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ABSTRACT

In the present paper we consider the full nonlocal thermodynamic equilibrium (non-LTE) radiation transfer problem. This formalism
allows us to account for deviation from equilibrium distribution of both the radiation field and the massive particles. In the present
study, two-level atoms with broadened upper level represent the massive particles. In the absence of velocity-changing collisions, we
demonstrate the analytic equivalence of the full non-LTE source function with the corresponding standard non-LTE partial frequency
redistribution (PFR) model. We present an iterative method based on operator splitting techniques that can be used to numerically solve
the problem at hand. We benchmark it against the standard non-LTE transfer problem for a two-level atom with PFR. We illustrate the
deviation of the velocity distribution function of excited atoms from the equilibrium distribution. We also discuss the dependence of
the emission profile and the velocity distribution function on elastic collisions and velocity-changing collisions.

Key words. line: formation – line: profiles – radiation mechanisms: general – radiative transfer – methods: numerical –
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1. Introduction

In a series of two papers (Paletou & Peymirat 2021; Paletou
et al. 2023), we revisited the problem of so-called “full” nonlocal
thermodynamic equilibrium (non-LTE) radiation transfer origi-
nally formulated by Oxenius (1986). This formalism accounts
not only for deviation of the radiation field from the Planckian
equilibrium distribution, but also for the deviation of the velocity
distribution of massive particles from the Maxwellian equilib-
rium distribution. While Paletou & Peymirat (2021) focused on
re-formulating the basic elements of full non-LTE formalism
using standard notations, Paletou et al. (2023) considered its
numerical solution for the case of coherent scattering (CS) in
the frame of the atom, which corresponds to scattering on a two-
level atom with (putative) infinitely sharp energy levels. In the
present paper, we further extend these works to scattering on a
two-level atom with an infinitely sharp lower level and a more
realistic broadened upper level (which may already be suitable
for the modeling of strong resonance lines).

The full non-LTE radiation transfer formalism is based on
the kinetic theory of particles and photons (Oxenius 1986). In
particular, it is founded on a semi-classical description of light
scattering in spectral lines. As described in Hubeny & Mihalas
(2014), the semi-classical picture combines concepts from clas-
sical theory and the more exact quantum mechanical description
of the problem at hand, thereby providing a very intuitive and
compelling approach to the problem. Clearly, the semi-classical
picture is not a self-consistent theory and therefore contains
a number of not so well defined concepts. However, it has
been very successful in describing several of the line-scattering
⋆ Corresponding author; sampoorna@iiap.res.in

mechanisms in astrophysical conditions (see the above-cited
books for details). For the problem considered in this paper, the
poorly defined concepts from the physical point of view are those
related to the rate of velocity-changing collisions and a clear dis-
tinction between these and elastic collisions. However, despite
this, we introduce separate rates for the elastic and velocity-
changing collisions. Although it is not completely clear how
they would be evaluated for actual cases, and indeed a proper
quantum-mechanical definition of these quantities is uncertain,
their introduction and usage in the present paper is fully in
line with the semi-classical picture that we adopt here. Indeed
this semi-classical theory provides a way to treat the problem,
namely including a self-consistent determination of the veloc-
ity distribution of atoms in the upper level of the transition. For
a more detailed outline of the semi-classical picture, we refer
the reader to Hubeny & Mihalas (2014, see their Chapter 10,
specifically pp. 291–294).

In the full non-LTE formalism, the kinetic equation for the
velocity distribution of the massive particles (namely the atoms
or ions and free electrons) and that for the photons (namely
the radiative transfer equation for the intensity of the radia-
tion field) have to be formulated and solved simultaneously and
self-consistently. As the velocity distribution functions (VDFs)
of the atomic levels are not known a priori, the absorption
and emission profiles that enter the radiative transfer equation
need to be obtained by convolving the corresponding atomic
quantities with the VDFs, wherein the velocity of the massive
particle is measured in the observer’s frame. An evaluation of
the need to use this formalism has so far remained unexplored
because of the numerical complexity involved in its implemen-
tation. The aim of the present series of papers is to clarify this
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question through detailed numerical calculations. For this pur-
pose, we have embarked upon developing suitable numerical
techniques to implement this formalism. As a first step, Paletou
et al. (2023) considered the two-distribution problem, namely
the intensity of the radiation field and the VDF of the excited
atoms are the only two distributions that need to be determined
simultaneously and self-consistently. In other words, two-level
atoms represent the massive particles, with their lower (ground)
level exhibiting the equilibrium Maxwellian distribution
(Oxenius 1986; Paletou & Peymirat 2021). Furthermore, stim-
ulated emission was neglected, and the free electrons that are
responsible for inelastic collisions between the two levels of the
atom were also assumed to obey the equilibrium Maxwellian
distribution. In the present paper, we continue to consider this
two-distribution problem, with an important difference being
that the lower level of the atom continues to be infinitely sharp,
while the upper level is broadened. In this case, the atomic
absorption profile is a Lorentzian and the atomic emission
profile already depends on the radiation field. This introduces
some difficulties in the numerical solution of the corresponding
full non-LTE problem, namely we need to accurately compute
Voigt-like function, which involves a Lorentzian function in
its integrand (Paletou et al. 2020). Following a method devel-
oped previously by Bommier (1997a,b), in the present paper
we present a simple and efficient technique to compute such an
integral involving Lorentzian function.

