i.e., we allow
the Wignar functional to have off-diagonal elements in the
k-k’ space. This allows us to consider Minkowski states
beyond the popular fðk; k0Þ ¼ δðk − k0ÞfðkÞ class of states
usually considered in the literature. The Minkowski vac-
uum state and the thermal bath both fall in the latter set of
states. In general, the two-point function fðk; k0Þ can be any
Hermitian positive two-point function of Schwarz space, or
it should have compact support.
To transform theWigner functional in terms of the basis of

charts of the accelerated frame of reference, we first define
the Rindler transformation by considering an observer
moving with a uniform linear acceleration a, along the
x-axis with trajectory taken as ð1a sinh aτ; 1a cosh aτÞ. Here, τ
represents the observer’s proper time, and the motion is
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restricted to the t-x plane. The wedge part of the entire
Minkowski spacetime accessible to the uniformly acce-
lerated observer defined above constitutes a globally hyper-
bolic spacetime along with the union with its complemen-
tary left wedge, though not geodesically complete, is called
the right Rindler wedge/patch or the Rindler spacetime. The
global hyperbolicity allows one to quantize the field and
definemodes restricted to the rightRindlerwedge.However,
the vacuum of an inertial observer, i.e., the Minkowski
vacuum, is defined over the full Minkowski spacetime. The
real massless scalar field can be expanded in terms of the
Rindler plane wave basis mode solutions of the Klein-
Gordon equation as

ϕ̂ðT; XÞ ¼
Z þ∞

−∞

dK

ð2πÞ1=2 ffiffiffiffiffiffiffiffiffi
2ωK

p ½b̂K;ReiKμXμ

þ b̂†K;Re
−iKμXμ � þ ½R ↔ L�; ð2:4Þ

where jKj is the Rindler frequency, T, X are Rindler
coordinates and fb̂K;R; b̂†K;R; b̂K;L; b̂†K;Lg are creation and
annihilation operators corresponding to left and right
Rindler wedges. This set of creation and annihilation
operators is related to the Minkowski creation and annihi-
lation operators by Bogoliubov transformations.
In the next two subsections, we provide a general

transformation of the Wigner distribution of a massless
scalar field in Minkowski spacetime to that of the Rindler
spacetime for a particular subset, yet broadly general,
which encompasses a large set of states of Minkowski
and Unruh-Minkowski modes including the nonvacuum
states motivated in the introduction.

B. Reduced Wigner functional
for inertial Minkowski particles

One would like to transform the Minkowski Wigner
functional defined in Eq. (2.3) with the help of Bogoliubov

transformations. However, it is well known that for a
general two-point function fðk; k0Þ, the procedure is ana-
lytically untractable due to the mode mixing property of the
Rindler transformations for Minkowski modes. However,
for the set of states we would like to investigate such as the
(i) exploring a Minkowski state which is close to vacuum
but not exactly the vacuum—this deviation could corre-
spond to a genuine source in the Minkowski frame or arise
as some noise in the system which is difficult to remove
(ii) a uniform frequency distribution state in Minkowski
frame corresponding to a band filter which would allow
only certain frequncies to pass through (iii) A thermal state
in both Unruh-Minkowski modes that yields an interesting
indistinguishability of thermal and quantum fluctuations in
the Rindler frame and more importantly analyze the
corresponding state in terms of Minkowski modes (iv) a
state which offers interplay between bosonic and fermionic
statistics—it turns out that one can still get around the mode
mixing complication and calculate the reduced Rindler
Wigner functional for inertial frame Minkowski mode
states by selecting a specific set of two-point weight
functions fðk; k0Þ which we shall describe below. Such a
choice does not limit one to a narrow set of nonvacuum
states that one can explore, but in fact, it is still quite
general and allows one to explore a wide set of states.
For our purpose stated above, it suffices to choose a

subset of fðk; k0Þ such that the density functional in the
right Rindler basis modes becomes diagonal in the K − K0
space. This is realized if we consider those Hermitian
positive definite two-point functions whose 2D Fourier
transform with respect to ðK=a;K0=aÞ after a redefinition
of the modes as k ¼ et; k0 ¼ et

0
and weighted by eðtþt0Þ=2 is

diagonal for some continuous variable K and positive
nonzero constant a. The same can be considered as a
2D Mellin transform which is required to be diagonalized.
Such a requirement on fðk; k0Þ can be formally written for
all 4 quadrants of the k − k0 space in a matrix sense as

Z þ∞

0

Z þ∞

0

dkdk0ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp fðk; k0Þjk0=aj−iK0=ajk=ajþiK=a ¼ g1ðK;K0ÞδðK − K0Þ ð2:5Þ

Z þ∞

0

Z þ∞

0

dkdk0ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp fðk;−k0Þjk0=aj−iK0=ajk=ajþiK=a ¼ g2ðK;K0ÞδðK − K0Þ ð2:6Þ

Z þ∞

0

Z þ∞

0

dkdk0ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp fð−k; k0Þjk0=aj−iK0=ajk=ajþiK=a ¼ g3ðK;K0ÞδðK − K0Þ ð2:7Þ

Z þ∞

0

Z þ∞

0

dkdk0ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp fð−k;−k0Þjk0=aj−iK0=ajk=ajþiK=a ¼ g4ðK;K0ÞδðK − K0Þ ð2:8Þ
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for some real two point functions g1ðK;K0Þ, g2ðK;K0Þ,
g3ðK;K0Þ, and g4ðK;K0Þ. We denote the diagonal elements
gsðK;KÞ as gsðKÞ In principle, the above equations can also
be inverted using the inverse Fourier transform to find
½ðfðk; k0Þ� for a given set of ½giðK;K0Þ�, provided the
inverse transformation exists, and the obtained ½fðK;K0Þ�
is well defined, so it can be considered as a weight function
of the Wigner functional. The inversion property allows us
to first choose a Rindler density functional and then obtain
a corresponding Minkowski density functional, as we shall
demonstrate in the next section. However, one should note
that the Minkowski state obtained in this way is not unique
because the degrees of freedom in the left wedge have been
traced out to get the reduced Wigner functional in the right
Rindler wedge. There can be other Minkowski states with a
weight function fðk; k0Þ that does not belong to the subset
of functions satisfying properties Eqs. (2.5)–(2.8) and yet
may yield the same Rindler state. This behavior could be
expected because each Minkowski mode has been mixed
up with modes of all frequencies during the Rindler

transformation. However, if we have a Minkowski space
Wigner functional that belongs to the above mentioned
subset, then the Rindler space Wigner functional will be
unique. Given the Wigner distribution, physical quantities
of interest, such as expectation value of number density,
entropy, correlation, ... etc., can be easily determined. The
degrees of freedom in the Wigner functional in both inertial
and accelerated frames are related by Bogoliubov trans-
formation [35]. The degrees of freedom in the left and right
Rindler wedges are entangled. Since the left Rindler wedge
is inaccessible to the uniformly accelerated observer in the
right wedge, we need to trace over unobserved degrees of
freedom after applying the Bogoliubov transformation,
which is the standard procedure to obtain the reduced
Wigner functional for the right Rindler observer. We
provide a detailed derivation of the reduced Wigner
distribution in Appendix A. The reduced Wigner distribu-
tion corresponding to the Minkowski Wigner functional in
Eq. (2.3) and for fðk; k0Þ satisfying Eqs. (2.5)–(2.8) is
obtained to be

WRreduced
¼ N exp

�
−1

8π4a2

Z
∞

0

dKjKj
����Γ�iKa

�����2ðJðKÞjbRðKÞj2 þ R1ðKÞb�RðKÞb�Rð−KÞ

þR2ðKÞbRðKÞbRð−KÞ þ LjbRð−KÞj2Þ
�

¼ N exp

�
−1
8π3a

Z
∞

0

dK
sinh πjKj=a ðJðKÞjbRðKÞj2 þ R1ðKÞb�RðKÞb�Rð−KÞ

þR2ðKÞbRðKÞbRð−KÞ þ LjbRð−KÞj2Þ
�
; ð2:9Þ

which is diagonal inK − K0 space. The explicit expressions
for weight functions J(K), R1ðKÞ, R2ðKÞ, and LðKÞ are
given in Eqs. (A9)–(A11) of Appendix A.
Some interesting technical features can be deduced for

these weight functions and WRreduced
which we shall high-

light below.
(a) g2ðK;KÞ ↔ g3ðK;KÞ ⇒ R1ðKÞ ↔ R2ðKÞ where the

double arrow represents an interchange operation.
(b) If g2ðK;KÞ¼g3ðK;KÞ¼0 then R1ðKÞ ¼ R2ðKÞ ¼ 0.
(c) Lð−KÞ ¼ LðKÞ, Jð−KÞ ¼ JðKÞ, R1ð−KÞ ¼ R2ðKÞ,

and R2ð−KÞ ¼ R1ðKÞ.
(d) If g2ðK;KÞ¼g3ðK;KÞ¼g2ð−K;−KÞ¼g3ð−K;−KÞ

and g1ðK; KÞ ¼ g4ðK; KÞ ¼ g1ð−K; −KÞ ¼ g4ð−K;
−KÞ ⇒ JðKÞ ¼ LðKÞ.

The first property suggests that if the weight function
fðk; k0Þ of Minkowski Wigner functional satisfies
fðk;−k0Þ ¼ fð−k; k0Þ, then the weights g2ðK;K0Þ and
g3ðK;K0Þ are also equal. As a result weights R1ðKÞ and
R2ðKÞ in the reduced Rindler Wigner functional, which are
linked to the cross terms of positive and negative frequen-
cies, are the same. In those cases where they are not equal,

swapping them results in a corresponding interchange of
weights, i.e., R1ðKÞ ↔ R2ðKÞ within the Rindler wedge.
The second property asserts that if g2ðK;KÞ and g3ðK;KÞ
vanish, then the corresponding cross term R1ðKÞ and
R2ðKÞ in the Rindler frame also vanish. As a consequence,
the anomalous averages such as hb�RðKÞb�Rð−KÞi in
Eq. (2.9) vanish. Nonzero anomalous averages play an
important role in several phenomena, such as the BCS
theory of superconductors [49–52]. The final property
elucidates that if the weight of Minkowski Wigner func-
tional exhibits reflection symmetry about the origin, i.e.,
fðk;−k0Þ ¼ fð−k; k0Þ and fðk; k0Þ ¼ fð−k;−k0Þ then from
Eqs. (2.5)–(2.8) we have, g2ðK;KÞ ¼ g3ðK;KÞ ¼
g2ð−K;−KÞ ¼ g3ð−K;−KÞ and g1ðK;KÞ ¼ g4ðK;KÞ ¼
g1ð−K;−KÞ ¼ g4ð−K;−KÞ—which after substituting in
Eq. (2.14) give an equal number of particles and anti-
particles in the Rindler frame.
In this subsection, we have thus provided a general

expression for the reduced Wigner distribution in the
Rindler frame starting from a Wigner distribution in the
Minkowski frame corresponding to our subset of cases of
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interest. In the next subsection, we shall do so for the
Unruh-Minkowski modes as well.

