
Phys. Lett. B 859 (2024) 139093

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

Probing massive gravitons in 𝑓 (𝑅) with lensed gravitational waves

Vipin Kumar Sharma a, ,∗, Sreekanth Harikumar b, Margherita Grespan b, Marek Biesiada b, 
Murli Manohar Verma c,d

a Indian Institute of Astrophysics, Koramangala II Block, Bangalore 560034, India
b National Centre for Nuclear Research, Andrzeja Sołtana 7, Otwock, 100190, Poland
c Department of Physics, University of Lucknow, Lucknow 226 007, India
d Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

A R T I C L E I N F O A B S T R A C T

Editor: P. Brax We investigate the novel features of gravitational wave solutions in 𝑓 (𝑅) gravity under proper gauge 
considerations in the shifted Ricci scalar background curvature (𝑅1+𝜖). The solution is further explored to study 
the modified dispersion relations for massive modes at local scales and to derive constraints on 𝜖. Our analysis 
yields new insights as we scrutinize these dispersion effects on the polarization (modified Newman-Penrose 
content) and lensing properties of gravitational waves. It is discovered that the existing longitudinal scalar 
mode, and transverse breathing scalar mode are both independent of the mass parameter for 𝜖 << 1. Further, by 
analysing the lensing amplification factor for the point mass lens model, we show that lensing of gravitational 
wave is highly sensitive to these dispersion effects in the milli-Hertz frequency (wave optics regime). It is expected 
that ultra-light modes, having mass about (10−15) eV for 𝜖 << 1(≈ 10−7) lensed by (103 ≤ 𝑀𝐿𝑒𝑛𝑠 ≤ 106)𝑀⊙

compact objects are likely to be detected by the advanced gravitational wave space-borne detectors, particularly 
within LISA’s (The Laser Interferometer Space Antenna) sensitivity band.
1. Introduction

General Relativity (GR) is considered as one of the most accurate 
descriptions of gravity and has undergone rigorous testing over the 
past century. The most recent detection of gravitational waves (GWs) 
by LIGO Science Collaboration represents a significant test of GR in 
the strong-field regime [1–4]. However, despite all these tests, the do-

main of validity of GR has been questioned by the existing open issues 
such as the nature of dark matter, dark energy, cosmological tensions 
like Hubble Constant, 𝐻0 and matter fluctuation amplitude, 𝜎8 along 
with the non-renormalizability of Einstein-Hilbert (E-H) action [5–12]. 
To address these existing problems, several modifications to GR have 
been proposed in the literature [12–17]. Some of them stand out as 
potential alternatives to GR. One such modified theory is 𝑓 (𝑅) grav-

ity [15–18]. These classes of theories in which the gravitational action 
is generalized to be a function of the Ricci Scalar are widely used to 
address the above-mentioned issues, such as in explaining the early and 
late time cosmic acceleration, large-scale structure formation of the uni-

verse, and galactic dynamics. In particular, power-law modification has 
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been phenomenologically investigated in the literature [15–20], and 
more recently, the authors of this paper have conducted investigations 
through precise modeling of deviations in the standard Ricci scalar at 
various scales [21–26]. These results show that the predictions of such 
𝑓 (𝑅) models differ significantly from GR as well as address the existing 
cosmological and astrophysical conundrums.

While significant advancements have been achieved in experimen-

tal endeavors, the development of phenomenological models to explain 
certain characteristic aspects like dispersion, polarization, and lens-

ing of GWs in the framework of modified gravity theories is still at 
an early stage [27–39]. In the era of multi-messenger astronomy [4], 
such phenomenological investigations of theories beyond GR are cru-

cial in observational astronomy [40–45]. Furthermore, the utilization 
of GWs as a tool to test theories of gravity is well established in the lit-
erature [30,37,46–49]. The recent polarization tests conducted by the 
LIGO/Virgo scientific collaboration have paved the way to carry out 
more stringent polarization tests [50–52]. This will become especially 
pertinent as additional detectors are integrated into the network, which 
is expected to enhance the precision of the constraints on modified grav-
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ity models. These potential avenues have rekindled interest in modified 
theories of gravity, introducing novel aspects of polarizations [33,53]. 
Tests focusing on propagation effects are designed to investigate theo-

ries that predict GWs to be nearly identical to that of GR but differ in 
the way the waves propagate in (non)dispersive background. This phe-

nomenon is particularly relevant in theories such as massive graviton 
theories (like scalar-tensor, scalar-tensor-vector, etc.). For instance the 
first multi-messenger event GW170817 helped us obtain precise con-

straints of graviton mass and rule out certain theories [54–57].

The next most awaited propagating phenomenon in GWs is the de-

tection of lensed signals. Like electromagnetic waves, the presence of 
massive astrophysical sources along the line of sight between the source 
and the detector is likely to lens the GW signal [58,59]. This leads to 
the formation of multiple signals with specific time-delay which has sev-

eral applications ranging from precision cosmology [60–62] to detection 
of Primodial Black Holes [63,64] and Intermediate Mass Black Holes 
[43,65] and, also gives us an opportunity to test GR [32,33,66–70]. Fur-

thermore, the next-generation GW detectors, such as LISA [71], Einstein 
Telescope (ET) [72], Cosmic Explorer(CE) [73], and DECIGO [74], are 
highly sensitive and capable of observing a larger volume, reaching up to 
redshift z ≈ 20 and beyond. As a result, one can anticipate signals from 
cosmologically distant sources and thereby increasing the probability 
of lensed GW events. Lensing estimates for different type of detectors 
has been studied in the literature [75,76], for instance, ET is likely to 
observe about 50 lensed events per year. Unlike EM lensing, the wave-

length of GW signals spans from a few km to parsec scales which are 
comparable to the size of astrophysical sources serving as lenses. As a 
result, there are two regimes in which lensing is studied: Geometric Op-

tics (GO) and Wave Optics (WO) [58,59]. Theories in which the graviton 
is massive show a dispersion relation, which would impact the amplifi-

cation factor used in the lensing studies [77]. It has been reported that 
observable deviations could be obtained in the low-frequency regime ac-

cessible to LISA and DECIGO. For recent reviews on the lensing of GWs 
in the literature we refer the readers to the following works [78,79]

These theoretical insights are reflected in our analysis. The sub-

ject of this paper delves into the examination of power-law deviations 
from GR, which is done through the assessment of various propagating 
facets of GWs such as dispersion, polarization, and lensing. Therefore, 
in this study, we have examined the aforementioned facets through 
𝑓 (𝑅) ∝ 𝑅1+𝜖 model. It is a general feature of metric 𝑓 (𝑅) theories to 
have propagating scalar degree of freedom (also known as scalaron) 
along with the tensor contribution present in GR. The scalarons present 
in 𝑓 (𝑅) can have different modes, viz., massive and massless modes, 
depending on the functional form of 𝑓 (𝑅). To distinguish independent 
propagating solutions in modified gravity, Newman-Penrose (NP) for-

malism is employed as a tool which is well known in the literature [80]. 
However, the modes here are massive and therefore a modified version 
of NP formalism is required which has been explored recently by Hyun 
et al. [53] which has been used in our study.

Hence, the non-negligible mass of the scalaron exerts a notable influ-

ence on dispersion relations and further, it have a significant effect on 
the modified NP polarization contents, and on the amplification factor 
involved in lensing. Earlier research conducted by the LVK Collaboration 
also examined various strong and microlensing indications for events 
during the first part of the third observing run (O3a) [81,82]. Although, 
these investigations did not produce definitive evidence of GW lensing. 
Maintaining a positive outlook, we anticipate the identification of lens-

ing signatures when the next generation of GW observatories, such as 
LISA, ET and CE becomes operational. This will also enable us to explore 
the implications of GW lensing (especially as a diagnostics) in modified 
gravity more comprehensively.