The basic equations of the two-distribution problem are
detailed in Paletou et al. (2023, see also Paletou & Peymirat
2021). Hence, we do not repeat them here, and only the equa-
tions relevant to the two-level atom with broadened upper level
are discussed. The outline of the present paper is as follows. In
Section 2, we discuss the explicit forms of the absorption and
emission profiles for a two-level atom with a broadened upper
level. The full non-LTE source function is presented in Section 3,
wherein we also demonstrate the analytic equivalence with the
corresponding standard non-LTE source function in the absence
of velocity-changing collisions. In Section 4, we describe and
clarify the three different types of collisions (namely the inelas-
tic, elastic, and velocity-changing collisions) considered in this
paper. In Section 5, we present the numerical method to solve the
full non-LTE problem considered here. Our numerical results are
illustrated and discussed in Section 6. Conclusions are presented
in Section 7.

2. The absorption and emission profiles

As in the standard non-LTE formalism (see e.g., Hubeny &
Mihalas 2014, who also adopt the semi-classical picture), the
absorption and emission profiles (and also the frequency redis-
tribution functions) are first determined in the atomic rest frame,
and then transformed to the observer’s frame to account for the
Doppler motion of the atoms in a stellar atmosphere. In the
standard non-LTE formalism with complete frequency redistri-
bution (CFR), the VDF of all the atomic levels is assumed to
be the equilibrium Maxwellian distribution, while when partial
frequency redistribution (PFR) is included, this assumption is
limited to only the lower level. However, the standard non-LTE
formalism with PFR does not provide access to the VDF of the
upper level. This is provided by the full non-LTE formalism.
Therefore, in this section we discuss the absorption and emis-
sion profiles first in the atomic frame and then in the observer’s
frame.

For the case of a two-level atom with a broadened
upper level, the atomic absorption profile is given by (see

Appendix B.2 of Oxenius 1986, see also Paletou & Peymirat
2021)

α12(ξ) =
δw
π

1
(ξ − ν0)2 + δ2

w

, (1)

where ξ is the photon frequency in the atomic frame, ν0 is the
line-center frequency, and the damping width δw = (A21 + QI +
QE)/(4π), with A21 being the Einstein coefficient for sponta-
neous emission or radiative de-excitation rate, QI the inelastic
collisional de-excitation rate (denoted as C21 in Paletou &
Peymirat 2021), and QE the total elastic collision rate.

The absorption profile in the observer’s frame is given by

φν =

∫
u
α12(ν − ∆νD u ·Ω) f1(u)d3u, (2)

where u is the atomic velocity1 normalized to the thermal veloc-
ity (3th =

√
2kT/M, with k being the Boltzmann constant, T the

temperature, and M the mass of the atom), Ω is the propagation
direction of the ray, and ∆νD is the Doppler width. In this paper,
we do not account for bulk velocities resulting from mass motion
of the massive particles. In other words only the Doppler motion
of atoms is taken into account, consequently the correspond-
ing velocities are in the nonrelativistic regime, wherein only the
photon frequency is subject to Lorentz transformation between
the atomic rest frame and the observer’s frame, while the pho-
ton direction remains unchanged (i.e., aberration is neglected;
see also Eqs. (2.4.3a)–(2.4.3e) in page 54 of Oxenius 1986).
Therefore, in the above equation, we used the Fizeau–Doppler
relationship (see Eq. (9) of Paletou & Peymirat 2021), which
relates the frequencies in the atomic frame (ξ) and the observer’s
frame (ν). Furthermore, f1 represents the VDF of the lower
level of the atom. In the weak radiation field regime, f1 can be
assumed to be the equilibrium distribution, namely a Maxwellian
f M (Oxenius 1986; Paletou & Peymirat 2021). With this assump-
tion, it is straightforward to show that the resulting absorption
profile in the observer’s frame is a normalized Voigt function
φ(x) = H(a, x), where a = δw/∆νD and x = (ν − ν0)/∆νD, with
ν0 being the line-center frequency. In the following subsections,
we discuss the emission profile first in the atomic frame (see
Section 2.1) and then in the observer’s frame (see Section 2.2).