C. Wigner functional for UM modes

While the concept of particles is not a prerequisite for
comparing the relationship between the Fock basis and
Bogoliubov transformations in two frames, specific sets of
modes and particle states naturally manifest as a conse-
quence of the symmetries inherent in the spacetime under
consideration. One such set of modes is the Unruh
Minkowski (UM) modes which is a linear superposition
of positive frequency Minkowski modes. Its ground state
coincides with the Minkowski vacuum. However, other
excited states are different. It turns out that a subset of the
reduced Rindler frame Wigner distribution in Eq. (2.9),
when R1ðKÞ ¼ R2ðKÞ ¼ 0 and JðKÞ ¼ LðKÞ, can be
obtained by a very specific set of inertial frame Wigner
functionals in terms of UM modes. This can be seen as
follows. It is known that there are two UM modes of
positive frequency corresponding to each Rindler fre-
quency. One can express the Wigner distribution in terms
of modes corresponding to these UM particles as

WUM ¼
Y
ξ>0

Nξe
−pðξÞjαξj2−qðξÞjα−ξj2−rðξÞαξα−ξ−sðξÞα�ξα�−ξ ð2:10Þ

Here, α and α� are c- number representations of annihila-
tion and creation operators for Unruh-Minkowski particles.
The functions pðξÞ and qðξÞ, which are positive, nonzero,
real, and smooth, dictate the weights linked to αξ and α−ξ.
Similarly, rðξÞ and sðξÞ are real smooth functions. An
additional constraint arises from the requirement for the
expectation value of number density to be finite, expressed
as pq ≠ rs. We emphasize that one does not require the set
of conditions in Eqs. (2.5)–(2.8) when dealing with the
Unruh-Minkowski modes here. One can also consider a
more general form of the weight functions that depend on
two arguments, for example, p(ξ, ξ0), such that the density
functional is off-diagonal in ξ − ξ0 space as in Eq. (2.3).
Here, we consider only the diagonal form as given in
Eq. (2.10) since it suffices to explore different cases in the
next section. To obtain the reduced Wigner distribution in
the right Rindler frame, we proceed in a manner similar to
that in the above section to obtain

WRreduced
¼

Y
K>0

NK exp

�
−

2ðpq − rsÞ sinh
	
πK
a



pe−πK=a þ qeπK=a − r − s

× ðjbRðKÞj2 þ jbRð−KÞj2Þ
�

ð2:11Þ

where, p≡ pðKÞ, q≡ pðKÞ, r≡ rðKÞ, and s≡ sðKÞ
are the same weight functions pðξÞ, qðξÞ, rðξÞ,
and sðξÞ in Eq. (2.10) with the arguments replaced
by jξj ¼ 2πK

a .

D. Number density in momentum space

Having obtained the Wigner distribution in two distinct
frames, one can now proceed to compute the expectation
values of any operator in both frames, especially the
expectation value of the number density operator. In this
subsection, we provide an expression for the expectation
value of the number density associated with various
established mode sets and defined by

hni≡
Z

d2αðα�α − 1=2ÞW ð2:12Þ

where integration runs over the respective αs in their own
phase space corresponding to each Wðα; α�Þ. Substituting
our Wigner distribution,WM, and performing the Gaussian
integration, we get the following expressions for the
particle number density expectation value for Minkowski
modes as

hnMðkÞii ¼
1

2

��
fðk; k0Þ
2π

�
−1

ii
− δð0Þ

�
: ð2:13Þ

Here, the subscript ii in the expression of hnMðkÞii refers to
the iith diagonal element in the inverse matrix. The δð0Þ
term in the above equation comes due to the continuum
choice of modes. This divergence can be regularized by
considering a box of finite size and dividing both sides by
its volume. We denote the regularized expectation values
by a tilde over hnsi, i.e., hñsi. The regularized expectation
values for the UM modes, by using WUM are obtained as1

hñαξi ¼
��

pðξÞ − rðξÞsðξÞ
qðξÞ

�
−1

−
1

2

�
;

hñα−ξi ¼
��

qðξÞ − rðξÞsðξÞ
pðξÞ

�
−1

−
1

2

�
: ð2:14Þ

We note from the above expressions of the expecta-
tion value of UM particles that if any of the cross terms
r or s is 0, then hnαξi will not depend upon either rðξÞ, sðξÞ,
or qðξÞ. An analogous statement holds true for hnα−ξi. One
gets the following expectation value hñRðKÞi in the
Rindler frame

1To get the inverse of the diagonal matrix, say Aðk; kÞ, let us
write its functional form as Aðk; k0Þδðk − k0Þ. Let Bðk; k0Þ denoted
its inverse then it satisfiesZ

Aðk; k0Þδðk − k0ÞBðk0; k00Þdk0 ¼ δðk − k00Þ ⇒ Aðk; kÞBðk; k00Þ

¼ δðk − k00Þ
This brings a δð0Þ in the expectation values of UM and Rindler
particles, say hnsi. The tilde represents the regularized quantities.

NITESH K. DUBEY and SANVED KOLEKAR PHYS. REV. D 111, 065004 (2025)

065004-6



hñRðKÞi ¼
�
ðL1ðK;KÞ − L2ðK;KÞL4ðK;KÞ−1L3ðK;KÞÞ−1 − 1

2

�
; ð2:15Þ

where functions L1, L2, L3, and L4 are related to the weight
functions in Eq. (2.9) as

L1 ¼
JðK;KÞ

8π2a sinhðπjKj=aÞ ; L2 ¼
R1ðK;KÞ

8π2a sinhðπjKj=aÞ ;

L3 ¼
R2ðK;KÞ

8π2a sinhðπjKj=aÞ ; L4 ¼
LðK;KÞ

8π2a sinhðπjKj=aÞ .

In the present section, we have thus obtained a general
expression for the reduced Wigner functional and the
corresponding number operator expectation value. In the
next section, we shall consider and analyze several explicit
examples of interest.

III. SPECIAL CASES OF WIGNER
DISTRIBUTIONS

There are a variety of interesting Minkowski state
distributions that belong to the subset of distributions
considered in the previous section. We shall investigate a
few known cases to demonstrate the consistency of the
Wigner functional approach with those taken previously in
the literature and then proceed to discuss new ones and
highlight their interesting features.

A. Minkowski vacuum—Unruh effect

We first consider the vacuum state of a massless scalar
field in the Minkowski spacetime for an inertial observer.
This is described by the well-known standard Unruh
Minkowski Wigner distribution [45].

WUM ¼
Y
ξ

Nξe−2jαξj
2−2jα−ξj2 ð3:1Þ

The same can also be expressed in terms of Minkowski
modes in Eq. (2.3) by substituting the two-point function
fðk; k0Þ ¼ 2πδðk − k0Þ. Both these represent the same
Minkowski vacuum state. However, as explained in
Sec. II C, the transformation to a uniformly accelerated
frame mixes positive and negative frequencies, and as a
consequence, the uniformly accelerated observer finds the
inertial frame ground state to be populated with particles. By
comparing the distribution in Eq. (3.1) with the form of the
Wigner distribution in Unruh-Minkowski form in Eq. (2.10),
one can read off pðξÞ ¼ qðξÞ ¼ 2 and rðξÞ ¼ sðξÞ ¼ 0.
Then, Eq. (2.11) for the reduced Wigner functional in the

right Rindler wedge can be expressed as

WRreduced
¼

Y
K>0

NKe−2jbRðKÞj
2 tanhðπKa Þ ð3:2Þ

This represents a thermal bath of Rindler particles with
temperature T ¼ a=2π and is the standard Unruh effect.
Alternatively, one could also obtain Eq. (3.2) starting from
Eq. (2.8) for theMinkowski Wigner functional. One gets the
formof theweight functions g1ðKÞ; g2ðKÞ; g3ðKÞ, andg4ðKÞ
by substituting fðk; k0Þ ¼ 2πδðk − k0Þ in Eqs. (2.4)–(2.7).
We have checked that it finally leads to the same reduced
Wigner functional as in Eq. (3.2) using the expressions for
different Ls in Eq. (2.15). The expectation value of the
number density using Eq. (2.15) then leads to the expected
Planckian as

hnRðKÞi ¼
δð0Þ

e
2πjKj
a − 1

:

It can be shown that there are no hidden correlations in
observed particles; therefore, the above hnRðKÞi represents a
true thermal bath [53,54]. One can follow [55] for an elegant
review of the Unruh effect.

B. Rindler vacuum

The next interesting distributionwe consider is theRindler
vacuum. This is represented by a state for which the
expectation value of number density in the Rindler frame
is zero. TheRindler vacuumdistribution can be characterized
by the following reduced Wigner distribution in the Rindler
frame, where the acceleration has a value greater than zero.