The contents of the paper are organized as follows: In Section 2, we 
formulate our model and discuss the field equations. Followed by in 
Section 3, we discuss the GW solutions. In Section 4, we investigate the 
scalarons as massive gravitons through the discussion of modified dis-
2

persion relations and place bounds on the propagating massive scalar 
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mode in different backgrounds. Further, for the study of propagating 
massive scalar modes, we explore the polarization contents in the modi-

fied N-P formalism with the discussion of gauge artifacts for distinguish-

ing the massless scalar modes from the massless tensor modes and obtain 
the modified NP quantities for the 𝑓 (𝑅) ∝ 𝑅1+𝜖 model under section 5. 
In Section 6, we have analytically discussed under wave optics, the grav-

itational lensing of perturbed signals as a diagnostic tool to characterize 
massive and massless signals. In Section 7, we conclude our work with 
a summary and discussion of results with a future outlook. Throughout 
the text, natural units of 𝑐 = ℏ = 1 are assumed.

2. 𝒇 (𝑹) gravity and field equations

𝑓 (𝑅) gravity fulfills the necessary conditions stipulated by Love-

lock’s theorem, thereby providing a suitable framework to extend Ein-

stein’s General Relativity theory [83]. We consider the 4-dimensional 
action integral,

 = 1
2 ∫

√
−𝑔

[ 1
8𝜋𝐺

𝑓 (𝑅)
]
𝑑4𝑥+𝑚(𝑔𝜇𝜈,Ψ𝑚), (1)

where 𝑓 (𝑅) is an arbitrary function of the Ricci scalar 𝑅, 𝑔 is the de-

terminant of metric 𝑔𝜇𝜈 , 𝐺 is the Newtonian gravitational constant, and 
𝑚 is the action of the matter fields Ψ𝑚 .

By varying the action (1) with respect to 𝑔𝜇𝜈 , we obtain the field 
equations,

𝑓𝑅𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑓 (𝑅) − ∇𝜇∇𝜈𝑓𝑅 + 𝑔𝜇𝜈□𝑓𝑅 = 𝜅2𝑇𝜇𝜈, (2)

where 𝑓𝑅 = 𝜕𝑓

𝜕𝑅
, 𝑇𝜇𝜈 is the energy-momentum tensor for the standard 

matter and 𝜅2 = 8𝜋𝐺 =𝑀−2
𝑝𝑙

where 𝑀𝑝𝑙 is the Planck mass. The trace 
of the field equation (2) gives

𝑅𝑓𝑅(𝑅) − 2𝑓 (𝑅) + 3□𝑓𝑅(𝑅) = 𝜅2𝑇 , (3)

where 𝑇 = 𝑔𝜇𝜈𝑇𝜇𝜈 = −𝜌𝑚 + 3𝑃𝑚 is the trace of the (perfect fluid) mat-

ter energy-momentum tensor in Friedmann-Lemaitre-Robertson-Walker 
(FLRW) metric background (𝑃𝑚 = 0 for dust matter). Recently, some of 
us [21,24] explored the contribution of dynamical 𝑓 (𝑅) cosmological 
background geometry for dark matter and dark energy interpretation. 
The de-Sitter stage in 𝑓 (𝑅) gravity is just a vacuum solution with con-

stant background curvature (𝑅𝑑 ) which is assumed to be homogeneous 
and static. Thus, we have from equation (3)

𝑅𝑓𝑅(𝑅) = 2𝑓 (𝑅)∣𝑅=𝑅𝑑
. (4)

From equation (2) for de-Sitter stage, we get

𝑓𝑅(𝑅)
[
𝑅𝜇𝜈 −

1
4
𝑅𝑔𝜇𝜈

]
∣𝑅=𝑅𝑑

= 0. (5)

As 𝑓𝑅(𝑅)∣𝑅=𝑅𝑑
≠ 0, so equation (5) gives on using (4)

[
𝑅𝜇𝜈 =

𝑔𝜇𝜈𝑅

4
=

𝑔𝜇𝜈𝑓 (𝑅)
2𝑓𝑅(𝑅)

]
∣𝑅=𝑅𝑑

. (6)

It is useful to rewrite equation (3) in the form of canonical Klein-

Gordon scalar wave equation as

□𝜙 =
𝑑𝑉𝑒𝑓𝑓.

𝑑𝜙
, (7)

where we have identified 𝜙 = 𝑓𝑅(𝑅) and 𝑑𝑉𝑒𝑓𝑓.
𝑑𝜙

= 2𝑓 (𝑅)−𝑅𝑓𝑅(𝑅)−𝜅2𝜌𝑚
3 in 

the weak field approximation. The calculation of scalaron mass profile 
requires the stability analysis through its effective potential. The effec-

tive potential has an extremum at

2𝑓 (𝑅) −𝑅𝑓𝑅(𝑅) = 𝜅2𝜌𝑚, (8)
and one can define the effective mass of the scalar field 𝑚𝜙 as
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𝑚2
𝜙
≡ 𝑑2𝑉𝑒𝑓𝑓.

𝑑𝜙2
|||𝜙0

> 0. (9)

To study the gravitational wave propagation one must linearize the field 
equations over an arbitrary background 𝑔𝜇𝜈 which will be discussed in 
3.

3. Linearized 𝒇 (𝑹) field equations and solutions

Under the linearized perturbations (up to the first order) of the mod-

ified field equations, it is useful to investigate the combined solutions 
of perturbed scalar and tensor modes for the study of the polarisation 
contents of GWs. The perturbations in the scalar field 𝜙 in 𝑓 (𝑅) theory, 
and in the metric tensor 𝑔𝜇𝜈 can be written as1

𝜙 = 𝜙0 + 𝛿𝜙 ; 𝑔𝜇𝜈 = 𝑔(𝐵)𝜇𝜈 + ℎ𝜇𝜈 , (10)

where the perturbation |ℎ𝜇𝜈 | << |𝑔(𝐵)𝜇𝜈 | in modified background with 
𝑔
(𝐵)
𝜇𝜈 as the background metric vacuum solutions of the modified field 

equations, and the background 𝜙0 satisfies equation (9) with 𝛿𝜙 =
𝛿𝑓𝑅(𝑅) = (𝜕𝑓𝑅∕𝜕𝑅) ∣𝑅(𝐵) 𝛿𝑅 as the perturbation of the scalar field. Sim-

ilarly, the curvature tensor, Ricci tensor, Ricci scalar and its functional 
i.e., 𝑓 (𝑅) can be also expanded up to the first order in perturbations 
about the background curvature (derived from the metric 𝑔(𝐵)𝜇𝜈 ) [86] as,

𝑅𝜌
𝜇𝜎𝜈 =𝑅(𝐵)𝜌

𝜇𝜎𝜈 + 𝛿𝑅𝜌
𝜇𝜎𝜈, (11)

where 𝛿𝑅𝜌
𝜇𝜎𝜈 = 1

2 [∇𝜎∇𝜇ℎ
𝜌

𝜈 + ∇𝜎∇𝜈ℎ
𝜌
𝜇 − ∇𝜎∇𝜌ℎ𝜇𝜈 − ∇𝜈∇𝜇ℎ

𝜌
𝜎 −

∇𝜈∇𝜎ℎ
𝜌
𝜇 + ∇𝜈∇𝜌ℎ𝜇𝜎] + higher order terms. Contracting the curvature 

tensor, we obtain the Ricci tensor,

𝑅𝜇𝜈 =𝑅(𝐵)
𝜇𝜈 + 𝛿𝑅𝜇𝜈, (12)

where 𝛿𝑅𝜇𝜈 = −1
2 [∇𝜇∇𝜈ℎ −∇𝜇∇𝜆ℎ𝜆𝜈 −∇𝜈∇𝜆ℎ𝜆𝜇 +□ℎ𝜇𝜈] +(ℎ2) and

𝑅 =𝑅(𝐵) + 𝛿𝑅, (13)

where 𝛿𝑅 =∇𝜇∇𝜈ℎ𝜇𝜈 −□ℎ −𝑅(𝐵)
𝜇𝜈ℎ

𝜇𝜈 +(ℎ2). All differential opera-

tors (both covariant and contravariant) above have background curva-

ture coupling through the connection.