2.1. The atomic emission profile

The explicit form of the atomic emission profile in the absence of
velocity-changing collisions is given in Eq. (B.2.26) of Oxenius
(1986) and in Eq. (4.32) of Hubeny et al. (1983a). Although the
notations used in these publications are somewhat different, it
can be readily shown that both the mentioned expressions are
identical. In the presence of velocity-changing collisions, the
atomic emission profile is given in Hubeny et al. (1983b, see
their Section 4.1). In their notation, this atomic emission profile
is given by

η21(ξ, τ) =
B12I∗12 j121(ξ, τ) + [S12 + γ2(n2/n1)]r12(ξ)

B12I∗12 + S12 + γ2(n2/n1)
, (3)

where B12 is the Einstein coefficient for radiative absorption,
S12 is the collisional excitation rate, γ2 is the velocity-changing
collision rate, n1 and n2 are the number density of the atoms
in lower and upper levels, respectively, and τ is the line center

1 Here the velocity of the atom is measured in the observer’s frame.
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optical depth. In Eq. (3), the generalized redistribution function
r12(ξ) = α12(ξ) (see Eq. (6.3.55) of Oxenius 1986), the quantity
I∗12 is given by

I∗12 =

∫
r12(ξ) I(ν,Ω, τ) dξ , (4)

and

j121(ξ, τ) =
1

I∗12

∫
r121(ξ′, ξ) I(ν′,Ω′, τ) dξ′ , (5)

with
∫

dξ =
∮ ∫

dν dΩ/(4π). In the above equations, I(ν,Ω, τ)
is the specific intensity, and r121(ξ′, ξ) is the generalized atomic
redistribution function (Hubeny et al. 1983a), which describes
the joint probability of absorbing a photon of frequency ξ′ and
spontaneously re-emitting a photon of frequency ξ.

We note that the quantity I∗12 introduced by Hubeny et al.
(1983a,b) is the same as I12 introduced in Eq. (B.2.20) of
Oxenius (1986). In the notations of Paletou & Peymirat (2021,
see also Paletou et al. 2023), we readily identify I∗12 = J12(u, τ),
S12 = C12, and γ2 = QV

2. Therefore, we rewrite Eq. (3) in the
present notations as follows:

η21(ξ, τ) =
B12J12(u, τ) j121(ξ, τ) + [C12 + QV (n2/n1)]α12(ξ)

B12J12(u, τ) +C12 + QV (n2/n1)
,

(6)

where J12(u, τ) is defined as (see e.g., Eq. (8) of Paletou &
Peymirat 2021)

J12(u, τ) =
∮

dΩ
4π

∫ ∞
0

α12(ν − ∆νD u ·Ω)I(ν,Ω, τ) dν . (7)

Also, in our notations, the quantity j121(ξ, τ) takes the form

j121(ξ, τ) =
1

J12(u, τ)

∮
dΩ′

4π

∫ ∞
0

r121(ξ′, ξ)I(ν′,Ω′, τ) dν′. (8)

The atomic frequencies appearing in the above equation are
related to their counterparts in the observer’s frame through the
Fizeau–Doppler relationship, namely, ξ′ = ν′ − ∆νD u · Ω′ and
ξ = ν − ∆νD u ·Ω.

2.2. The emission profile in the observer’s frame

The emission profile in the observer’s frame is given by

ψν(Ω, τ) =
∫

u
η21(ν − ∆νD u ·Ω, τ) f2(u, τ)d3u. (9)

The VDF of the upper level, including the velocity-changing
collisions, is given in Eq. (3) of Paletou et al. (2023). How-
ever, for the purpose of deriving the emission profile in the
observer’s frame, we use the VDF as given in Eq. (19) of Paletou
& Peymirat (2021), namely

f2(u, τ) =
n1

n2

B12J12(u, τ) +C12 + QV (n2/n1)
A21 +C21 + QV

f M(u). (10)

2 In Paletou & Peymirat (2021) and Paletou et al. (2023), the velocity-
changing collision rate QV is denoted Q2. We adopt the QV notation
here in order to avoid the possible confusion with the notation Q2 used
in Hubeny & Mihalas (2014, see e.g., their Eq. (10.151) in page 327) for
the elastic collision rate.