WRreduced
¼

Y
K>0

NKe−2ðjbRðKÞj
2þjbRð−KÞj2Þ ð3:3Þ

To obtain what the inertial observer observes in the
inertial frame, we compare the above form in Eq. (3.3) with
Eq. (2.8) for the reduced Wigner distribution in the Rindler
frame and read off weight functions gi (K) and then
using Eqs. (2.5)–(2.8) one can obtain the corresponding
fðk; k0Þ. The gi (K) are found to be of the following

form: g1ðKÞ¼g4ðKÞ¼4π2acothπjKja , g2ðKÞ ¼ g3ðKÞ ¼ 0.
Using the inverse Fourier transform, the form of the Wigner
distribution in the Minkowski frame is then found to be

WM ¼ N exp

�
−2

Z þ∞

−∞

Z þ∞

−∞

dkdk0

4π2
a�kak

�
2πδðk0 − kÞ − θðkk0Þ

π
ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

2γc þ ψ0

�
1 − i

lnðk0=kÞ
2π

�
þ ψ0

�
1þ i

lnðk0=kÞ
2π

����
ð3:4Þ
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where γc is the Euler-Mascheroni constant, and ψ0 repre-
sents the polygamma function of order 0. The Eq. (3.4)
represents a Minkowski state that leads to the Rindler
vacuum. Surprisingly, the distribution is independent of the
acceleration parameter a, even though the Eqs. (2.5)–(2.8),
which relates fðk; k0Þ and gðk; k0Þ, depends on the param-
eter a. The only input regarding a that has gone in this
calculation is that a must be nonzero. It can be seen from
the above expression that the two-point function fðk; k0Þ,
which gives the expectation value of Minkowski particles,
has an infrared divergence. This could be handled by the
standard procedure of discretizing by considering the
system in a finite box. The above expression in
Eq. (3.4) appears complicated; however, the distribution
simplifies and is more useful in terms of Unruh-Minkowski

modes. This can be achieved by choosing pðKÞ ¼ qðKÞ ¼
2 coth πjKj

a and rðKÞ ¼ sðKÞ ¼ 2cosech πjKj
a in Eq. (2.10)

which leads to WRreduced
in Eq. (2.11) to take the form of the

Rindler vacuum. Note that this choice corresponds to one
of the many possible ways to choose p, q, r, s such that the
coefficients in front of jbRðKÞj2 and jbRð−KÞj2 in
Eq. (2.11) are unity—which is required for the distribution
to be Rindler vacuum. With these chosen expressions for p,
q, r, s, one can now write the inertial distribution in terms of
Unruh-Minkowski modes using Eq. (2.10) to obtain the
following form,

WUM ¼
Y
ξ

Nξ exp

�
−2ðjαξj2 þ jα−ξj2Þ coth ðξ=2Þ

− 2
αξα−ξ þ α�ξα

�
−ξ

sinh ðξ=2Þ
�

ð3:5Þ

Interestingly, such a choice leads to a form of Wigner
distribution, with the corresponding number density of
particles turning out to be Planckian, as can be seen by
using Eq. (2.13),

hñαξi ¼ hñα−ξi ¼
1

eξ − 1

Due to the Planckian form, one may be tempted to associate
thermality with the distribution. However, one can check
that it cannot be derived from a density operator of the form
e−βĤ where Ĥ is the Hamiltonian of the Unruh-Minkowski
particles. The precise form of the anomalous averages such
as hα�ξα�−ξi breaks this equivalence. For each Rindler
frequency, there are two right-moving positive frequencies
in Unruh modes. Thus, as mentioned above, there are
several other choices of Unruh distributions that lead to the
Rindler vacuum. A comparison of the Rindler reduced
Wigner distribution in Eq. (3.3) with the form in Eq. (2.10)
provides a general relation between pðξÞ, qðξÞ, rðξÞ, and
sðξÞ that leads to the Rindler vacuum, as

ðpq − rsÞ sinh ðξ=2Þ ¼ pe−ξ=2 þ qeξ=2 − r − s ð3:6Þ

The choice of r ¼ s ¼ 0 in the above Eq. (3.6)—which
corresponds to zero anomalous averages—yields the fol-
lowing relationship between p and q:

p ¼ qeξ=2

q sinh ξ=2 − e−ξ=2
ð3:7Þ

By substituting the above relationship, denoted as Eq. (3.7),
into Eq. (2.14), one can obtain the expression:

hñαξi ¼ −ðhñα−ξi þ 1Þe−ξ ð3:8Þ

Although this relation, denoted as Eq. (3.8), may initially
appear to imply the Rindler vacuum to be unphysical, when
r ¼ s ¼ 0, due to the negative sign, it is indeed physically
valid since one only needs the expectation value of the
energy density to be bounded from below. One can refer
[56–58] for the discussion of the negative energy density in
the context of the Rindler observer. We provide two
particular examples displayed in Fig. 1. It can be observed
in both examples that hñαξi and hñα−ξi are bounded from
below. Specifically, the minimum of hñαξi and hñα−ξi in the
plot in the left panel of Fig. 1 is (−1=2), while the minimum
of hñαξi is −1=4 and hñα−ξi remains positive for the right
panel. Hence, the corresponding energy density obtained
by relation E ¼ ðhñi þ 1=2Þ) ω is positive. The lower
energy density required for the Rindler vacuum, compared
to the standard Minkowski vacuum, can be attributed to the
relatively weaker constraint implied by quantum inequal-
ities on the world lines of accelerated observers, in contrast
to inertial observers, as described in [56,57].

C. A near-Minkowski vacuum functional

Next, we consider a Minkowski Wigner functional,
which represents a state close to the Minkowski vacuum
but not exactly the vacuum. This state can be thought of as a
genuine source in the Minkowski frame, such as the ones
considered in the laboratory in the case of analog models,
or these may arise as some frequency-dependent noise in
the system, which is difficult to remove in an experimen-
tal setup.
To construct one choice of such a distribution, we choose

a weight function fðk; k0Þ to be highly peaked in the
momentum space and parametrized by a non-negative
parameter γ. The motivation behind choosing such a
two-point function fðk; k0Þ is that, in an appropriate limit,
the weight function fðk; k0Þ will reduce to a Dirac delta
distribution which leads to the Minkowski vacuum state
functional in Sec. III A. Hence, by introducing a non-
negative parameter γ such that fðk; k0Þ is highly peaked,
one can construct a Minkowski functional, which slightly
deviates from the vacuum state as shown below. We choose
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fðk; k0Þ to be

fðk; k0Þ ¼
ffiffiffiffiffiffi
4π

γ

s
θðkk0Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp e−ðlnðk0=kÞÞ2=γ: ð3:9Þ

One can note that this choice corresponds to an approxi-
mation of the Dirac delta distribution and in the limit γ → 0
reduces to the Dirac delta distribution. The Wigner dis-
tribution in the inertial frame is then

WM ¼ N exp

�
−2

Z þ∞

−∞

Z þ∞

−∞

dkdk0

4π2
a�kak

×

ffiffiffiffiffiffi
4π

γ

s
θðkk0Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp e−ðlnðk0=kÞÞ2=γ

�
ð3:10Þ

As a consistency check, the above expression reduces to the
vacuum state for an inertial observer in the limit γ → 0. To
obtain the effect of a small perturbation of γ away from 0,
we look at the expectation value of number density
(hnMðkÞi). To proceed, one needs to obtain the inverse
of fðk; k0Þ to evaluate Eq. (2.13). However, the form chosen
for fðk; k0Þ is nondiagonal. Hence, we employ an approxi-
mation for the inversion, proceeding with a Taylor series
expansion of fðk; k0; γÞ around γ ¼ 0. The detailed calcu-
lation of hnMðkÞi is presented in Appendix B. In the first-
order approximation with respect to γ, the expression for

hnMðkÞi is given by − γδð0Þ
32

þOðγ2Þ. Here, hnMðkÞi may
seem independent of k. However, one must note that such a
form is contingent not only on the limit γ → 0 but also on
the condition imposed on the frequency to be not suffi-
ciently large to render γkk0 significant. Here δð0Þ is a
consequence of the continuum limit of modes. One can
divide both sides by the volume of the box to get rid of this
divergent term—viz. the expectation value of particles per
unit frequency per unit volume is finite. To comprehend the

negative sign, one can multiply hnMðkÞi by the frequency
and then add ω=2 to obtain the energy density in natural
units—as explained in the last subsection. In particular, as
γ → 0, the resulting energy density is slightly less than ω=2
but remains positive.
To investigate the high-frequency behavior, we turn to

numerical techniques to find the inverse of fðk; k0Þ using its
discrete form with a finite box size in Mathematica. We
display the numerical results in Fig. 2. It can be seen from
the first three plots in Fig. 2 that the expectation value of
number density in an inertial frame is negative at small
frequencies—consistent with what we get by the analytical
approximation—and diverges at high frequencies for a
finite γ. By choosing smaller values of γ, we find that the
expectation value of number density per unit volume per
unit frequency range starts diverging at frequencies higher
than for the corresponding case with a comparatively higher
γ. In the strict limit γ → 0, hnMðkÞi approaches zero for all
finite frequencies—as expected for the vacuum state, since
the divergence pattern as seen in the Fig. 2 will be strictly at
infinite value of the frequency.
To obtain the expectation values of observables for the

functional in Eq. (3.10) in the Rindler frame, we compute
the reduced Wigner functional for a nonzero acceleration
parameter a. By substituting the two-point function fðk; k0Þ
from Eq. (3.7) into Eqs. (2.4) to (2.7), one obtain the
following gs: g1ðKÞ ¼ g4ðKÞ ¼ 4π2a exp ð−γK2=4a2Þ, and
g2ðKÞ ¼ g3ðKÞ ¼ 0. These lead to the reduced Wigner
functional in (2.8) to take the following form

WRreduced
¼

Y
K>0

NK exp

�
−2ðjbRðKÞj2 þ jbRð−KÞj2Þ

× e−γK
2=4a2 tanh

πK
a

�
ð3:11Þ

Using Eq. (2.12) we get the following expectation value of
the number density in the Rindler frame:

FIG. 1. The left panel shows a plot of the expectation value of Unruh Minkowski particle density with choice qðξÞ ¼ pðξÞ, keeping
r ¼ s ¼ 0, which represents hñαξi ¼ hñα−ξi ¼ −1

1þeξ
. The right panel shows the same with qðξÞ ¼ e−ξ=2cosechðξ=2Þ, keeping r ¼ s ¼ 0,

which gives hñαξi ¼ − 1þe−ξ
4

(blue line) and hñα−ξi ¼ eξ−3
4

(red line).
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hñRðKÞi ¼
1

2

�
e
γK2

4a2 coth
πK
a

− 1

�
: ð3:12Þ

As expected, in the limit γ → 0, the reduced Rindler
Wigner functional turns out to be thermal, corresponding
to the Minkowski vacuum. But for a nonzero γ, the
expectation value of the number density [see Eq. (2.12)]
diverges at high frequencies for (see the right panel of
Fig. 2) γ comparable or greater than a=K. This divergence
can be regulated by choosing a frequency cutoff. However,
the corresponding number density distribution may or may
not be regulated by the same cutoff in the inertial frame as
well as in a different frame. The form of divergence may
depend on the state as well as the frame of reference, and
further, a small perturbation around a given state can
change the regularization significantly in different frames.
In the same context, one can analyze the large frequency

behavior of the number density expectation value in terms
of the Unruh-Minkowski modes. To reexpress the
Minkowski functional in Eq. (3.10) in terms of the UM
mode functional in an inertial frame we compare Eq. (2.10)
with Eq. (3.9) which suggests identifying pðξÞ ¼ qðξÞ ¼ 2

e−γξ
2=16π2 under a choice r ¼ s ¼ 0. Thus, the weight

functions in the Wigner functional in terms of the
Unruh-Minkowski degrees of freedom also have a

Gaussian form. Using Eq. (2.12), the expectation value
of the number density of Unruh-Minkowski particles for
smaller frequencies, to the linear order in γ, is found to be
γξ2=32π2 þOðγ2Þ. However, for larger frequencies, it
grows rapidly. One concludes from here that in terms of
Unruh particles, the hñαξi and hñα−ξi both diverge at high
frequencies for a γ greater than 32π2=ξ2. The functional
form of the divergence associated with number density is
sensitive to the form of fðk; k0Þ chosen. Even with a choice
of fðk; k0Þ, which slightly deviates from the corresponding
form of the vacuum, the hñðkÞi may be affected in a
nontrivial way. For example, let us consider the following
form

fðk; k0Þ ¼ π

c
θðkk0Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp e−jc lnðk0=kÞÞj ð3:13Þ

for some nonzero constant c. The corresponding Rindler
frame occupation number hñRðKÞi, is found to be such that
its second derivative becomes constant at high frequencies
and goes to (0) at lower frequencies.