Similarly, it is possible to expand the functional 𝑓 (𝑅) in the back-

ground curvature as,

𝑓 (𝑅) = 𝑓 (𝑅(𝐵)) + 𝑓𝑅(𝑅(𝐵))𝛿𝑅+(ℎ2), (14)

and

𝑓𝑅(𝑅) = 𝑓𝑅(𝑅(𝐵)) + 𝑓𝑅𝑅(𝑅(𝐵))𝛿𝑅+(ℎ2). (15)

We now explore the linearized scalar perturbation (10), through the 
perturbed trace field equation (3) around a non-zero constant back-

ground curvature 𝑅(𝐵) (or 𝑅𝑑 i.e. de Sitter background) as,

𝑅(𝐵) 𝛿𝑓𝑅 − 2 𝛿𝑓 (𝑅) + 3□ 𝛿𝑓𝑅 + 𝑓𝑅(𝑅(𝐵)) 𝛿𝑅 = 0, (16)

which yields the linearized scalar field equation given by(
□−𝑚2

𝜙

) 𝛿𝜙

𝜙0
= 0, (17)

with

𝑚2
𝜙
≡ 1

3

(
𝑓𝑅 −𝑅𝑓𝑅𝑅

𝑓𝑅𝑅

)
|||𝑅=𝑅(𝐵)

, (18)

where 𝑚2
𝜙

satisfies the equation (9), and 𝛿𝑓 (𝑅) = 𝑓𝑅(𝑅(𝐵))𝛿𝑅, 𝛿𝑓𝑅 =
𝑓𝑅𝑅𝛿𝑅. Here 𝑚2

𝜙
corresponds to the perturbed scalar mode mass of the 

1 The scalar physical degree of freedom is often called scalar graviton while 
the tensor perturbation represents the two physical degrees of freedom of usual 
3

tensor graviton [84,85].
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Fig. 1. The plot shows 𝑚2
𝜙

as a function of 𝜖 in 𝑓 (𝑅) ∝𝑅1+𝜖 model with a unit 
value of the background curvature 𝑅0. For 𝜖=1, the massive scalar mode van-

ishes i.e., we have a massless scalar field. For massive scalar modes to exist we 
must have 0 < 𝜖 < 1. Beyond this range the tachyonic instability occurs.

oscillating scalar field around the minimum of the background poten-

tial. The linearized wave-like equation (17) suggests the existence of 
a propagating perturbed massive scalar mode due to propagating GWs 
and its mass profile depends on 𝑓 (𝑅) and background curvature which 
is known as the chameleon mechanism in 𝑓 (𝑅) gravity [87].

For the model 𝑓 (𝑅) ∝ 𝑅1+𝜖 , which was previously investigated at 
different spatial scales [19–21,24,26], from equation (18) we obtain the 
perturbed mass of the scalaron as

𝑚2
𝜙
= (1 − 𝜖)

3𝜖
𝑅(𝐵). (19)

In limit 𝜖 → 0, this mass approaches infinity. This makes the Compton 
wavelength of the scalaron vanish i.e., the effect of massive scalar field is 
screened out [15]. Fig. 1 shows the dependence of massive scalar mode 
on the model parameter 𝜖 for the unit value of background curvature. 
Also, we see that 𝜖 < 1 is required for avoiding the tachyonic instabil-

ity [88], whereas 𝜖 << 1 is required for constraining the viable range of 
the mass profile of the scalar mode in different backgrounds at a local 
scale. As shown in [89], the condition 𝑚2

𝜙
> 0 is needed for the stability 

of cosmological perturbation for any viable 𝑓 (𝑅) model. Now, to ob-

tain the constraint on 𝑚𝜙, we need to investigate the dispersion relation 
through the discussion of solutions for the perturbed wave equation. We 
now explore the linearized tensor perturbation (10) for the 𝑓 (𝑅) ∝𝑅1+𝜖

field equation (2). Under equations (11), (14), (15), and (6) and also by 
neglecting the higher order terms we have

𝛿𝑅𝜇𝜈 − 𝑔(𝐵)𝜇𝜈

𝛿𝑅

2(1 + 𝜖)
+ 𝜖

𝑅(𝐵)

[
𝑔(𝐵)𝜇𝜈 □−∇𝜇∇𝜈

]
𝛿𝑅 = 0. (20)

To completely resolve the above linearized field equation and to obtain 
the wave-like equation, we consider a variable (perturbed trace-reverse) 
motivated by the gauge conditions as in GR [31],

ℎ̄𝜇𝜈 = ℎ𝜇𝜈 − 𝑔(𝐵)𝜇𝜈

(
ℎ

2
+ ℎ𝑓

)
, (21)

where ℎ𝑓 = [𝑓𝑅𝑅(𝑅)𝛿𝑅∕𝑓𝑅(𝑅)]∣
𝑅=𝑅(𝐵)

. The trace of (21) is given as

ℎ̄ = −ℎ− 4ℎ𝑓 . (22)

We can eliminate ℎ from ℎ̄𝜇𝜈 , by making use of equation (22) in the 
equation (21). Also, an interesting feature ( ̄̄ℎ𝜇𝜈 = ℎ𝜇𝜈) can be seen by 
comparing the equation (21) with

ℎ𝜇𝜈 = ℎ̄𝜇𝜈 − 𝑔(𝐵)𝜇𝜈

(
ℎ̄

2
+ ℎ𝑓

)
. (23)

Thus, the normal metric perturbation ℎ𝜇𝜈 and the trace-reversed pertur-

bation ℎ̄𝜇𝜈 contain exactly the same information. But in contrast to GR, 
the vanishing of the trace ℎ̄ is not obvious from the traceless nature of 

ℎ because of the presence of the second term in equation (22). Also, for 
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such perturbed metric ℎ𝜇𝜈 or ℎ̄𝜇𝜈 which in a realistic situation contains 
(i) gauge degrees of freedom; (ii) radiative degrees of freedom; and (iii) 
non-radiative degrees of freedom tied to the modified spacetime back-

ground, one can always choose gauges like the Lorenz gauge in which 
the non-radiative part of the metric perturbation also obeys the wave 
equations [31].

Since the Lorenz condition does not fix the gauge freedom com-

pletely, it leaves some localized coordinate transformation, therefore, 
one must bother about the gauge conditions that can also be satisfied 
by some appropriate choice of vector field 𝝃 in perturbed coordinate sys-

tem, 𝑥𝜇′ = 𝑥𝜇 + 𝜉𝜇 . It is possible to obtain the traceless condition that is 
satisfied by some appropriate choice of parametric vector field 𝝃. Thus, 
an infinitesimal change of coordinates affects the metric perturbation 
according to

ℎ′𝜇𝜈 = ℎ𝜇𝜈 − 2∇(𝜇𝜉𝜈). (24)

The divergence of the trace-reversed metric perturbation thus trans-

forms as

∇𝜇ℎ̄′𝜇𝜈 =∇𝜇ℎ̄𝜇𝜈 −□𝜉𝜈 . (25)

We can enforce in the new gauge the transverse condition

∇𝜇ℎ̄′𝜇𝜈 = 0, (26)

by requiring that 𝜉𝜈 satisfies the wave equation □𝜉𝜈 = ∇𝜇ℎ̄𝜇𝜈 . We can 
further specialize the gauge to satisfy2 ℎ′ = 0. Dropping the primes, the 
metric perturbation is thus transverse and traceless,

∇𝜇ℎ̄𝜇𝜈 = ℎ̄ = 0. (27)

Thus, the vanishing of the trace in modified gravity is just a gauge arti-

fact. In [31,35], it was explored that for the null signals in the modified 
gravity background, the trace ℎ̄ is not a physical degree of freedom. Also, 
in a few modified gravity theories (like Brans-Dicke, 𝑅2 [90], and many 
other), there exists a massless scalar field apart from the massless ten-

sor field. Therefore, to distinguish such characteristic features of gravity 
theory, we discuss the effect of gauge artifacts on the polarization con-

tents of the perturbed signals through the generalized Newman-Penrose 
(NP) formalism in section 5.