Substituting Eqs. (6) and (10) into Eq. (9), the latter takes the
form

ψν(Ω, τ) =
∫

u

{
n1

n2

[
B12J12(u, τ) j121(ξ, τ) +C12α12(ξ)

A21 +C21 + QV

]
+

QVα12(ξ)
A21 +C21 + QV

}
f M(u)d3u. (11)

Following Section 5 of Paletou & Peymirat (2021), we assume
LTE values for n1 (namely, n1 = n∗1), and introduce the normal-
ized populations n̄2 = n2/n∗2. Substituting for j121 (cf. Eq. (8)),
the first term in the curly brackets of the above equation can be
rewritten as

1
n̄2

1
1 + ζ

[
εα12(ξ) + (1 − ε)

∮
dΩ′

4π

∫ ∞
0

r121(ξ′, ξ)I(ν′,Ω′, τ) dν′
]
,

where we make use of Eqs. (23)–(27) of Paletou & Peymirat
(2021), and I(ν′,Ω′, τ) is now normalized to the Planck function
in the Wien limit. In the above expression,

ε =
QI

A21 + QI
(12)

is the usual collisional destruction probability and the quantity

ζ =
QV

A21 + QI
(13)

represents the amount of velocity-changing collisions. Simi-
larly, the last term in the curly brackets of Eq. (11) reduces to
ζα12(ξ)/(1 + ζ). Using Eq. (29) of Paletou & Peymirat (2021),
the emission profile can be rewritten as

ψν(Ω, τ) =
∫

u
f M(u)d3u

{
ζ

1 + ζ
α12(ξ) +

1
1 + ζ

1
ε + (1 − ε)J12(τ)

×

[
εα12(ξ) + (1 − ε)

∮
dΩ′

4π

∫ ∞
0

r121(ξ′, ξ)I(ν′,Ω′, τ) dν′
] }
,

(14)

where

J12(τ) =
∫

u
J̄12(u, τ) f M(u)d3u . (15)

In the above equation, J̄12(u, τ) = J12(u, τ)/BW , with BW denot-
ing the Planck function in the Wien limit. Substituting for
J12(u, τ) from Eq. (7) and using Eq. (2), it can be easily shown
that

J12(τ) =
∮

dΩ
4π

∫ ∞
0

φν I(ν,Ω, τ) dν (16)

is simply the frequency integrated mean intensity (also referred
to as the “CFR scattering integral”) appearing in the standard
non-LTE problem. Furthermore, we may readily identify that∫

r121(ξ′, ξ) f M(u)d3u = R121(ν′,Ω′, ν,Ω), namely the angle-
dependent generalized redistribution function in the observer’s
frame. Furthermore, using Eq. (2), we obtain the emission profile
in the observer’s frame as
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ψν(Ω, τ) =
ζ

1 + ζ
φν +

1
1 + ζ

1
ε + (1 − ε)J12(τ)

×

[
εφν + (1 − ε)

∮
dΩ′

4π

∫ ∞
0

R121(ν′,Ω′, ν,Ω)I(ν′,Ω′, τ) dν′
]
.

(17)

We note that the emission profile given above is the same as that
originally derived in Hubeny et al. (1983b, see their Eq. (4.15)),
although we present it here in a slightly different form and also
use the notations adopted in this paper. Furthermore, Hubeny
& Cooper (1986) demonstrated that the emission profile derived
from the semi-classical picture of Hubeny et al. (1983b) fully
agrees with that derived from the quantum mechanical approach
of Cooper et al. (1982).

In the present paper, we consider the angle-averaged emis-
sion profile, namely

ψ(x, τ) =
∮

dΩ
4π

ψ(x,Ω, τ), (18)

wherein we have transformed the real frequency ν into the nondi-
mensional frequency x. The resulting angle-averaged emission
profile is given by

ψ(x, τ) =
ζ

1 + ζ
φ(x) +

1
1 + ζ

1
ε + (1 − ε)J12(τ)

×

[
εφ(x) + (1 − ε)

∮
dΩ′

4π

∫ +∞

−∞

R121(x′, x)I(x′,Ω′, τ) dx′
]
. (19)

For a two-level atom with a broadened upper level and in the
absence of velocity-changing collisions, the generalized redistri-
bution function R121 is given by the observer’s frame counterpart
of the usual atomic frame PFR function derived by Omont et al.
(1972, see Milkey & Mihalas 1973 and Mihalas 1978 for the
corresponding observer’s frame expression). In the presence of
velocity-changing collisions, the explicit form of the PFR func-
tion R121 has been derived in Hubeny & Cooper (1986, see their
Eqs. (3.15) and (3.16)) starting from the quantum mechanical
approach of Cooper et al. (1982). In the present paper, we adopt
this PFR function, which in our notation takes the following
form:

R121(x′, x) = γcoh,V RII−A(x′, x) + (1 − γcoh,V) RIII−A(x′, x), (20)

where RII−A and RIII−A are the type-II and type-III angle-
averaged PFR functions of Hummer (1962), respectively, and the
coherence fraction is given by

γcoh,V =
A21 + QI + QV

A21 + QI + QE
. (21)

Clearly, in the absence of velocity-changing collisions, the coher-
ence fraction as well as the PFR function become identical to
those derived by Omont et al. (1972).