D. A peaked frequency distribution

In the earlier subsections, we discussed the vacuum state
Wigner functionals with its weight function, where fðk; k0Þ

FIG. 2. The first three plots display the expectation value of the number density in the inertial frame, hnMðkÞi, while the right bottom
panel shows the corresponding hñRðKÞi in the Rindler frame.
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is sharply peaked in the Dirac delta distribution sense about
the origin in momentum space. We also analyzed a case of
Wigner functional, which slightly deviates from the vac-
uum state functional by considering its corresponding
weight function fðk; k0Þ to have a small width around a
peak value in momentum space. Here, we consider a
particular Wigner functional such that the expectation
value of the corresponding Minkowski number density
in momentum space is sharply peaked instead of the
sharply peaked two-point weight function fðk; k0Þ. One
can note that Eq. (2.13) hints that the expectation value of
number density and fðk; k0Þ are inversely related, and hence
the peak in each separately has a different interpretation.
One can interpret a peak in the number density of a state as
corresponding to a band pass filter, which allows only
particles having frequencies lying about some peak value to
pass through. Furthermore, it can also be used as a toy
model for Bose-Einstein condensates, high-density gluon
condensates such as color glass condensate, pion conden-
sates, or for information processing in quantum computing,
where a distribution of particles with nearly the same
frequency is considered.
To construct such a state we choose the following form

for the inertial frame Wigner distribution:

WM ¼ N exp

�
−2

Z þ∞

−∞

Z þ∞

−∞

dkdk0

4π2
a�kak

×
2θðkk0Þ

γ
ffiffiffiffiffiffi
kk0

p ððk=k0Þ1=2γ þ ðk0=kÞ1=2γÞ

�
; ð3:14Þ

where γ is a non-negative parameter. Such a choice leads
the expectation value of the Minkowski number density

operator hñMðkÞi to be peaked in the momentum space as
described below. We follow the procedure outlined in the
previous subsection to numerically obtain the plots of
inertial frame number density hñMðkÞi and Rindler frame
number density hñRðKÞi as shown in Fig. 3. The peak of
number density hñMðkÞ in frequency space shifts with a
change in the value of the parameter γ. From the plots, one
can observe that the position of the peak shifts rightward,
that is, toward a higher frequency with a decrease in γ.
Further, the absolute value of the peak of hñMi also
decreases with a decrease of γ. Thus, as γ → 0, the peak
of the number density appears to be shifted to infinity;
however, the absolute value of the peak also approaches
zero. This behavior is consistent with the expected limit
wherein the hñMðkÞ approaches the vacuum state hñMi,
when γ → 0. Using Eqs. (2.5)–(2.9), one obtains the form
of giðKÞs to be g1ðKÞ ¼ g4ðKÞ ¼ 4π2asechðπγjKj=aÞ and
g2ðKÞ ¼ g3ðKÞ ¼ 0. The corresponding Rindler frame
reduced Wigner distribution for a nonzero a is found to be

WRreduced
¼

Y
K>0

NK exp

�
−2ðjbRðKÞj2 þ jbRð−KÞj2Þ

× sech
πjKjγ
a

tanh
πjKj
a

�
: ð3:15Þ

The corresponding expectation value of the number density
in the Rindler frame is obtained to be

hñRðKÞi ¼ 1

2

�
cosh

�
πγjKj
a

�
coth

�
πjKj
a

�
− 1

�
: ð3:16Þ

For γ ¼ 0, hñRðKÞi reduces to the standard Planckian form
with the Unruh temperature T ¼ a=2π, as is expected since
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FIG. 3. The red curve plots display the expectation value of the number density in the inertial frame hñMðkÞi for the state given in
Sec. III D while the blue curves show the corresponding hñRðKÞi in the Rindler frame.
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γ → 0 represents the vacuumMinkowski-particle state. The
bottom panel in Fig. 3 shows the expectation value of
Rindler number density hñRðKÞi given in, Eq. (3.16). One
can see that it diverges at higher frequencies. The diver-
gence becomes sharper as γ increases from 1=7 to 1.
Whereas at low-frequencies, the behavior of hñRðKÞi is
finite and seems approaching zero for the case of γ ¼ 1,
while for γ ¼ 1=3 and 1=7 there is a rise in hñRðKÞi when
the Rindler frequency approaches zero. These observations
suggest that an increase in hñRðKÞi for the field in this state
when γ →< 1=7 starts slightly earlier than the same for
γ →> 1. Alternatively, one can conclude that as γ → 0,
hñRðKÞi diverges at lower frequencies and decays expo-
nentially at high frequencies, while the behavior is opposite
for a relatively high γ, if one restricts oneself to a finite
range of frequencies.

E. Indistinguishability of thermal
and quantum fluctuations

Previous works in the literature have attempted to
explore the relationship between quantum and gravitational
phenomenon by exploring the relation or connection
between quantum and statistical fluctuations [59]. There
are also proposals to describe inertia as a consequence of
the second law of thermodynamics [60]. In [8], the
indistinguishability of thermal and quantum fluctuations
was demonstrated in the context of the Unruh thermal bath.
Using the density matrix formalism, the corresponding
reduced density matrix in the Rindler frame was obtained
starting from a thermal bath of one set of Unruh-
Minkowski particles. The resultant ρred in [8,61] was
symmetric in the temperature TUM of the thermal bath
considered and the Unruh acceleration temperature
T ¼ a=2π. Here, we explore further this relationship in
the Wigner functional formalism. In [8], hñα−ξi is taken to
be zero, that is, thermality is considered only for hñαξi. We
consider a Wigner functional that represents a thermal bath
of Unruh-Minkowski particles, where both hñαξi and hñα−ξi
follow a thermal distribution.
We consider the following Unruh-Minkowski-Wigner

distribution:

WUM ¼
Y
ξ

Nξe
−2jαξj2 tanhajξj2γ −2jα−ξj2 tanhajξj2γ

¼
Y
K>0

NKe
−2jαK j2 tanhπKγ −2jα−K j2 tanhπKγ ; ð3:17Þ

where γ is some nonnegative real parameter. It is known
that different quantum states can lead to the same expect-
ation value of, say, the number density operator, which is a
two-point correlator, while the corresponding expectation
values of higher order correlations of the same operator,
which are essentially fluctuations, can be different. In
Sec. III B, we found a Planckian expectation value of
Unruh-Minkowski particles hnUMðξÞi for the state func-
tional in Eq. (3.5) that leads to the corresponding reduced

Wigner functional in the Rindler frame to be that of the
Rindler vacuum. In contrast, the Wigner functional in
Eq. (3.17) represents a true thermal bath, with both
hnαξi and hnα−ξi describing a thermal bath at the same
temperature, characterized by γ. By substituting p0ðKÞ ¼
q0ðKÞ ¼ tanh πjKj=γ and r ¼ s ¼ 0 in equation (2.11), we
obtain the following reduced Wigner distribution in the
Rindler frame for a nonzero acceleration parameter a:

WRreduced
¼

Y
K>0

NK exp

�
−2ðjbRðKÞj2 þ jbRð−KÞj2Þ

× tanh
πK
γ

tanh
πK
a

�
ð3:18Þ

which, using Eq. (2.12), yields the following expectation
value of number density in the Rindler frame:

hñRðKÞi ¼ 1

ðe2πK=γ − 1Þð1 − e−2πK=aÞ

þ 1

ðe2πK=a − 1Þð1 − e−2πK=γÞ : ð3:19Þ

We first note that the above expression is different from the
expectation value hñRðKÞi for the single thermal bath of
hñαξi considered in [8]. However, the expression above,
Eq. (3.19), is the same as the expression for the expectation
value of the number density given in Eqs. (28) and (40) of
[62], with the identification β ¼ 2π=γ and g ¼ a. In [62],
along with the Bogoliuobov calculations, the authors have
also illustrated the response rate of a Unruh-DeWitt detec-
tor for a Rindler Rindler trajectory in the Minkowski
vacuum. One can interpret the result in Eq. (3.19) as the
sum of expectation values of the number density of two
gray bodies with the gray body factor equal to the partition
function of the other one. One can also note that Eq. (3.18)
is invariant under the exchange of two temperatures T1 ¼
a=2π and T2 ¼ γ=2π. In other words, the reduced Wigner
functional with acceleration parameter a for a thermal bath
at temperature γ=2π is identical to the reduced Wigner
functional with acceleration parameter corresponding to
Unruh-Davies temperature γ=2π for a thermal bath of UM
particles at temperature a=2π. This property supports the
idea of indistinguishability of thermal and quantum fluc-
tuations [8], which tells that within the domain of thermo-
dynamic experiments, the quantum fluctuations and
statistical fluctuations are indistinguishable.
We now proceed further to obtain an inertial frame

functional in terms of Minkowski modes that yields
the reduced Wigner functional Eq. (3.18). We first read
off g1ðKÞ ¼ g4ðKÞ ¼ 4π2a tanh ðπjKj=γÞ and g2ðKÞ ¼
g3ðKÞ ¼ 0 by comparing Eq. (3.18) with Eq. (2.9).
Next, we use the inverse Fourier transform in
Eqs. (2.5)–(2.8) to determine the weight function
fðk; k0Þ. Substituting the resulting weight function into
Eq. (2.3) yields
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WM ¼ N exp