From the transverse-traceless (TT) gauge conditions (equation (27)), 
we get from equation (11) on substituting the equation (23), the per-

turbed linearized Ricci tensor as

𝛿𝑅𝜇𝜈 =
𝜖

𝑅(𝐵) ∇𝜇∇𝜈𝛿𝑅− 1
2
□ℎ̄𝜇𝜈 +

𝜖

2𝑅(𝐵) 𝑔
(𝐵)
𝜇𝜈 □𝛿𝑅. (28)

Inserting equation (28) into equation (20), we obtain

3𝜖
2𝑅(𝐵) 𝑔

(𝐵)
𝜇𝜈 (□−𝑚2

𝜙
)𝛿𝑅− 1

2
□ℎ̄𝜇𝜈 = 0, (29)

where 𝑚2
𝜙

is exactly given by equation (19). The first term on the left-

hand side of equation (29) denotes the propagator of a massive scalar 
field, and the second term denotes the propagator of a massless tensor 
field. Taking the trace of equation (29), we get

(□−𝑚2
𝜙
)𝛿𝑅 = 0. (30)

The standard massless tensor wave equation can be derived by plugging 
the equation (30) into equation (29), otherwise by substituting 𝜖 = 0. 
Therefore, we have

2 For any function 𝑓 , there always exists a function 𝐹 such that □𝐹 = 𝑓 . Con-

sequently, there is a variety of gauge choices available that satisfy the Lorenz 
condition, as stated in equation (26). In fact, there exist multiple functions 
that fulfill this condition, indicating that the Lorenz gauge is not uniquely de-

termined. We have the flexibility to apply additional transformations using 𝜉, 
4

where □𝜉 = 0, while still remaining within the Lorenz gauge.
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□ℎ̄𝜇𝜈 ≃ 0. (31)

In physical applications, we are considering the monochromatic wave 
solutions and its deviation from GR counterparts. Also, only the real part 
(R) of the wave solutions are useful for the study. The standard massless 
tensor solution of the above wave equation is given as

ℎ̄𝜇𝜈 =R(𝐴𝜇𝜈𝑒
𝑖𝑘𝛼𝑥

𝛼 ) =R(𝐴𝜇𝜈𝑒
𝑖𝑘𝑖𝑥

𝑖
𝑒−𝑖𝜔𝑡), (32)

where 𝐴𝜇𝜈 is a constant symmetric tensor, the polarization tensor, in 
which information about the amplitude and the polarization of the 
waves is encoded, while 𝑘𝛼 is a constant vector, the wave vector that 
determines the propagation direction of the wave and its frequency, 
i.e., 𝜔 = 𝑘0 = −𝑘0. The d’Alembertian operator acting on a complex 
exponential in Fourier space is □ = (𝑖𝑘𝛼)(𝑖𝑘𝛼) = −𝑘𝛼𝑘𝛼 . So we have a 
solution according to equation (31) if 𝑘𝛼 is a null vector, i.e. 𝑘𝛼𝑘𝛼 = 0. 
In other words,

𝜔 = ±
√

𝑘21 + 𝑘22 + 𝑘23. (33)

From this dispersion relation, one can see that all perturbations have 
phase and group velocities both equal to the speed of light. The solu-

tion of scalar wave equation (30) or (17) leads to a simple plane wave 
equation given as

𝛿𝑅 ≃R

(
𝐴(𝑝𝜇)𝑒𝑖𝑝𝛼𝑥𝛼

)
, (34)

where 𝐴(𝑝𝜇) represents the amplitude, and 𝑔(𝐵)𝜇𝜈 𝑝𝜇𝑝𝜈 = −𝑚2
𝜙

. The solu-

tion of the scalar wave equation suggests that the scalar field is oscillat-

ing rapidly in the background and can be expressed in terms of frequency 
𝜔 and wave-vector 𝑘𝑖 by virtue of the dispersion relation. This solution 
is further discussed in the next section.

As the field equations are linearized to the first order, one can super-

pose the two wave solutions. By assuming that perturbed wave propa-

gates along 𝑧 direction, the generalized minimal coupling solution of the 
equation (29) can be constructed from equation (23) under the Lorenz 
gauge condition as

ℎ𝜇𝜈 = ℎ̄𝜇𝜈(𝑐𝑡− 𝑧) − 𝜖

𝑅(𝐵) 𝑔
(𝐵)
𝜇𝜈 𝛿𝑅. (35)

In the above expression, the first term represents the propagation of 
tensor modes of GWs with the speed of light, and the second term rep-

resents the propagation of background scalar modes in 𝑓 (𝑅) theory. The 
mass profile of a scalar field depends on its dispersive or non-dispersive 
nature in different backgrounds of gravity theories. It is even possible 
that in some gravity theories the second term is massless (like in Brans-

Dicke gravity, and 𝑓 (𝑅) =𝑅2 gravity theory). It should be noted that the 
scalar mode is coupled with the background metric which affects the po-

larization contents of the propagating perturbed signals, and clearly for 
the vanishing value of deviation parameter (𝜖), the solution approaches 
to GR. Such couplings have the effect of causing gradual evolution in 
the properties of waves [32,91]. The solution (35) is useful for explor-

ing the polarization properties of perturbed waves for massless (𝜖 = 1) 
and massive(𝜖 << 1 with 𝜖∕𝑅(𝐵) ≈ 1∕3𝑚2

𝜙
) scalars. Before exploring it, 

we first discuss the propagating properties of the scalar modes through 
dispersion relations.

4. Scalaron as massive graviton and its dispersion relation

To investigate the scalaron physical features corresponding to spin-

zero mode of gravitons or massive gravitons (as in footnote 1), we need 
to explore the modified dispersion relation. The presence of a mass term 
for the scalaron can have implications for the range and strength of 
its interactions. In GR, gravitational waves are locally Lorenz invariant, 
obeying the dispersion relation 𝜔 = 𝑘, where 𝜔 is the angular frequency, 
and 𝑘 is the wavenumber. This relation implies that gravitons are mass-

less [30,92,93] traveling with the speed of light. However, modified 

theories could have a massive degree of freedom like scalarons in 𝑓 (𝑅)
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Fig. 2. The dependency of 𝑚𝜙 on 𝜖 in the solar system background (𝜌⊙ ∼
1019𝑒𝑉 4) with 𝑅(𝐵) ≈ 10−35𝑒𝑉 2 is shown. For 𝜖 ≈ (10−7), 𝑚𝜙 attains approx-

imately constant order (10−15) in 𝑒𝑉 , falling within the operational range of 
LISA.

gravity which obey a modified dispersion relation leading to different 
propagation speeds [32,36,91,94–96]. In physical applications, we are 
considering monochromatic wave solutions and their deviation from GR 
counterparts. Also, only the real part of the wave solution is useful for 
the study. Therefore, according to the equation (34), the dispersion re-

lation for the propagating massive scalar mode of gravitational waves 
takes the following form

𝑝𝜇𝑝𝜇 = −𝑚2
𝜙
, (36)

where 𝑝𝜇 = (𝑝0, ⃗𝑝) =
(
𝜔,0,0,

√|||𝜔2 −𝑚2
𝜙

|||
)

is the four-wave vector of 

the scalar GWs and 𝑚𝜙 is given by equation (19).

The propagation speed 𝑣𝑔𝑟𝑜𝑢𝑝 of dispersive scalar modes of GWs is 
given by the following equation,

𝑣𝑔𝑟𝑜𝑢𝑝 = 1 −
𝑚2

𝜙

2𝜔2 = 1 − (𝜔2 − 𝑘2)
2𝜔2 . (37)

This equation suggests that group velocity of the scalar mode of GWs de-

viates from the speed of light 𝑐 = 1, and clearly for 𝜔 = 𝑘, the propagat-

ing mode follows null geodesics with 𝑣𝑔𝑟𝑜𝑢𝑝 = 1. Considering equation 
(19), equation (37) can be rewritten as,

𝑣𝑔𝑟𝑜𝑢𝑝 ≈ 1 − 1
6𝜖

𝑅(𝐵)

𝜔2 . (38)

The above equation conveys the message that the propagation speed of 
scalarons depend on the background curvature. Let us start with the So-

lar System background since already operating GW detectors are located 
on Earth and future space-borne detectors like LISA will also be parked 
in the Earth-like heliocentric orbit. The LISA space-based GW detector 
will explore the constraints on the massive nature (if any), within its sen-

sitive operational frequency range of (10−4)𝐻𝑧 ≤ 𝑓 ≤ 1𝐻𝑧. In terms 
of energy units (eV) corresponding to this frequency range, the massive 
nature (like scalar mode mass profile) should fall within the range of 
(10−15)𝑒𝑉 ≥𝑚𝜙 ≥(10−19)𝑒𝑉 .