To clearly bring out the departure of the emission profile
from CFR, we may rewrite Eq. (19) as

ψ(x, τ) = φ(x) +
1

1 + ζ
(1 − ε)

ε + (1 − ε)J12(τ)

×

[∮
dΩ′

4π

∫ +∞
−∞

R121(x′, x)I(x′,Ω′, τ) dx′ − J12(τ)φ(x)
]
. (22)

The above equation can easily be deduced from Eq. (19) by sim-
ply adding unity to and subtracting unity from ζ as it appears in
the numerator of the first term of that equation3.
3 We remark that Eq. (22) can be more easily related to Eq. (4.15) of
Hubeny et al. (1983b).

3. The source function

In the full non-LTE formalism, the source function for a two-
level atom with a broadened upper level is of the form (see
Eq. (7) of Paletou et al. 2023)

S (x, τ) = [ε + (1 − ε)J12(τ)]
[
ψ(x, τ)
φ(x)

]
, (23)

where ψ(x, τ) is given by Eq. (19) or Eq. (22) and φ(x) is the
normalized Voigt function.

In the absence of velocity-changing collisions (namely, ζ =
0), the source function (23) reduces to the corresponding expres-
sion for the standard non-LTE PFR model for a two-level atom
with a broadened upper level. To demonstrate this, we first
note that the emission profile for ζ = 0 (cf. Eq. (19)) takes the
following form:

ψ(x, τ) =
1

ε + (1 − ε)J12(τ)

×

[
εφ(x) + (1 − ε)

∮
dΩ′

4π

∫ +∞
−∞

R121(x′, x)I(x′,Ω′, τ) dx′
]
.

(24)

Substituting Eq. (24) into Eq. (23), we readily obtain

S (x, τ) = ε + (1 − ε)
∮

dΩ′

4π

∫ +∞
−∞

[
R121(x′, x)
φ(x)

]
I(x′,Ω′, τ) dx′,

(25)

thereby establishing the equivalence of the source function
derived from the full and standard non-LTE models. This is
an important result that justifies the use of numerically rela-
tively simple standard non-LTE formalism in the absence of
velocity-changing collisions.

In the presence of velocity-changing collisions, the source
function is obtained by substituting Eq. (22) into Eq. (23),
namely

S (x, τ) = ε + (1 − ε)J12(τ) +
(1 − ε)
1 + ζ

×

{∮
dΩ′

4π

∫ +∞
−∞

[
R121(x′, x)
φ(x)

]
I(x′,Ω′, τ) dx′ − J12(τ)

}
. (26)

We recall that, as in Paletou & Peymirat (2021) and Paletou et al.
(2023), the source function and intensity are normalized to the
Planck function in the Wien limit. When velocity-changing col-
lisions are significant (namely, ζ ≫ 1), the third term in Eq. (26)
is negligible and the source function tends to the CFR source
function.

4. A clarification regarding collisions

In the present paper, we consider three types of collisions:
– inelastic collisions,
– elastic collisions, and
– velocity-changing collisions.

For the massive particles (two-level atoms in the present paper),
we distinguish between

– the “internal variables” (the energy and quantum numbers of
the levels), and

– the “external variables” (the position and velocity).
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The inelastic collisions are those responsible for collisional tran-
sitions between the lower and upper levels; they enter the kinetic
(or statistical equilibrium) equation for atoms as inducing transi-
tions, which further lead to the ε factor in the radiative transfer
equation. In an inelastic collision, the internal variables change,
whereas the external variables may or may not change.

The elastic collisions do not modify the level populations.
They are responsible for line broadening. In a strictly elastic col-
lision, both the internal and external variables remain unchanged
before and after the collision. In a weakly elastic collision, the
internal variables, namely the energy value of the level and the
quantum numbers, may change (e.g., collisions between fine
structure levels, between hyperfine structure levels, or between
Zeeman sublevels in the presence of a weak magnetic field),
while the external variables remain unchanged. It is also impor-
tant to note that elastic collisions between degenerate Zeeman
sublevels also lead to changes in the internal variables (as they
change the magnetic quantum number before and after colli-
sions, although not the atomic energy). Indeed, in the present
paper, we consider isolated spectral lines and do not consider
magnetic fields. Thus, the Zeeman sublevels are degenerate. If
an elastic collision changes the Zeeman sublevel (namely the
magnetic quantum number M is changed to M′, with M , M′),
then it will have a polarizing or, more frequently, depolarizing
effect (we note that polarization results from unequal popula-
tions between the Zeeman sublevels). On the contrary, if an
elastic collision does not change the Zeeman sublevel (namely,
M → M), then it only broadens the line, namely it is only a line-
broadening collision. As clarified in Sahal-Bréchot & Bommier
(2019), line broadening and depolarizing collisions are differ-
ent, and both contribute to the line broadening and hence to the
elastic collision rate QE .