�
−2

Z þ∞

−∞

Z þ∞

−∞

dkdk0

4π2
a�kak

�
2πδðk − k0Þ

þ γ0θðkk0Þ
2π

ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �
−ψ0

�
1 − i

γ0 lnðk0=kÞ
4π

�
− ψ0

�
1þ i

γ0 lnðk0=kÞ
4π

�
þ ψ0

�
1

2
− i

γ0 lnðk0=kÞ
4π

�
þ ψ0

�
1

2
þ i

γ0 lnðk0=kÞ
4π

����
ð3:20Þ

where, γ0 ¼ γ=a. Here, ψ0 represents the polygamma
function of order 0, i.e., the digamma function. The range
of the integration over k and k0 in the above expression is
−∞ to ∞. However, one can split the integration and use
the θðkk0Þ term to change the integration limit from 0 to∞.
This yields some another weight, say h, where the inte-
gration runs from 0 to ∞. The expectation value of the
number density of Minkowski particles can be determined
using Eq. (2.12). To obtain the inverse of hðk; k0Þwe use the
definition

R
hðk; k0Þh−1ðk0; k00Þdk0 ¼ δðk − k00Þ and substi-

tute the form of hðk; k0Þ from Eq. (3.20) to identify the
resultant expression as a Fredholm integral equation of
the second kind [63]. Using the standard solution of the
Fredholm integral equation in Eq. (2.13) yields the follow-
ing series—describing the expectation value of the number
density of Minkowski particles—which is convergent as
γ0 → 0.

hnMðkÞi ¼
1

2

�
−

γ0

2π
hðk; kÞ þ γ02

4π2

Z
∞

0þ
hðk; k0Þhðk0; kÞdk0

−
γ03

8π3

Z
∞

0þ
hðk; k0Þ

Z
∞

0þ
hðk0; k00Þhðk00; kÞdk0dk00

þ…

�
ð3:21Þ

where hðk; k0Þ represents the term, apart from θðkk0Þ, in the
weight function fðk; k0Þ that appears alongside the Dirac
delta function, given by

hðk;k0Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

−ψ0

�
1− i

γ0 lnðk0=kÞ
4π

�
−ψ0

�
1þ i

γ0 lnðk0=kÞ
4π

�
þψ0

�
1

2
− i

γ0 lnðk0=kÞ
4π

�
þψ0

�
1

2
þ i

γ0 lnðk0=kÞ
4π

��
: ð3:22Þ

Additionally, one can confine the system to a finite box,
which will ensure the lower limit of integration to be 0þ.
For γ0 ¼ 0 the hnMðkÞi in Eq. (3.22), yields the vacuum
state in Minkowski and the hnRðKÞi in Eq. (3.19) reduces
to Planckian distribution in the Rindler frame, as expected.
Another interesting aspect would be to explore the effect
of the extra term hðk; k0Þ to first order in γ0.

Using limx→0½−ψ0ð1− i γ
0x
4πÞ−ψ0ð1þ i γ

0x
4πÞþψ0ð1

2
− i γ

0x
4πÞþ

ψ0ð1
2
þ i γ

0x
4πÞ� ¼−2.77259 and retaining terms linear in γ0

in Eq. (3.21) we obtain the following expression for the
number density of Minkowski particles:

hnMðkÞi ¼ 0.035115
γ0

jkj : ð3:23Þ

Interestingly, for small values of jkj, the above expression
of hnMðkÞi exhibits a dependence on jkj akin to that of a
bath with Planckian distribution.
Further, it is worth mentioning that in the case when we

choose p0ðKÞ ¼ tanhðβjKj=2Þ and q0ðKÞ ¼ 1 in Eq. (2.10),
the corresponding configuration represents a thermal bath
of Unruh-Minkowski (UM) particles in hñαξi, and with a
zero average particle number density for hñα−ξi, which is
the specific scenario discussed in Ref. [8]. Remarkably, this
case is also consistent with detector response rate calcu-
lations [64]. However, it is crucial to recognize that, since a
particle detector also gets extra contributions apart from
particlelike excitations, in more general cases, detector
response may lead to varying conclusions, as demonstrated
in different scenarios in Ref. [65].

F. Fermionization of a bosonic field

In curved spacetime, a relationship between statistics and
spin naturally arises from the underlying spacetime dynam-
ics–a connection that is absent for inertial observers in the
flat geometry of Minkowski spacetime. [66–68]. However,
the nontrivial Bogoliubov coefficients for an accelerated
observer lead to the emergence of the spin-statistics con-
nection for accelerated observers even in Minkowski space-
time [68]. Additionally, the equivalence principle, which
posits a local equivalence between acceleration and gravi-
tational effects, also suggests that this connection persists in
Rindler space. The response rate calculation in [6] for a
detectormoving on a uniformly accelerated trajectory shows
that the statistics of the Minkowski vacuum of a massless
scalar field are Fermionic in an odd number of dimensions
and are bosonic for even number of dimensions. However,
the Bogoliubov calculation yields a bosonic distribution in
any dimension for the number density expectation in terms
of the uniformly accelerated observer operators in a
Minkowski vacuum [69]. In this subsection, we consider
a Minkowski-Wigner functional which curiously leads to a
mixture of both Fermionic and bosonic distributions in the
Rindler frame, as described below.
We define a Minkowski state by modifying the weight

function fðk; k0Þ discussed in the preceding subsection in
Eq. (3.20) and introducing a change in sign of all the terms
other than the Dirac delta in the weight function fðk; k0Þ.
The objective is to assess the influence of the corresponding
remaining term, hðk; k0Þ. More precisely, we take the
Wigner distribution for the inertial frame to be of the
following form:
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WM ¼ N exp

�
−2

Z þ∞

−∞

Z þ∞

−∞

dkdk0

4π2
a�kak

�
2πδðk − k0Þ − γ0θðkk0Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

−ψ0

�
1 − i

γ0 lnðk0=kÞ
4π

�
− ψ0

�
1þ i

γ0 lnðk0=kÞ
4π

�
þ ψ0

�
1

2
− i

γ0 lnðk0=kÞ
4π

�
þ ψ0

�
1

2
þ i

γ0 lnðk0=kÞ
4π

����
: ð3:24Þ

Here, ψ0 represents the polygamma function of order 0, i.e.,
the digamma function. The expectation value of the number
density in the inertial frame can be obtained by the similar
procedure as in the preceding subsections. It yields a series
that differs from Eq. (3.21) just by a negative sign, and it is
convergent for γ → 0, if one considers the system to be in a
box. However, in the present scenario, the expectation
value of Minkowski particles up to the first order in γ turns
out to be hnMðkÞi ¼ −0.035115γ=jkj. We note that this
value is negative of the hnMðkÞi in Eq. (3.23). Once again,
we can multiply hnMðkÞi by frequency and add the zero
point energy to get the positive and finite answer. One can
get the weight function corresponding to the inertial frame
Wigner functional displayed in Eq. (3.24) by substitu-
ting g1ðKÞ ¼ g4ðKÞ ¼ 4π2að2 − tanh ðπjKj=γÞÞ; g2ðKÞ ¼
g3ðKÞ ¼ 0 in Eqs. (2.4)–(2.8) and using the inverse Fourier
transform. The substitution of these gs in Eq. (2.9) yields
the following reduced Wigner distribution in the Rindler
frame for a nonzero a

WRreduced
¼

Y
K>0

NK exp

�
−2ðjbRðKÞj2 þ jbRð−KÞj2Þ

×

�
2 − tanh

πjKj
γ

�
tanh

πjKj
a

�
: ð3:25Þ

Using (2.12) for the expectation value of number density
one obtain

hñRðKÞi ¼
1

−1þ e2πjKj=a
−

1

3þ e2πjKj=γ

−
2

ð−1þ e
2πjKj
a Þð3þ e

2πjKj
γ Þ

; ð3:26Þ

where γ ¼ γ0a. In the above expression, the second term
exhibits the fermionic statistics. The overall structure of the
expression, with the exception of the fermionic form instead
of bosonic component is similar to, Eq. (9) of [8], where the
authors found the expectation value of the number density in
the Rindler frame corresponding to a Unruh thermal bath in
the Minkowski frame, to be the sum of two bosonic
distributions plus an additional term that is the product of
the first two terms. One can interpret Eq. (3.26) in terms of
the spontaneous and stimulated emission ofRindler particles
by writing as hñβi þ hñβ0 i þ 2hñβihñβ0 i. It is important to
note that the fermionic nature of Rindler noise was pre-
viously known in the case of odd dimensions for the Unruh-
Dewitt detector response [6]. Here, a Fermionic component
arises in even dimensions in spite of using the Bogoliuobov
calculation, which goes into calculating the Rindler reduced
Wigner functional from the Minkowski functional.
As mentioned earlier, one can obtain the reduced Wigner

functional described in Eq. (3.25) by using several other
inertial frame Unruh-Minkowski distributions. We arrive at
one such interesting inertial frame Wigner functional, in
terms of Unruh-Minkowski modes, that yields Eq. (3.26) by
substituting the following weight functions in Eq. (2.10):

pðξÞ ¼ qðξÞ ¼ sech

�
ξ

2

�
;

rðξÞ ¼ 2e
ξ
2γ0jðξÞ

3þ e
ξ
γ0
;

sðξÞ ¼ −
e−

ξ
2γ0sechðξ

2
Þð2þ e

ξ
γ0 ð−2þ sechðξ

2
ÞÞ þ sechðξ

2
ÞÞð−2þ tanhð ξ

2γ0ÞÞ
2jðξÞ ;

jðξÞ ¼ 2e−ξ=2γ
0 þ

coshð ξ
2γ0Þ

ð1þ e
ξ
γ0 Þ3=2

��
3þ 4e

ξ
γ0 þ e

2ξ
γ0 þ 8 cosh

�
ξ

2

��

×

�
−3þ 2 cosh

�
ξ

2

�
þ e

ξ
γ0
�
−1þ 2 cosh

�
ξ

2

���
sech2

�
ξ

2

��
1=2

; ð3:27Þ

where γ0 ¼ γ=a. Substituting the above weight functions, denoted as Eq. (3.27), in Eq. (2.14) we obtain the expectation
value of the Unruh-Minkowski number density as
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hñαξi ¼ hñα−ξi ¼
1

e2πjKj=γ − 1
; ð3:28Þ

which is nothing but a Planckian distribution. The bosonic
statistics of inertial frame expectation value Eq. (3.28)
suggests that there can be a mixing of statistics by just
choosing a different frame. However, as discussed in
Sec. III B, it does not represent a true thermal bath because
of the nonzero rðξÞ and sðξÞ that yield nonzero anomalous
averages.