Relevant information is contained in equation (19) and in Fig. 2

we show the variation of 𝑚𝜙 with 𝜖 for the Solar System background. 
One can see that, for 𝑓 (𝑅) ∝ 𝑅1+𝜖 in the Solar System background 
with 𝜖 ≈ (10−7) [21], the scalar mode mass profile 𝑚𝜙 attains ap-

proximately constant value of (10−15)𝑒𝑉 . These considerations do not 
violate the bounds on graviton mass obtained from the detection of 
various GW events [97,98]. Quite stringent and prominent direct con-

straint −3 × 10−15 < 𝑣𝐺𝑊 −𝑐
𝑐

< +7 × 10−16 on the fractional deviation of 
GW propagation speed was obtained from the GW170817 and its EM 
counterpart GRB170817A [99]. LISA is expected to provide a signifi-

cant improvement of constraints over GW170817-like bound. With the 
same assumptions of Fig. 2, Fig. 3 shows the variation of the fractional 
5

deviation ∣ 𝑣𝑔𝑟𝑜𝑢𝑝 − 1 ∣ of the speed of perturbed signal from 𝑐 (assumed 
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Fig. 3. In the Solar System background with 𝜖 ≈ (10−7), the fractional devia-

tion in the dispersive signal speed is plotted against the sensitivity band of LISA.

here as a unit), as a function of GW frequency 𝑓 . Let us recall that the 
sensitivity window of LISA would be (10−4)𝐻𝑧 ≤ 𝑓 ≤ 1𝐻𝑧. One can 
see that possible constraints on such signal speed would be (10−27) ≤|𝑣𝑔𝑟𝑜𝑢𝑝 − 1| ≤ (10−21) and at the extreme sensitivity (10−4) or even 
one order less than this, the deviation in speed will be around (10−20). 
Several authors have also explored the constraints on the GW speed with 
LISA and ground based detectors together [48,99–101]. We will delve 
deeper into LISA’s lower sensitivity threshold concerning intermediate 
and massive lens mass objects in Section 6.

There have been proposals to constrain the graviton mass from the 
future observations of a compact binary with space-based GW detectors 
such as LISA [71] in the milli-Hertz band and DECIGO [102] in the deci-

Hertz band. Hence, in the dispersive background, the perturbed signals 
will reflect such small deviation by following the non-null geodesics. It 
is therefore necessary to investigate the effect of such small deviations 
on the polarization contents of perturbed signals and on the amplifica-

tion of the wave amplitude by lensing. In the next section, we use the 
Newman Penrose (NP) formalism [37,80,103,104] in order to investi-

gate the behavior of different polarisation contents. Further, in our case 
of 𝑓 (𝑅) gravity, we use its modified version [53] and investigate its few 
distinguishing features to characterise the massless scalar modes from 
the massless tensor modes, as well as the massive modes with 𝜖 << 1.

5. Polarization properties of 𝒇 (𝑹) signals as diagnostics via 
modified NP approach and gauge artifacts

In the context of gravity theories incorporating a scalar degree of 
freedom, there is a notable interest in re-examining the polarization 
modes, specifically concerning the modified dispersion relation [32,53,

91,105]. The dispersion relation as explored in Section 4, presents an 
opportunity to characterise the polarization modes within these theo-

ries. At first glance, from equation (31) one could naively say that there 
are ten polarisations of gravitational waves since there are ten wave 
equations. However, this is not the case. The harmonic Lorenz gauge 
condition ∇𝜇ℎ̄𝜇𝜈 = 0 tells us that 𝑘𝜇𝐴𝜇𝜈 = 0. This restriction eliminates 
four of the degrees of freedom, so there are only six legal degrees of free-

dom in 𝐴𝜇𝜈 . That implies, we have six physical and four gauge degrees 
of freedom. Similarly, by considering the generalized wave solutions in 
the context of metric-compatible theories, using the NP formalism [53]

generalized the six polarization modes: the breathing(b), longitudinal 
(𝑙), vector-x (x), vector-y (y), plus (+), and cross(×). Accordingly, the 
six polarization contents (𝑝𝑛) are given as [53],

𝑝
(𝑙)
1 = 1

2

(
𝜔2 − 𝑘2

𝜔2 + 𝑘2

)
𝜔2(ℎ𝑡𝑡 + ℎ𝑧𝑧) −

1
2
(𝜔2 − 𝑘2)ℎ𝑡𝑡. (39)

𝑝
(𝑥)
2 = 1

2
(
𝜔2 − 𝑘2

)
ℎ𝑥𝑧, (40)

1 ( )

𝑝
(𝑦)
3 =

2
𝜔2 − 𝑘2 ℎ𝑦𝑧, (41)
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𝑝
(+)
4 = −1

2

(
𝜔2 − 𝑘2

𝜔2 + 𝑘2

)
𝜔2(ℎ𝑡𝑡 + ℎ𝑧𝑧) −𝜔2ℎ𝑦𝑦, (42)

𝑝
(×)
5 = 1

2
𝜔2ℎ𝑥𝑦, (43)

𝑝
(𝑏)
6 = −1

2

(
𝜔2 − 𝑘2

𝜔2 + 𝑘2

)
𝜔2(ℎ𝑡𝑡 + ℎ𝑧𝑧). (44)

The set of equations (39)-(44) distinguishes the gravity theories hav-

ing non dispersive signals (𝜔 = 𝑘) from those having dispersive signals 
(𝜔 ≠ 𝑘). For theories that have massive modes of polarization, the mag-

nitude of such modes is quantitatively determined by the specific form 
of the dispersion relation, 𝜔 = 𝜔(𝑘) as in the case of 𝑓 (𝑅) theories. How-

ever, there are certain modified version of gravity theories, like the 
Brans-Dicke gravity theory and 𝑓 (𝑅) ∝ 𝑅2, 𝜖 = 1 [106,107] that have 
non-dispersive (massless) characteristics. Therefore, the above set of po-

larisation contents cannot distinguish gravity theories which have non 
dispersive signal characteristics (i.e., massless scalar modes and mass-

less tensor modes). The reason behind this lies in the gauge artifacts. The 
authors of [53] used the transverse-traceless (TT) gauge conditions for 
obtaining the above set of polarization contents. As we have discussed 
in Section 3, in modified gravity theory, the traceless condition is just 
a gauge artifact for trace-reversed perturbed metric, i.e., the vanishing 
of the trace of ℎ̄𝜇𝜈 does not imply the traceless nature of ℎ𝜇𝜈 (equation 
(22)). Hence, if we investigate this simple consequence for the massless 
waves, or if we abandon the traceless condition in [53], then under the 
transverse gauge condition, the set (equations (39)-(44)) of polarisation 
contents (or amplitudes) can be written as [53]

𝑝
(𝑙)
1 = 1

2
[
𝑘2(ℎ𝑥𝑥 + ℎ𝑦𝑦) + (𝜔2 − 𝑘2)ℎ𝑧𝑧

]
. (45)

𝑝
(𝑥)
2 = 1

2
(
𝜔2 − 𝑘2

)
ℎ𝑥𝑧, (46)

𝑝
(𝑦)
3 = 1

2
(
𝜔2 − 𝑘2

)
ℎ𝑦𝑧, (47)

𝑝
(+)
4 = 1

2
𝜔2(ℎ𝑥𝑥 − ℎ𝑦𝑦), (48)

𝑝
(×)
5 = 1

2
𝜔2ℎ𝑥𝑦, (49)

𝑝
(𝑏)
6 = 1

2
𝜔2(ℎ𝑥𝑥 + ℎ𝑦𝑦). (50)

Now, for the non-dispersive (𝜔 = 𝑘) or massless signals, the non-

vanishing polarization contents from the set of equations (45)-(50) are 
𝑝
(𝑙)
1 , 𝑝(+)4 , 𝑝(×)5 , and 𝑝(𝑏)6 . In contrast to TT gauge conditions, here we have 

two more non-vanishing contents, 𝑝(𝑙)1 and 𝑝(𝑏)6 . Under the sole imposi-

tion of the transverse gauge condition and for non-dispersive signal, 𝑝(𝑙)1
which is the amplitude of the longitudinal scalar wave coincides with 
𝑝
(𝑏)
6 , the breathing mode of scalar wave. Hence they can be considered 

as a single polarised state. Thus, the total of three polarization states 
exist for the massless modes under transverse gauge conditions. This 
distinguishes such modified gravity theories from the GR.