In addition to contributing to line broadening, the elastic col-
lisions take part in the frequency redistribution of the scattered
radiation in the line as shown by, for example, Omont et al. (1972,
see also Bommier 1997a,b; Sahal-Bréchot & Bommier 2019). In
particular, they are responsible for CFR in the atomic frame. In
the full non-LTE formalism, both these effects of elastic colli-
sions are included following the works of Omont et al. (1972,
see also Appendix B.2 of Oxenius 1986) and Hubeny & Cooper
(1986) in the absence and presence of velocity-changing colli-
sions, respectively. This is done by including QE in the total
damping width of the absorption profile (see Eq. (1)) and using
the appropriate PFR function of Omont et al. (1972) and Hubeny
& Cooper (1986) for the generalized redistribution function (see
Eq. (20)).

On the other hand, collisions where the internal vari-
ables remain unchanged while the external variables – such
as atomic velocity (in particular its modulus) – are changed
are called velocity-changing collisions. We believe that, as the
internal variable is unchanged, Oxenius (1986) refers to velocity-
changing collisions as elastic. However, as the atomic velocity is
changed during the collision, we feel that it may not be appro-
priate to refer to this type of collision as elastic. Indeed Landi
Degl’Innocenti & Landolfi (2004) do not refer to them as elastic.
Also, most likely, the velocity-changing collisions represented by
QV include both elastic and inelastic contributions. Furthermore,
these types of collisions are close collisions or strong collisions
with a small impact parameter. For the two-distribution problem
considered in this paper, the velocity-changing collisions enter
the kinetic equation for excited atoms as a relaxation term, as
they are responsible for relaxing the VDF of the upper level to
its equilibrium distribution function. This relaxation term is of

the form given in Eq. (7) of Paletou & Peymirat (2021, see also
Eq. (6.3.12) in page 167 of Oxenius 1986).

In general, a given collision can modify both the internal
and external variables. Those collisions that modify only the
internal variables are most likely long-range collisions (although
short-range collisions can also modify the internal variables),
and those collisions that modify the external variable (namely
velocity) are most likely strong short-range collisions. In this
respect, QV is a part of QE (see Sections 4.1.1 and 4.1.2 of
Bommier 2016a, see also Section II(a) of Hubeny & Cooper
1986). Even if velocity-changing collisions are part of the line-
broadening collisions, the method of calculation of QV is not
the same as the method of calculation of QE , because QE
addresses the atomic internal variables, while QV addresses the
atomic external variables, although the colliding particles are
the same. The velocity-changing collisions are atom–atom col-
lisions, while the elastic and inelastic collisions may also be
caused by electron–atom collisions (in addition to atom–atom
collisions).

Hubeny & Cooper (1986) show that when lower state interac-
tion is negligibly small (namely when the collisional scattering
amplitude of the lower level is much smaller than that of the
upper level), the total elastic collision rate QE associated with the
upper level can be decomposed into two parts, one corresponding
to only phase changes without change in velocity (denoted qE)
and the other corresponding to both phase and velocity changes
(denoted ν by Hubeny & Cooper 1986). Such a decomposition
is well suited for the resonance lines to which our present full
non-LTE approach is applicable. Therefore, following Hubeny
& Cooper (1986), we write QE = qE + QV after identifying their
ν as our QV . Furthermore, Hubeny & Cooper (1986) show that
qE = αQE and QV = (1 − α)QE with α in the range of 0 to 1.
These authors also give an estimate of (1 − α). When m ≪ M
(with m denoting the mass of the perturber and M denoting the
mass of the radiator), they show that (1−α) = (m/M)2, and when
m ∼ M, they estimate (1 − α) = 0.1.

It is known that the phase-changing elastic collision rate qE
can be obtained from Van der Waals approximation or using
the more precise semi-classical theory developed in the 1990s
by Anstee, Barklem, and O’Mara (the so-called ABO theory;
see e.g., Barklem & O’Mara 1998; Barklem et al. 1998, and
references cited therein). Regarding the velocity-changing colli-
sion rate QV , a precise calculation of the corresponding collision
cross-section will depend on the atomic species under consider-
ation. Landi Degl’Innocenti & Landolfi (2004) give only a rough
order of magnitude for this cross-section (on the order of 10 to
100 π a2