IV. DISCUSSION

Using the Wigner distribution formalism, we derived a
general form of the reduced Wigner functionals in Rindler
spacetime by tracing out the degrees of freedom beyond the
Rindler horizon of a real massless scalar field in (1þ 1)
dimensions for a large set of states of Minkowski and
Unruh-Minkowski modes. The obtained Wigner function-
als can be used to compute the expectation value of any
relevant physical observables. We further presented a
general expression for the expectation value of the number
density operator for each of these Wigner functionals. As a
consistency check, we examined the Minkowski vacuum,
which yields the reduced Wigner functional of a thermal
bath in the Rindler frame—illustrating the standard Unruh
effect. Using the general result, we analyzed several special
Minkowski distributions and their corresponding reduced
Rindler distributions. Below, we highlight some of the
significant observations in these cases.
An interesting Minkowski functional to investigate is a

genuine source in the Minkowski frame, such as the ones
considered in the laboratory in the case of analog models,
or as a frequency-dependent noise in the system. To
explore, we considered a near-Minkowski vacuum func-
tional, with a slight deviation from the Minkowski vacuum
characterized by a non-negative parameter γ. The expect-
ation value of the Minkowski number density, hñMðkÞi,
remains constant at lower frequencies but increases at
higher frequencies. In the corresponding Rindler space,
the number density hñRðKÞi deviates from thermality at
frequencies higher compared to the acceleration scale for a
finite γ. As a result, the occupation number in the Rindler
frame matches that of a Planckian bath up to a frequency,
whose scale is smaller than the acceleration scale. An
observer sensitive only to lower frequencies will still
observe thermal behavior for sufficiently small γ.
We further analyzed a Wigner functional distribution

where hñMðkÞi is sharply peaked around a specific
Minkowski mode frequency. Such a distribution acts as
a toy model for situations such as a band-pass filter, which
allows only particles with frequencies near a peak value to
pass through, even for analog systems where the occupa-
tion number is peaked around certain energy state like in
the case of Bose-Einstein condensates, high-density gluon
condensates (such as color glass condensate), pion

condensates, or information processing in quantum com-
puting, where a distribution of particles with nearly the
same frequency is considered. The peak can be shifted
within the k space by varying the parameter γ; however,
moving the peak to higher frequencies reduces the overall
magnitude of hñMðkÞi. For large γ, we observe a comple-
mentary relation between the inertial and Rindler frame
such that if we have an inertial frame state with a large
occupation number of particles in the small frequency
modes, then the Rindler frame observer, with a detector
having sensitivity to detect a finite range of frequencies,
will find a deviation from the Planckian and will detect
most of the particles in the high-frequency range. However,
if there are only a few particles at higher frequencies and
none at lower frequencies in the inertial frame, the Rindler
observer detects a Planckian spectrum in the low-frequency
range with small corrections in the high-frequency limit.
Another interesting distribution which can be setup in a

laboratory for analog models is a bath of Unruh-Minkowski
particles in the inertial frame, such that it exhibits thermal
characteristics in both of the Unruh-Minkowski modes that
correspond to the same Rindler frequency i.e., the thermal-
ity in both αξ and α−ξ. The corresponding reduced Wigner
functional is found to be invariant under the exchange
between the Unruh-Davies temperature (T1 ¼ a=2π) and
the bath temperature in the inertial frame (T2 ¼ γ=2π).
Therefore, an observer, by conducting thermodynamical
experiments alone, cannot distinguish whether he is accel-
erating with an acceleration a in a thermal bath at temper-
ature γ=2π or with an acceleration of γ in a thermal bath at
temperature a=2π. Thus, we obtained the indistinguish-
ability of quantum and statistical fluctuations even with a
bath of Unruh-Minkowski particles exhibiting thermality in
both of the Unruh-Minkowski modes that correspond to the
same Rindler frequency, as opposed to the same with only
one mode as described in [8]. Remarkably, we pointed out
that the occupation number hñRðKÞi, observed by the
Rindler observer in this thermal bath, is the same as the
occupation number observed by a Rindler-Rindler observer
in Minkowski vacuum [62].
In [8], the occupation number of Rindler particles

observed by a uniformly accelerated observer in a bath
of Unruh-Minkowski particles, which is thermal only in αξ
for an inertial observer, was shown to be the sum of two
Planckian factors with bosonic statistics, along with a third
term that is the product of the first two terms. The authors
of [8] interpreted it as the presence of a thermal bath of
Unruh-Minkowski particles in an inertial frame stimulating
an additional emission of Rindler particles following the
same bosonic statistics. To further test the connection of
simulated emission and the statistical nature of the dis-
tribution of emitted particles, we considered an inertial
frame state distribution which yields the occupation num-
ber of Rindler particles for an accelerated observer to be the
sum of a Planckian factor with Bosonic statistics, a factor
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with Fermionic statistics, and a third term, which is twice
the product of the first two terms. Thus it is possible to add
particles in the inertial frame over the Minkowski vacuum
such that it stimulates both bosonic and fermionic distri-
bution in terms of Rindler particles in the accelerated frame.
One can note that this is still a 1þ 1 dimensional example
in contrast to [6], where it was shown that depending on the
dimensions, one obtains bosonic or fermionic distributions
for even and odd dimensions, respectively.
The special distributions discussed above illustrate the

applicability of the general expressions for a set of
distributions introduced in the main text and that they
can be used as a toy model in the understanding of various
physical situations, such as those in the study of the Unruh
effect through analog models in a laboratory. Indeed, there
are several other distributions where the formalism pre-
sented can be applied. Here, we have restricted our analysis
to real massless scalar fields in Minkowski space with
(1þ 1) dimensions for a special set of states. Extending to
other dimensions with different fields in different states
may yield further insight that can be explored in
future work.
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APPENDIX A: WIGNER DISTRIBUTION FOR A
BATH OF MINKOWSKI PARTICLES

In this appendix, we briefly outline the calculation of the
reduced Wigner distribution for Minkowski modes dis-
cussed in Sec. II. The real massless scalar field in (1þ 1)
dimensional Minkowski spacetime can be described by the
following general solution of the Klein-Gordon equation

ϕ̂ðt; xÞ ¼
Z þ∞

−∞

dkffiffiffiffiffiffiffiffiffiffi
2πjkjp ½e−ijkjctþikxâðkÞ þ eijkjct−ikxâ†ðkÞ�:

ðA1Þ

The above expression suggests that the field can be thought
of as an infinite collection of harmonic oscillators, one for
each k. One can have a bath filled with such fields
completely described by its density matrix or its Wigner
distribution. We consider those sets of distributions in an
inertial frame that can be described by the Wigner dis-
tribution given in Eq. (2.3). We also assume Eqs. (2.5)–
(2.8) to be satisfied. Now, using the standard Bogoliubov
transformation of Minkowski space creation and annihila-
tion operators from inertial to the Rindler frame [67], one
gets the following Wigner distribution in the Rindler frame:

WR ¼ N̄ exp

�
−

1

2π2

Z þ∞

−∞

Z þ∞

−∞

Z þ∞

−∞

Z þ∞

−∞
dKdK0dkdk0Ifðk; k0Þ

�
: ðA2Þ

Here I is given by

½α�ðk0; K0Þαðk; KÞb�LðK0ÞbLðKÞ − αðk; KÞβðk0; K0ÞbLðKÞbLðK0Þ þ αðk; KÞαðk0; K0ÞbLðKÞb�RðK0Þ
− αðk; KÞβ�ðk0; K0ÞbLðKÞbRðK0Þ − β�ðk; KÞα�ðk0; K0Þb�LðK0Þ þ β�ðk; KÞβðk0; K0Þb�LðKÞbLðK0Þ
− β�ðk; KÞαðk0; K0Þb�LðKÞbRðK0Þ� þ β�ðk; KÞβ�ðk0; K0Þb�LðKÞbRðK0Þ þ α�ðk0; K0Þα�ðk; KÞb�LðK0ÞbRðKÞ
− αðk; KÞ�βðk0; K0ÞbRðKÞbLðK0Þ þ α�ðk; KÞαðk0; K0ÞbRðKÞb�RðK0Þ − α�ðk; KÞβ�ðk0; K0ÞbRðKÞbRðK0Þ
− βðk; KÞα�ðk0; K0Þb�RðKÞb�LðK0Þ þ βðk; KÞβðk0; K0Þb�RðKÞbLðK0Þ − βðk; KÞαðk0; K0Þb�RðKÞb�RðK0Þ
þ βðk; KÞβ�ðk0; K0Þb�RðKÞbRðK0Þ�;

where αðÞ and βðÞ are Bogoliuobov coefficients, and we denote all inertial frame quantities by small letters while Rindler
frame quantities by capital letters. One can write the Bogoliuobov coefficients as (see Appendix of Refs. [35,36])

αðk; KÞ ¼ θðkKÞ
ffiffiffiffi
K
k

r
Gðk; KÞ; βðk; KÞ ¼ θðkKÞ

ffiffiffiffi
K
k

r
Gð−k; KÞ; ðA3Þ

Gðk; KÞ ¼ 1

2πa
Γ
�
−
iK
a

�
exp

�
i
K
a
ln
jkj
a

þ signðkÞ πK
2a

�
ðA4Þ

Let us denote the first term inside the exponential in Eq. (A2) as R1 and similarly other terms as R2; R3;…; R16. Now, we
have to compute these 16 integrations. Let us start with first and perform k, k0 integration first. Say,
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χ1ðK;K0Þ ¼
Z þ∞

−∞

Z þ∞

−∞
dkdk0α�ðk0; K0Þαðk; KÞfðk; k0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijKjjK0jp
4π2a2

Γ
�
iK0

a

�
Γ
�
−iK
a

�Z þ∞

−∞

Z þ∞

−∞
dkdk0

θðk0K0ÞθðkKÞÞffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp exp

�
−iK0

a
ln
jk0j
a

þ iK
a
ln
jkj
a

þ signðk0Þ πK
0

2a
þ signðkÞ πK

2a

�
fðk; k0Þ:

One can express θðkKÞ and θðk0K0Þ in terms of sign function and split the integration from −∞ to 0 plus 0 to þ∞. We get
the following after changing the limit from 0 to infinity and using properties Eqs. (2.5)–(2.8).