With reference to the set of equations (45)-(50), the generalized NP 
quantities under the transverse gauge read as [53]

Ψ2 =
1
24

(
3𝑘2 −𝜔2) (ℎ𝑥𝑥 + ℎ𝑦𝑦) +

1
12

(
𝜔2 − 𝑘2

)
ℎ𝑧𝑧, (51)

Ψ3 =
1
8
(𝜔− 𝑘)(𝜔+ 𝑘)2

𝜔
(ℎ𝑥𝑧 − 𝑖ℎ𝑦𝑧), (52)

Ψ4 =
1
8
(𝜔+ 𝑘)2(ℎ𝑥𝑥 + ℎ𝑦𝑦) −

1
4
(𝜔+ 𝑘)2(ℎ𝑦𝑦 + 𝑖ℎ𝑥𝑦), (53)

Φ22 =
1
8
(𝜔+ 𝑘)2(ℎ𝑥𝑥 + ℎ𝑦𝑦). (54)

Now, for the 𝑓 (𝑅) model, the minimal wave solution is given by the 
equation (35). Because of the traceless property of the trace-reversed 
perturbed variable (ℎ̄𝜇𝜈 ), the traceless nature of the perturbed variable 
(ℎ𝜇𝜈) cannot be demanded by equation (22). As a result, it is reflected 
in the polarisation contents. Hence, the polarization contents are cal-
6

culated from the set of equations (45)-(50) for our 𝑓 (𝑅)(∝𝑅1+𝜖) model 
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and then substituted with 𝜖 = 1 (or massless scalarons in 𝑓 (𝑅) (see equa-

tion (19))) for exploring the effects on the polarization contents as

𝑝
(𝑙)
1 = 1

2
𝜖

𝑅(𝐵)

[
−
(
𝑔(𝐵)𝑥𝑥 + 𝑔(𝐵)𝑦𝑦

)
𝑘2 − 𝑔(𝐵)𝑧𝑧 𝑚2

𝜙

]
𝛿𝑅

= − 1
2𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 + 𝑔(𝐵)𝑦𝑦

)
𝛿�̈�

(55)

𝑝
(𝑥)
2 = 0, (56)

𝑝
(𝑦)
3 = 0, (57)

𝑝
(+)
4 = −1

2

(
̈̄ℎ𝑥𝑥 − ̈̄ℎ𝑦𝑦

)
− 1

2
𝜖

𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 − 𝑔(𝐵)𝑦𝑦

)
𝜔2𝛿𝑅

= −1
2

(
̈̄ℎ𝑥𝑥 − ̈̄ℎ𝑦𝑦

)
− 1

2𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 − 𝑔(𝐵)𝑦𝑦

)
𝛿�̈�,

(58)

𝑝
(×)
5 = −1

2
̈̄ℎ𝑥𝑦, (59)

𝑝
(𝑏)
6 = −1

2
𝜖

𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 + 𝑔(𝐵)𝑦𝑦

)
𝜔2𝛿𝑅

= − 1
2𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 + 𝑔(𝐵)𝑦𝑦

)
𝛿�̈�.

(60)

Consequently, the generalized NP quantities (or amplitudes of wave) 
from the set of equations (51)-(54) reads as

Ψ2 = − 1
12𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 + 𝑔(𝐵)𝑦𝑦

)
𝛿�̈�, (61)

Ψ3 = 0, (62)

Ψ4 =
(
̈̄ℎ𝑦𝑦 + 𝑖 ̈̄ℎ𝑥𝑦

)
− 4

𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 − 𝑔(𝐵)𝑦𝑦

)
𝛿�̈�, (63)

Φ22 = − 1
2𝑅(𝐵)

(
𝑔(𝐵)𝑥𝑥 + 𝑔(𝐵)𝑦𝑦

)
𝛿�̈�. (64)

Clearly, the GW modes are modified from their GR counterparts to in-

clude a contribution from the shifted (𝜖 = 1) Ricci scalar background 
curvature. Consequently, the set of equations (61)-(64) can be further 
reduced according to the nature of spacetime background curvature (for 
example at local scales 𝑔(𝐵)𝜇𝜈 ≈ 𝜂𝜇𝜈). As a result, we can observe a distin-

guishable impact of the massless scalar modes in contrast to the massless 
tensor modes.

However, when dealing with the massive scalar modes, we utilize 
modified NP quantities within the TT gauge. This analysis focuses on the 
regime where 𝜖 << 1, with the condition 𝜖∕𝑅(𝐵) ≈ 1∕3𝑚2

𝜙
(= 𝜔2 − 𝑘2) as

Ψ2 =
𝜖

24𝑅(𝐵)
(𝜔2 − 𝑘2)
(𝜔2 + 𝑘2)

{(
3𝑔(𝐵)𝑡𝑡 + 𝑔(𝐵)𝑧𝑧

)
𝑘2

−
(
3𝑔(𝐵)𝑧𝑧 + 𝑔

(𝐵)
𝑡𝑡

)
𝜔2

}
𝛿𝑅

≈ 1
72

1
(𝜔2 + 𝑘2)

{(
3𝑔(𝐵)𝑡𝑡 + 𝑔(𝐵)𝑧𝑧

)
𝑘2

−
(
3𝑔(𝐵)𝑧𝑧 + 𝑔

(𝐵)
𝑡𝑡

)
𝜔2

}
𝛿𝑅

(65)

Ψ3 = 0, (66)

Ψ4 =
(
̈̄ℎ𝑦𝑦 + 𝑖 ̈̄ℎ𝑥𝑦

)
+ 𝜖

8𝑅(𝐵){(
𝑔
(𝐵)
𝑡𝑡 + 𝑔(𝐵)𝑧𝑧

) (𝜔2 − 𝑘2)
(𝜔2 + 𝑘2)

+ 2𝑔(𝐵)𝑦𝑦

}
(𝜔+ 𝑘)2𝛿𝑅

(67)

Φ22 =
𝜖

8𝑅(𝐵)
(𝜔2 − 𝑘2)(𝜔+ 𝑘)2

𝜔2 + 𝑘2

(
𝑔
(𝐵)
𝑡𝑡 + 𝑔(𝐵)𝑧𝑧

)
𝛿𝑅

≈ 1
24

(𝜔+ 𝑘)2

𝜔2 + 𝑘2

(
𝑔
(𝐵)
𝑡𝑡 + 𝑔(𝐵)𝑧𝑧

)
𝛿𝑅

(68)

Again, for the vanishing value of 𝜖, the GR prediction is exactly recov-

ered. The above sets of generalized NP quantities (equations (61)-(64)

and (65)-(68)) would clearly serve as a diagnostic tool to distinguish 
𝑓 (𝑅) (massless or massive scalar modes) from its GR counterparts. Now, 
since the mass of the scalar mode is given by equation (19), therefore, for 
𝜖 << 1, the longitudinal as well as breathing mode (equations (65) and 

(68)) both are independent of 𝑓 (𝑅) model parameter and the scalaron 
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mass. However, Ψ4 depends on the 𝑓 (𝑅) parameter, i.e., there is an ex-

tra contribution due to the massive scalar mode attached to the massless 
tensor modes. Also, we can recover the GR-based NP quantity by switch-

ing off the 𝑓 (𝑅) model parameter (𝜖). Space-based GW detectors make 
it possible to explore frequency ranges where the influence on polariza-

tion amplitudes is of a similar magnitude for both massive (scalarons) 
and massless (tensor) modes. These detectors are also well-positioned 
to detect deviations in the amplitude of the tensor field caused by the 
presence of a massive scalar mode. This effect may contribute to slight 
deviations in the speed of tensor signals from their typical behavior. It 
has been reported recently in the literature that in the event of lensing 
one might observe additional polarizations [108], therefore one must in-

vestigate further to understand if the non-vanishing modes are physical 
or not. Recently, [27] explored 𝑓 (𝑅) solutions that exhibit a variety of 
unphysical properties. This is beyond the scope of our paper. We antic-

ipate that our work will contribute insights to deeper understanding of 
the polarization characteristics within the context of alternative theories 
of gravity and their implications for lensed GW observations [32,66]. In 
next section we study the effects of massive gravitons in the lensing am-

plification factor.