0, with a0 being the Bohr radius). Specific calculations
would be necessary to achieve greater precision. A laboratory
study was carried out by Brechignac et al. (1978), who mea-
sured the effects of the velocity-changing collisions between the
excited Kr atoms and the He and/or Ar perturbers. Here the
authors show that a “hard-sphere” collision model is suitable
for interpreting their experimental measurements. According to
this model, the collisional cross-section is given by π(rA + rB)2,
where rA and rB are the radii of the atoms participating in
the collision. The atomic radii for any atomic species (includ-
ing also the ions) are listed by Allen (1973, see page 45); the
authors used these to compute the collisional cross-section for
Kr*–He and Kr*–Ar collisions. In the present paper, all three
collisional rates are assumed to be input parameters, and hence
we do not compute them using the collisional dynamics. Con-
sequently, we do not determine the velocity distribution of the
colliders.
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In order to evaluate the importance of velocity-changing col-
lisions in a stellar atmosphere, Landi Degl’Innocenti & Landolfi
(2004) provide a way to estimate the critical density of the
perturbers or colliders (see their Eq. (13.6) in page 694). This
is done by comparing an order-of-magnitude rate for velocity-
changing collisions (given by nqv, where n is the number density
of the perturbers, q is the cross section for velocity-changing col-
lisions, and v is the average velocity of perturbers relative to the
atom) with the rate for spontaneous emission (namely, A21). The
density for which these two rates are nearly the same gives the
critical density : nc ≈ 7.8 × 1016A21/q/

√
T (in units of cm−3).

Here, A21 is in units of 107 s−1, temperature T is in units of
104 K, and q is in units of π a2

0. For densities greater than this crit-
ical density, velocity-changing collisions are significant. Landi
Degl’Innocenti & Landolfi (2004) estimate q to be in a range4

that is rarely larger than 10 to 100. Using this, Bommier (2016a)
provided an estimate of the critical density of colliders, which
is in the order of 1020 cm−3. We recalculated this estimate for
the identical set of parameters used by this latter author (namely,
A21 = 1). However, in Section 4.1.1 of Bommier (2016a), she
does not mention the temperature value that she uses. Hence, we
have chosen T = 0.5 here. We find the critical density nc to be in
the range of 1.103 × 1016 to 1.103 × 1015 cm−3. This is about
4 to 5 orders of magnitude smaller than the density mentioned
in Bommier (2016a). As the collisions with neutral hydrogen are
expected to be the dominant source of both elastic and velocity-
changing collisions in a stellar atmosphere, we compare nc with
the hydrogen density in the solar photosphere, which is on the
order of 1017 cm−3. Clearly, the velocity-changing collisions are
important in the lower solar atmosphere, and hence have to be
accounted for. Furthermore, the collisional destruction probabil-
ity ε (which depends on the inelastic collision rate C21 or QI ;
see Eq. (12)) also becomes non-negligible in the lower solar
atmosphere (see e.g., Fig. 2c of Anusha et al. 2010). Finally,
as discussed in Section 4.1.1 of Bommier (2016a), the elastic
collision rate QE is also significant in the lower solar atmo-
sphere. Thus, the present full non-LTE formalism is applicable
in the lower solar atmosphere when velocity-changing collisions
are important. In the upper solar atmosphere, where velocity-
changing collisions are negligible, one may use the numerically
relatively simple standard non-LTE PFR formalism.

5. The numerical method of solution

We solve the full non-LTE transfer problem for the case of a
two-level atom with broadened upper level using a modified ver-
sion of the accelerated lambda iteration (ALI) method developed
by Paletou & Auer (1995) for the corresponding standard PFR
model. Here we present this ALI method in some detail, focus-
ing on the changes brought about by the full non-LTE nature of
the problem at hand. As in the standard PFR model, the source
function given by Eq. (26) is iterated until convergence using the
approximate lambda operator (ALO), which is chosen to be the
diagonal of the full lambda operator (Olson et al. 1986).

In the one-dimensional planar atmosphere considered here,
the radiation field is axisymmetric. Thus, the specific intensity

4 We verified that the range of q values suggested by Landi
Degl’Innocenti & Landolfi (2004) approximately agrees with those
determined from the hard-sphere collision model. For example, using
the atomic radii listed in Allen (1973, see page 45), we find q for H–
H collisions to be 7, He–H collisions to be 12.9, and that for Cs–Cs
collisions to be 137 (note that Cs has the largest atomic radius).

depends only on the inclination θr of the ray about the atmo-
spheric normal. In other words I(x,Ω, τ) = I(x, µ, τ), where
µ = cos θr. Thus, the formal solution of the radiative transfer
equation can be stated as

Ixµ = Λxµ[S x], (27)

where for notational convenience we have suppressed the depen-
dence on optical depth, and the dependence on frequency and
angular variables appear as subscript. Moreover, Λxµ denotes
the frequency and angle-dependent integral operator. Given an
estimate of the source function at the nth iteration, the iterative
scheme will be given by

S (n+1)
x = S (n)

x + δS
(n)
x , (28)

where δS (n)
x is the iterative correction on the source function.