χ1ðK;K0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijKjjK0jp

16π2a2
Γ
�
iK0

a

�
Γ
�
−iK
a

�
½ð1 − signðK0ÞÞð1 − signðKÞÞe−πðKþK0Þ

2a g4ðK;K0Þ

þ ð1þ signðK0ÞÞð1 − signðKÞÞeπð−KþK0Þ
2a g3ðK;K0Þ þ ð1 − signðK0ÞÞð1þ signðKÞÞ

× e
πðK−K0Þ

2a g2ðK;K0Þ� þ ð1þ signðK0ÞÞð1þ signðKÞÞeπðKþK0Þ
2a g1ðK;K0Þ�δðK − K0Þ:

⇒ R1 ¼
�
−1
2π2

ZZ þ∞

−∞
dKdK0χ1ðK;K0ÞbLðKÞb�LðK0Þ

�
¼ −1

8π4a2

Z þ∞

−∞
dKjKj

����Γ�iKa
�����2½θð−KÞg4ðKÞe−πK=a þ θðKÞg1ðKÞeπK=a�jbLðKÞj2

Here gðK;KÞ is denoted by gðKÞ. We compute others in a similar manner. These are given by,

χ2ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0βðk0; K0Þαðk; KÞfðk; k0Þ

⇒ R2 ¼
�
1

2π2

ZZ
∞

−∞
dKdK0χ2ðK;K0ÞbLðKÞbLðK0Þ

�
¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θðKÞg2 þ θð−KÞg3�bLðKÞbLð−KÞ

χ3ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0αðk0; K0Þαðk; KÞfðk; k0Þ

⇒ R3 ¼
−1
2π2

ZZ
∞

−∞
dKdK0χ3ðK;K0ÞbLðKÞb�RðK0Þ

¼ −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ iKa
����2½θðKÞg2ðKÞeπK

a þ θð−KÞg3ðKÞe−πK
a �b�Rð−KÞbLðKÞ

χ4ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0β�ðk0; K0Þαðk; KÞfðk; k0Þ

⇒ R4 ¼
1

2π2

ZZ
∞

−∞
dKdK0χ4ðK;K0ÞbLðKÞbRðK0Þ

¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θð−KÞg4 þ θðKÞg1�bRðKÞbLðKÞ
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χ5ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0α�ðk0; K0Þβ�ðk; KÞfðk; k0Þ

⇒ R5 ¼
1

2π2

ZZ
∞

−∞
dKdK0χ5ðK;K0Þb�LðKÞb�LðK0Þ

¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θð−KÞg2 þ θðKÞg3�b�LðKÞb�Lð−KÞ

χ6ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0βðk0; K0Þβ�ðk; KÞfðk; k0Þ

⇒ R6 ¼
−1
2π2

ZZ
∞

−∞
dKdK0χ6ðK;K0Þb�LðKÞbLðK0Þ

¼ −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ iKa
����2½θðKÞe−πK=ag4 þ θð−KÞeπK=ag1�bLð−KÞb�Lð−KÞ

χ7ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0αðk0; K0Þβ�ðk; KÞfðk; k0Þ

⇒ R7 ¼
1

2π2

ZZ
∞

−∞
dKdK0χ7ðK;K0Þb�LðKÞb�RðK0Þ

¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θðKÞg4 þ θð−KÞg1�bLð−KÞ�b�Rð−KÞ

χ8ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0β�ðk0; K0Þβ�ðk; KÞfðk; k0Þ

⇒ R8 ¼
−1
2π2

ZZ
∞

−∞
dKdK0χ8ðK;K0Þb�LðKÞbRðK0Þ

¼ −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ iKa
����2½θð−KÞeπK=ag2 þ θðKÞe−πK=ag3�b�Lð−KÞbRðKÞ

χ9ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0α�ðk0; K0Þα�ðk; KÞfðk; k0Þ

⇒ R9 ¼
−1
2π2

ZZ
∞

−∞
dKdK0χ9ðK;K0ÞbRðKÞb�LðK0Þ

¼ −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ iKa
����2½θð−KÞe−πK=ag2 þ θðKÞeπK=ag3�b�LðKÞbRð−KÞ

χ10ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0βðk0; K0Þα�ðk; KÞfðk; k0Þ

⇒ R10 ¼
1

2π2

ZZ
∞

−∞
dKdK0χ10ðK;K0ÞbRðKÞbLðK0Þ

¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θðKÞg4 þ θð−KÞg1�bLð−KÞbRð−KÞ

NITESH K. DUBEY and SANVED KOLEKAR PHYS. REV. D 111, 065004 (2025)

065004-18



χ11ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0αðk0; K0Þα�ðk; KÞfðk; k0Þ

⇒ R11 ¼
−1
2π2

ZZ
∞

−∞
dKdK0χ11ðK;K0ÞbRðKÞb�RðK0Þ

¼ −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θðKÞeπK=ag4 þ θð−KÞg1e−πK=a�bRð−KÞ�bRð−KÞ

χ12ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0β�ðk0; K0Þα�ðk; KÞfðk; k0Þ

⇒ R12 ¼
1

2π2

ZZ
∞

−∞
dKdK0χ12ðK;K0ÞbRðKÞbRðK0Þ

¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θðKÞg3 þ θð−KÞg2�bRð−KÞbRðKÞ

χ13ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0αðk0; K0Þβðk; KÞfðk; k0Þ

⇒ R13 ¼
1

2π2

ZZ
∞

−∞
dKdK0χ13ðK;K0Þb�RðKÞb�LðK0Þ

¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θð−KÞg4 þ θðKÞg1�b�RðKÞb�LðKÞ

χ14ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0βðk0; K0Þβðk; KÞfðk; k0Þ

⇒ R14 ¼
−1
2π2

ZZ
∞

−∞
dKdK0χ14ðK;K0Þb�RðKÞbLðK0Þ

¼ −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θð−KÞeπK=ag3 þ θðKÞe−πK=ag2�b�RðKÞbLð−KÞ

χ15ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0αðk0; K0Þβðk; KÞfðk; k0Þ

⇒ R15 ¼
1

2π2

ZZ
∞

−∞
dKdK0χ15ðK;K0Þb�RðKÞb�RðK0Þ

¼ 1

8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θðKÞg2 þ θð−KÞg3�b�Rð−KÞb�RðKÞ

χ16ðK;K0Þ ¼
ZZ þ∞

−∞
dkdk0β�ðk0; K0Þβðk; KÞfðk; k0Þ

⇒ R16 ¼
−1
2π2

ZZ
∞

−∞
dKdK0χ16ðK;K0Þb�RðKÞbRðK0Þ

¼ −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ iK
a

����2½θð−KÞeπK=ag4 þ θðKÞe−πK=ag1�b�RðKÞbRðKÞ

Now, we put all these together in Eq. (3.1) and separate terms containing bLðKÞ, as our aim is to first take trace
over bLðKÞ.
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WR ¼ N̄ exp

� −1
8π4a2

Z þ∞

−∞
dKjKj

����Γ�iKa
�����2½ðθð−KÞg4ðKÞe−nK

a þ θðKÞg1ðKÞeπK
a ÞjbLðKÞj2

þ bLðKÞf−ðθðKÞg2 þ θð−KÞg3ÞbLð−KÞ þ ðθðKÞeπK
a g2 þ θð−KÞe−πK

a g3Þb�Rð−KÞ
− ðθð−KÞg4 þ θðKÞg1ÞbRðKÞg þ b�LðKÞf−ðθð−KÞg2 þ θðKÞg3Þb�Lð−KÞ
þ ðθðKÞeπK

a g3 þ θð−KÞe−πK
a g2ÞbRð−KÞ − ðθð−KÞg4 þ θðKÞg1Þb�RðKÞg

þ ðθðKÞe−πK
a g4 þ θð−KÞeπK

a g1ÞjbLð−KÞj2 þ bLð−KÞf−ðθðKÞg4 þ θð−KÞg1ÞbRð−KÞ
þ ðθð−KÞeπK=ag3 þ θðKÞg2e−πK=aÞb�RðKÞg
þ b�Lð−KÞfðθð−KÞeπK=ag2 þ θðKÞg3e−πK=aÞbRðKÞ − ðθðKÞg4 þ θð−KÞg1Þb�Rð−KÞg
þ ðθðKÞeπK=ag4 þ θð−KÞe−πK=ag1ÞjbRð−KÞj2 − ðθðKÞg3 þ θð−KÞg2ÞbRðKÞbRð−KÞ

− ðθðKÞg2 þ θð−KÞg3Þb�Rð−KÞb�RðKÞ þ ðθð−KÞeπK=ag4 þ θðKÞe−πK=ag1ÞjbRðKÞj2�
�

ðA5Þ

¼ ewN̄ exp

�Z
∞

0

dKf−M̃1jbLðKÞj2 þ bLðKÞM̃2 þ b�LðKÞM̃3 − M̃4g
�

ðA6Þ

where we have denoted terms that do not contain bLðKÞ by w, M̃1, M̃2, M̃3, and M̃4, and they are given by following
expressions.