6. Lensing of massive scalarons

With the space-based GW detector LISA, one can explore the dis-

persive characteristics (including massive modes like gravitons and 
scalarons) within a mass range of approximately 10−19𝑒𝑉 ≤ 𝑚 ≤
10−15𝑒𝑉 . Such mass range is typical for certain dark matter candidates 
like ultralight particles (scalarons, or axion-like candidates) manifest-

ing at local scales as fuzzy dark matter [97,98,109–113]. Therefore, 
we will discuss gravitational lensing of scalar modes. Consider a signal 
from a distant source propagating in the background spacetime 𝑔(𝐿)𝜇𝜈 of 
the lens object characterized by the gravitational potential 𝑈 (r) << 1. 
The total metric, including the perturbation (due to the GW signal) 
is given by 𝑔𝜇𝜈 = 𝑔

(𝐿)
𝜇𝜈 + ℎ𝜇𝜈 , where ℎ𝜇𝜈 = ℎ̃𝑒−2𝜋𝑖𝑓𝑡𝐴𝜇𝜈 , where 𝐴𝜇𝜈 is 

the polarization tensor and ℎ̃ is the amplitude. Under weak field ap-

proximation, the propagation equation can be cast to the form of the 
Helmholtz equation, whose solution is given in terms of the Kirchhoff 
integral [44,58,59,114]. It is convenient to introduce the dimensionless 
amplification factor:

𝐹 (𝑓 ) =
ℎ̃𝐿(𝑓 )
ℎ̃(𝑓 )

(69)

which is the ratio of wave amplitudes with and without lensing. Then, 
the Kirchhoff integral allows us to calculate the amplification factor at 
the observer [114] as:

𝐹 (𝑓, 𝛽) =
1 + 𝑧𝑙

𝑐

𝐷𝑠

𝐷𝑙𝐷𝑙𝑠

𝑓

𝑖 ∫ 𝑑2𝜃 exp [2𝜋𝑖𝑓Δ𝑡(𝜃, 𝛽)] (70)

where 𝐷𝑠, 𝐷𝑙, 𝐷𝑙𝑠 are angular diameter distances to the source, to the 
lens (𝑧𝑙 is the redshift of the lens) and between the lens and the source re-

spectively. Cosmological setting is invoked here because all GW signals 
registered so far came from cosmological distances. In a local scenario, 
involving e.g. rotating pulsars or binary stellar systems redshifts should 
be set to zero and distances would become ordinary Euclidean distances. 
Measured from the axis connecting the observer and the center of the 
lens, angle 𝛽 refers to the direction to the source (unobservable, but 
representing the mismatch in the optical system) while 𝜃 is actual di-

rection from which lensed signal comes, Δ𝑡 is the time delay introduced 
by gravitational lensing at the angular position 𝜃 from the lens. It is 
given by

Δ𝑡(𝜃, 𝛽) =
1 + 𝑧𝑙

𝑐

𝐷𝑙𝐷𝑠

𝐷𝑙𝑠

[
(𝜃 − 𝛽)2

2
−𝜙(𝜃) + 𝜙𝑚(𝛽)

]
(71)

where 𝜙(𝜃) is the lens potential (essentially a 2D projection of the full 
3D potential of the lens) determining the deflection angle 𝛼(𝜃) = ∇𝜃𝜙(𝜃). 
7

Term 𝜙𝑚(𝛽) corresponds to the arrival time in a non-lensed case, and in 
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practice, it is a constant adjusted to ensure the extreme value of the time 
delay functional. Note, in this section, instead of geometric units, we 
reintroduce SI units hence 𝑐 and ℎ are explicitly present in the equations.

The calculation of the integral (70) is much easier after switching 
from angles to dimensionless variables 𝑥 = 𝜃∕𝜃𝐸 and 𝑦 = 𝛽∕𝜃𝐸 , where 
𝜃𝐸 is the Einstein radius of the lens determined by its mass 𝑀𝑙 and 
relative distances in the system and 𝑦 the impact factor. It is also useful 
to introduce the dimensionless frequency

𝑤 = 8𝜋𝐺
𝑐3

𝑀𝑙(1 + 𝑧𝑙)𝑓 (72)

rewriting equation (70) using the newly introduced terms we get:

𝐹 (𝑤,𝑦) = 𝑤

2𝜋𝑖 ∫ 𝑑2𝑦
[
exp[𝑖𝑤𝑇 (𝑥, 𝑦)]

]
(73)

where 𝑇 (𝑥, 𝑦) = (𝑥−𝑦)2
2 − 𝜙(𝑥)

𝜃2
𝐸

.

For the purpose of illustration, we consider gravitational lensing by 
a point mass, e.g. a black hole of a mass of a few hundred 𝑀⊙. Now 
considering the dispersion relations in shifted (𝑅1+𝜖) background as dis-

cussed in Section 4, we assume the massive scalar mode to be lensed. 
Following the treatment of [77] and [59], the resulting waveform of 
perturbed signals in 𝑓 (𝑅) dispersive background can be expressed as

ℎ̃𝐿(𝑓 ) = 𝐹 (𝑓, 𝑦;𝑀𝑙,𝑚𝜙)ℎ̃𝑑𝑖𝑠𝑝(𝑓 ), (74)

where ℎ̃𝑑𝑖𝑠𝑝(𝑓 ) is the waveform of unlensed dispersive GWs. In a real-

istic case, a GW signal in a 𝑓 (𝑅) theory has tensor modes in addition 
to the scalar modes which add up linearly to the GW strain. Therefore, 
lensing due to the tensor mode, has to be considered along with (74) in 
real analysis. Further, to observe deviations from GR, one has to model 
unlensed waveform for tensor and scalar modes in 𝑓 (𝑅) gravity or use 
model independent ways such as null-stream analysis [115,116] to ex-

tract polarization content. The amplification factor for a massive scalar 
mode lensed by a point mass lens, can be analytically evaluated as [77]

𝐹 (𝑤,𝑦;𝑀𝑙,𝑚𝜙) = exp
[
𝜋

4
𝑤𝛽

](
𝑤

2
𝛽
)𝑖

𝑤
2 𝛽

Γ
(
1 − 𝑖

𝑤

2
𝛽
)
1𝐹1

(
𝑖
𝑤

2
𝛽,1, 𝑖𝑤

2
𝛽𝑦2

). (75)

Here 1𝐹1 is the confluent hypergeometric function and Γ is the Euler 
gamma function. It reduces to GR when the dimensionless factor 𝛽 =
1. Therefore, 𝛽 distinguishes the amplification factor with or without 
dispersion. For the massive scalarons (𝑚𝜙 ≠ 0) it is

𝛽(𝑓 ) ≡ 𝑐

𝑣𝑔𝑟𝑜𝑢𝑝(𝑓 )
= 1 +

𝑚2
𝜙
𝑐4

8𝜋ℎ2𝑓 2 . (76)

Equation (76) is plotted in Fig. 4, where we see the LISA and LIGO 
interferometer sensitivity. For the purpose of illustration, we consider 
the scalaron mass to be 10−15 eV. The effect of massive scalarons (𝛽(𝑓 )) 
gets more and more important at lower frequencies at which LISA will be 
operating, at LIGO’s frequencies, however, it is negligible and 𝛽(𝑓 ) → 1.

In Fig. 5 and Fig. 6, we plot the amplification factor amplitude and 
phase for 103 𝑀⊙ and 104 𝑀⊙ for different impact factors at 𝑧𝐿 = 2. In 
these figures, the solid line follows the amplification factor for the case 
with massive scalarons(𝛽 ≠ 1) and the dashed one for the GR (𝛽 = 1) 
case. Here we do not consider any signal and only compare the scalar 
amplification factor. This comparison is guaranteed by the eikonal ap-

proximation [58], where the polarization of the waveform is unaffected. 
The amplification factor, in the two theories, matches at high frequen-

cies, making the massive scalaron effects negligible and beyond the 
scope of ground-based detectors like LIGO. At lower frequencies and 
higher lens masses, particularly in the range of intermediate-mass BHs 
and higher, we have a significant deviation from GR. For our choice of 
scalaron mass (𝑚𝜙 =(10−15)𝑒𝑉 ), it has been found that the lens mass 
of 103𝑀⊙ shows very small deviations (Fig. 5) from GR at low frequen-
cies. However, for lens mass 104𝑀⊙ the deviations from GR are sig-
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Fig. 4. Dependency of 𝛽 − 1 with respect to the frequency. The vertical bars 
are drawn to show the operating windows of LIGO and LISA. The scalaron mass 
used is 𝑚𝜙 = 10−15𝑒𝑉 .

Fig. 5. Amplification factor 𝐹 (𝑓 ) phase (bottom plot) and amplitude (top plot) 
for a point mass lens (𝑀𝑙 = 103𝑀⊙). The solid lines are used for the massive 
scalaron (𝛽 ≠ 1) and the dashed ones in the GR regime (𝛽 = 1). At low frequen-

cies, the two theories slightly differ.

nificant at low frequencies and accessible to space-based detectors like 
LISA. In Fig. 7 we zoom in on the frequencies at which these differences 
are significant. Keeping the impact factor constant at y=0.5, we plot for 
different 𝑀𝑙 , the amplification factor phase and amplitude. The higher 
the mass of the lens the bigger the differences. With a 𝑀𝑙=102𝑀⊙ the 
differences are undetectable by any interferometer, with 𝑀𝑙=103𝑀⊙

and higher masses the discrepancies between f(R) and GR would be de-

tectable by future generations space interferometers. As the lens mass 
decreases, the frequency at which both curves (solid and dashed) get dis-

tinguished tends to much lower limits. The lens mass is the only reason 
8

for lensing effects in GR backgrounds. All the above-mentioned figures 
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Fig. 6. Amplification factor 𝐹 (𝑓 ) phase (bottom plot) and amplitude (top plot) 
for a point mass lens (𝑀𝑙 = 104𝑀⊙). The solid lines are used for the massive 
scalaron (𝛽 ≠ 1) and the dashed ones in the GR regime (𝛽 = 1). At low frequen-

cies, there are significant differences between GR and massive scalarons. This 
frequency range can be explored with space-based interferometers.

displayed the amplification factor as a function of frequency 𝑓 in [Hz].

For the sake of discussion, we call the frequency at which GR and mas-

sive sclarons lensing effects deviate noticeably, the transition frequency 
𝑓𝑇 . This happens for the dimensionless frequency 𝑤 < 1, hence by virtue 
of the equation (72), the transition frequency for a given lens mass 𝑀𝑙

can be expressed as:

𝑓𝑇 = 𝑐3

8𝜋𝐺𝑀𝑙(1 + 𝑧𝑙)
. (77)

This relation is plotted in Fig. 8, in which we highlighted the LISA op-

erating frequencies. The solid black line marks the transition frequency 
𝑓𝑇 as a function of the lens mass, while the shaded region under the 
curve indicates the region in which GR and f(R) lensing effects differ. 
Let us stress that 𝑓𝑇 is not a sharp transition but for masses from 103𝑀⊙

to ∼ 106𝑀⊙ we should be able to observe deviations from GR of gravi-

tationally lensed GWs.

7. Summary and conclusions

Building on previous investigations in the chosen model, motivated 
by references [19,20], on the dynamics of 𝑓 (𝑅) gravity [21–26] and 
lensing [75,78,79], we undertook a comprehensive examination of 
𝑓 (𝑅) ∝ 𝑅(1+𝜖) gravity in the context of the propagation and lensing of 
GWs. The GW solutions are derived for the model parameter 𝜖 << 1. 
Further, the scalaron mass (equation (18)) and the dispersion relations 
(equation (36)) are obtained for the Solar System background char-

acterized by 𝑅(𝐵) ≈ 10−35𝑒𝑉 2. It is to be noted that for the choice of 
𝜖 ≈ (10−7) the minimum bound on the scalar mode mass turned out 
to be 𝑚𝜙 ≈ (10−15)𝑒𝑉 (see Fig. 2). These considerations do not vio-
late the bounds on graviton mass obtained from the detection of various 
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Fig. 7. Amplification factor 𝐹 (𝑓 ) phase (bottom plot) and amplitude (top plot) 
for different point mass lenses with fixed impact factor y=0.5. The solid lines 
are used for the massive scalaron (𝛽 ≠ 1) and the dashed ones in the GR regime 
(𝛽 = 1).

Fig. 8. The green block represents LISA working frequencies. The diagonal black 
line follows 𝑓𝑇 (i.e. 𝑤 = 1) for a given lens mass. The dashed part of the plot 
indicates 𝑤 < 1, where the 𝑓 (𝑅) effects in the amplification factor become visi-

ble.

GW events [97,98]. The fractional variation in the speed of this mas-

sive modes is expected to fall within the operational range of the LISA 
detector (see Fig. 3)

An important feature of 𝑓 (𝑅) ∝ 𝑅(1+𝜖) model is the presence of dif-

ferent polarization states depending on the values of the parameter 𝜖. 
We have investigated the polarization properties and its dependence on 
scalaron mass using the modified NP formalism. For example, the ab-

sence of massive scalar degrees of freedom in 𝑓 (𝑅) gravity for 𝜖 = 1 does 
not necessitate the disappearance of NP scalars Ψ2 and Φ22 which are 
responsible for longitudinal and breathing modes of polarization. Also, 
9

it is worth noting that for 𝜖 << 1, both the modes are independent of 
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the scalaron mass. However, in Ψ4 scalar, we observe an additional con-

tribution from the massive scalar mode depending on the background 
curvature scalar 𝑅(𝐵). These sets of modified NP quantities (equations 
(61)-(64) and (65)-(68)) would serve as a diagnostic tool for distinguish-

ing the characteristics of massless and massive modes of propagation 
from their GR counterparts in shifted Ricci scalar model of 𝑓 (𝑅).

Among other probes, gravitational lensing could emerge as an impor-

tant tool to scrutinize theories of gravity, bound the mass of graviton 
(and possibly scalaron), and constrain models related to dark matter. 
Considering the dispersion relations, we assume the massive scalar mode 
to be lensed (point mass model), and analytically explored the amplifi-

cation factor (equation (75)). In a more realistic scenario, a GW signal in 
𝑓 (𝑅) gravity includes both tensor and scalar modes, which contribute 
linearly to the overall GW strain. Consequently, the lensing effects of 
the tensor mode must also be considered, in addition to (74), when per-

forming a detailed analysis. To detect deviations from General Relativity 
(GR), one must either model the unlensed waveform for both tensor and 
scalar modes in 𝑓 (𝑅) gravity or apply model-independent methods, such 
as null-stream analysis [115,116], to extract the polarization content.

In Fig. 4, the dispersive parameter is discussed for the GW operat-

ing windows i.e., LIGO and LISA. We showed that at low frequencies, 
GR and 𝑓 (𝑅) lensing effects amplification factor vary (see Fig. 5, 6). It 
is to be noted that the variation comes from the massive nature of the 
scalar modes. While at low frequencies, in GR, the amplification fac-

tor tends to 1. Instead, for massive scalarons in 𝑓 (𝑅) with 𝜖 << 1 and 
𝑚𝜙 ≈ (10−15)𝑒𝑉 , in the same frequency regime, there are deviations 
from unity which are not negligible for compact lenses. Such deviations 
from massless amplification factor can be explored with the space-based 
detectors with lens mass lying in the range, (103 ≤ 𝑀𝑙 ≤ 106)𝑀⊙, see 
Fig. 8. Our work establishes the groundwork for a novel approach to 
study the massive graviton effects at local scales when the lensed GWs 
are detected by space-based low-frequency detectors.

Typically, investigations of GWs focus on the non-dispersive vac-

uum modes that propagate at the speed of light, as these modes are 
also relevant ones in the context of current observations. However, the 
coupling between GWs and matter could be significant in the early Uni-

verse and possibly near compact objects. Understanding this coupling 
holds potential importance [34,117,118]. Moreover, a crucial aspect is 
the dispersion relation of GWs due to the existence of a massive mode 
that alters the time delay of waves with different frequencies in var-

ious directions. This alteration leads to the emergence of additional 
features within the lensing pattern. These supplementary features cre-

ate an entirely new possibility of measuring the scalaron mass through 
the detection of lensed gravitational waves.
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