M̃1 ¼
1

8π4a2
jKj

����Γ iKa
����2½g1ðKÞeπK=a þ g1ð−KÞe−πK=a�

w ¼ −1
8π4a2

Z
∞

−∞
dKjKj

����Γ�iKa
�����2½ðθðKÞg4ðKÞeπK=a þ θð−KÞg1ðKÞe−πK=aÞjbRð−KÞj2

− ðθðKÞg3ðKÞ þ θð−KÞg2ðKÞÞbRðKÞbRð−KÞ − ðθðKÞg2ðKÞ þ θð−KÞg3ðKÞÞb�Rð−KÞb�RðKÞ
þ ðθð−KÞg4ðKÞeπK

a þ θðKÞg1ðKÞe−πK
a ÞjbRðKÞj2�

M̃2 ¼
−1

8π4a2
jKj

����Γ iKa
����2½−g2ðKÞbLð−KÞ þ g2ðKÞeπK=ab�Rð−KÞ − g1ðKÞbRðKÞ

− g1ð−KÞbRðKÞ þ g3ð−KÞe−πK=ab�Rð−KÞ − g3ð−KÞbLð−KÞ�;

M̃3 ¼
−1

8π4a2
jKj

����Γ iKa
����2½−g3ðKÞb�Lð−KÞ þ g3ðKÞeπK=abRð−KÞ − g1ðKÞb�RðKÞ

− g1ð−KÞb�RðKÞ þ g2ð−KÞe−πK=abRð−KÞ − g2ð−KÞb�Lð−KÞ�

M̃4 ¼
1

8π4a2
jKj

����Γ iKa
����2½jbLð−KÞj2ðg4ð−KÞeπK

a þ g4ðKÞe−πK
a Þ þ bLð−KÞðg3ð−KÞeπK

a b�RðKÞ

− g4ð−KÞbRð−KÞ − g4ðKÞbRð−KÞ þ g2ðKÞe−πK=ab�RðKÞÞ þ b�Lð−KÞðg2ð−KÞeπK=abRðKÞ
− g4ð−KÞb�Rð−KÞ þ g3ðKÞe−πK=abRðKÞ − g4ðKÞb�Rð−KÞÞ� ðA7Þ

Since bLðKÞ is complex we can let bLðKÞ ¼ xþ iy ⇒ b�LðKÞ ¼ x − iy, where x and y are real. Therefore,

WR ¼ New exp

�Z
dKf−ðx2 þ y2ÞM̃1 þ ðxþ iyÞM̃2 þ ðx − iyÞfM3 − M̃4g

�
¼ New exp

�Z
dKf−x2M̃1 − y2M̃1 þ xðM̃2 þ M̃3Þ þ yiðM̃2 − M̃3Þ − M̃4g

�
:

Taking trace over bLðKÞ we have
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N̄ew
ZZ

∞

−∞
dxdy exp ½−xTM̃1xþ ðM̃2 þ M̃3Þx − yTM̃1yþ iyðM̃2 − M̃3Þ − M̃4�

¼ N0ew exp
�
1

4
ðM̃2 þ M̃3ÞM̃−1

1 ðM̃2 þ M̃3Þ −
1

4
ðM̃2 − M̃3ÞM̃−1

1 ðM̃2 − M̃3Þ − M̃4

�
where N̄0 is the new normalization factor. We substitute M̃s and get the expression that contains bLð−KÞ. We repeat the
similar work to trace over bLð−KÞ and finally we get the following reducedWigner distribution for the right Rindler wedge.

WRReduced
¼ N exp

�
−1

8π4a2

Z
∞

0

dKjKj
����Γ iKa

����2½JðKÞjbRðKÞj2 þ R1b�RðKÞb�Rð−KÞ

þ R2bRðKÞbRð−KÞ þ LjbRð−KÞj2� ðA8Þ

where JðKÞ; R1ðKÞ; R2ðKÞ and LðKÞ are give by following expressions

JðKÞ ¼ −
�
−ðg1ðKÞ þ g1ð−KÞÞðg2ðKÞ þ g3ð−KÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ðeπK=ag3ð−KÞ þ g2ðKÞe−πK=aÞ
�

×

�
−ðg3ðKÞ þ g2ð−KÞÞðg1ðKÞ þ g1ð−KÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ðg2ð−KÞeπK=a þ g3ðKÞe−πK=aÞ
�

×

�
−
ðg2ðKÞ þ g3ð−KÞÞðg2ð−KÞ þ g3ðKÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a
þ ðg4ð−KÞeπK=a þ g4ðKÞe−πK=aÞ

�
−1

−
ðg1ðKÞ þ g1ð−KÞÞ2

g1ðKÞeπK=a þ g1ð−KÞe−πK=a
þ ðg1ðKÞe−πK=a þ g1ð−KÞeπK=aÞ ðA9Þ

R1 ¼ −
�
−ðg1ðKÞ þ g1ð−KÞÞðg2ðKÞ þ g3ð−KÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ðeπK=ag3ð−KÞ þ g2ðKÞe−πK=aÞ
�

×

�ðg3ðKÞ þ g2ð−KÞÞðg2ðKÞeπK=a þ g3ð−KÞe−πK=aÞ
g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ð−g4ð−KÞ − g4ðKÞÞ

�
×

�
−
ðg2ðKÞ þ g3ð−KÞÞðg2ð−KÞ þ g3ðKÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ðg4ð−KÞeπK=a þ g4ðKÞe−πK=aÞ
�

−1

þ ðg1ðKÞ þ g1ð−KÞÞðg2ðKÞeπK=a þ g3ð−KÞe−πK=aÞ
g1ðKÞeπK=a þ g1ð−KÞe−πK=a − ðg2ðKÞ þ g3ð−KÞÞ ðA10Þ

R2 ¼ −
�ðg3ðKÞeπK=a þ g2ð−KÞe−πK=aÞðg2ðKÞ þ g3ð−KÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ð−g4ðKÞ − g4ð−KÞÞ
�

×

�
−ðg3ðKÞ þ g2ð−KÞÞðg1ðKÞ þ g1ð−KÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ðg2ð−KÞeπK=a þ g3ðKÞe−πK=aÞ
�

×

�
−
ðg2ðKÞ þ g3ð−KÞÞðg2ð−KÞ þ g3ðKÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ðg4ð−KÞeπK=a þ g4ðKÞe−πK=aÞ
�

−1

þ ðg1ðKÞ þ g1ð−KÞÞðg3ðKÞeπK=a þ g2ð−KÞe−πK=aÞ
g1ðKÞeπK=a þ g1ð−KÞe−πK=a − ðg3ðKÞ þ g2ð−KÞÞ ðA11Þ
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LðKÞ ¼ −
�ðg3ðKÞeπK=a þ g2ð−KÞe−πK=aÞðg2ðKÞ þ g3ð−KÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ð−g4ðKÞ − g4ð−KÞÞ
�

×
�ðg3ðKÞ þ g2ð−KÞÞðg2ðKÞeπK=a þ g3ð−KÞe−πK=aÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ð−g4ð−KÞ − g4ðKÞÞ
�

×

�
−
ðg2ðKÞ þ g3ð−KÞÞðg2ð−KÞ þ g3ðKÞÞ

g1ðKÞeπK=a þ g1ð−KÞe−πK=a þ ðg4ð−KÞeπK=a þ g4ðKÞe−πK=aÞ
�

−1

−
ðg2ðKÞeπK=a þ g3ð−KÞe−πK=aÞðg3ðKÞeπK=a þ g2ð−KÞe−πK=aÞ

g1ðKÞeπK
a þ g1ð−KÞe−πK

a

þ ðg4ðKÞeπK
a þ g4ð−KÞe−πK

a Þ: ðA12Þ

APPENDIX B: CALCULATING hnMðkÞi
FOR SEC. III C

The two point function fðk; k0Þ, discussed in Sec. III C is
given by the following expression.

fðk; k0Þ ¼
ffiffiffiffiffiffi
4π

γ

s
θðkk0Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp e−ðlnðk0=kÞÞ2=γ ðB1Þ

To obtain the expectation value of the number density in an
inertial frame, one can use the following definition of the

inverse function f−1ðk0; k00Þ
Z

fðk; k0Þf−1ðk0; k00Þdk0 ¼ δðk − k00Þ: ðB2Þ

The above expression, denoted by Eq. (B1) represents
Dirac delta in the limit γ → 0. Therefore, to get the inverse
for a small deviation of fðk; k0Þ from the identity, δðk − k00Þ,
we use the analogy with the matrix form of fðk; k0Þ. Using
the identity for infinite-dimensional matrices, A−1 ¼ I þ
ðI − AÞ þ ðI − AÞ2 þ :… for kI − Ak < 1, we obtain

�
fðk; k0Þ
2π

�
−1

¼ 2δðk − k0Þ − k0θðkk0Þδðk − k0Þffiffiffiffiffiffi
kk0

p −
γθðkk0Þδ00ðlog k

k0Þ
4

ffiffiffiffiffiffi
kk0

p −Oðγ2Þ ðB3Þ

¼ δðk − k0Þ − γθðkk0Þδ00ðlog k
k0Þ

4
ffiffiffiffiffiffi
kk0

p −Oðγ2Þ ðB4Þ

One can verify the aforementioned result to the first order in γ as follows:

Z
fðk; k0Þf−1ðk0; k00Þdk0 ¼

Z
dk0

�
θðkk0Þkδðk − k0Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp þ γ

θðkk0Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp δ00ðln ðk=k0ÞÞ þ � � � :
�

×

�
2δðk0 − k00Þ − θðk0k00Þk00δðk0 − k00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffijk0jjk00jp −

γθðk0k00Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijk0jjk00jp δ00ðln ðk0=k00ÞÞ þ � � �
�

¼
Z

dk0
�
θðkk0Þk0δðk − k0Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp 2δðk0 − k00Þ þ γ

θðkk0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp δ00ðln ðk=k0ÞÞδðk0 − k00Þ

−
θðkk0Þθðk0k00Þk0k00δðk − k0Þδðk0 − k00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jjk0jjk00jp −

γθðkk0Þθðk0k00Þk00δðk0 − k00Þδ00ðln ðk=k0ÞÞ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jjk0jjk00jp
−
γθðkk0Þθðk0k00Þk0δðk − k0Þδ00ðln ðk0=k00ÞÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jjk0jjk00jp −Oðγ2Þ

�
¼ 2θðkk00Þk00δðk − k00Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk00jp −

θðkk00Þk00δðk − k00Þffiffiffiffiffiffiffiffiffiffiffiffijkjjk00jp
¼ δðk − k00Þ ðB5Þ
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Here, the Taylor series expansion of fðk; k0Þ about γ ¼ 0 is
employed in the first line, and in the final step, θðkk0Þ ¼ 1
is used, since it is multiplied by the Dirac delta, which
peaks at k ¼ k0. The prime over the Dirac delta denotes the
derivative with respect to ln ðk=k0Þ. Substituting the inverse
from Eq. (B4) in Eq. (2.13), we get the following expect-
ation value of number density in an inertial frame.

hnMðkÞi ¼ −
�
γδ00ðlog k=k0Þ

8
ffiffiffiffiffiffi
kk0

p þOðγ2Þ
�

k¼k0
ðB6Þ

Considering the number density expectation value in the
above equation as a distribution under integration, we useR
gðxÞδ}ðxÞ ¼ R

g}ðxÞδðxÞ [70] to formally write the ex-
pectation value as

hnMðkÞi ¼ −
γδð0Þ
32

þOðγ2Þ: ðB7Þ
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