Using the operator splitting technique (Cannon 1973), namely
Λxµ = Λ

∗
xµ + (Λxµ − Λ

∗
xµ) with Λ∗xµ being the ALO – chosen

here to be the diagonal of the full lambda operator after Olson
et al. (1986) –, and following a rather standard procedure
(Paletou & Auer 1995, see also Sampoorna & Trujillo Bueno
2010), we arrive at the following expression for the iterative
correction:

δS (n)
x − (1 − ε)

∫ ∞
0

φx Λ
∗
x[δS (n)

x ] dx −
(1 − ε)
(1 + ζ)

×

{∫ ∞
0

[
R121(x′, x)

φx

]
Λ∗x′ [δS

(n)
x′ ] dx′ −

∫ ∞
0

φx Λ
∗
x[δS (n)

x ] dx
}

= r(n)
x . (29)

In order to deduce the above equation, we used Eq. (16)
and also the fact that, for a static atmosphere, the radiation
field is symmetric about the line-center, meaning that only
half the profile can be considered. In the above equation, the
frequency-dependent ALO is given by

Λ∗x =

∫ +1

−1

dµ
2
Λ∗xµ, (30)

and the residual r(n)
x has the form

r(n)
x = ε + (1 − ε)J (n)

12 (τ) +
(1 − ε)
1 + ζ

×

{∫ ∞
0

[
R121(x′, x)

φx

]
Λx′ [S

(n)
x′ ] dx′ − J (n)

12 (τ)
}
− S (n)

x , (31)

where J (n)
12 (τ) and the integral involving the angle-averaged

PFR function are obtained from the formal solver using the
nth iteration of the source function. To this end, we used the
short-characteristic method of Olson & Kunasz (1987, see also
Lambert et al. 2016). At each iteration, the system of linear
equations (29) can be resolved using either a frequency-by-
frequency (FBF) method or a core-wing method (Paletou &
Auer 1995). In the following subsections, we briefly describe
both these methods for the full non-LTE case considered here.

5.1. Frequency-by-frequency method

For a given depth point, the system of Equation (29) consists of
Nx number of linear equations, with Nx representing the num-
ber of frequency points. In matrix form, this system of linear
equations can be written as

A δS(n) = r(n) , (32)
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where at each depth point, δS(n) and r(n) are vectors of length
Nx and A is a matrix of dimension Nx × Nx. Following Paletou
& Auer (1995), we solve Eq. (32) using the LU decomposition
scheme (see e.g., Press et al. 1986). As the FBF method involves
matrix manipulations, such as inversion and multiplication, it
is somewhat computationally expensive when compared to the
core-wing method presented in the following subsection.

5.2. Core-wing method

Based on the behavior of the type-II PFR function of
Hummer (1962), a core-wing method was proposed by Paletou &
Auer (1995) that allowed the computation of a system of linear
equation (29) through simple algebraic manipulations, thereby
considerably reducing the computational costs involved. In this
method, the type-II PFR function is approximated by CFR in
the line core and CS in the wings for the computation of the
source function corrections. An extension of this method for the
type-III PFR function was given by Fluri et al. (2003), wherein
this function is approximated by CFR in the line core and set to
zero in the wings. We apply both the above-mentioned core-wing
approximations to the R121 function appearing in Eq. (29). Fur-
thermore, in Eq. (29) we make the approximation of computing
the frequency integral involving the absorption profile φx only in
the line core and set it to zero in the wings. This approximation
is similar to the core-wing approximation made for the type-III
PFR function. With these approximations, we can easily deduce
the following core-wing approximation for Eq. (29) :

δS (n)
x =

r(n)
x + (1 − αx)∆T core

1 − (1 − ε)αx Λ∗x/(1 + ζ)
, (33)

where αx is the core-wing separation coefficient given by

αx =

{
0 in the core (x ⩽ 3.5),
γcoh,V RII−A(x, x)/φx in the wings (x > 3.5),

(34)

and

∆T core = (1 − ε)
∫

core
φx Λ

∗
x[δS (n)

x ] dx , (35)

which can be easily evaluated as described in Paletou & Auer
(1995, see their Section 5.1). As in Sampoorna & Trujillo Bueno
(2010), we find that when the elastic collision rate QE and/or
velocity-changing collision rate QV are large, the approximation
of setting the type-III PFR function and the J12(τ) integral to
zero in the wings leads to convergence problems. In such cases,
we use the CFR approximation throughout the line profile. This
typically occurs for QE/A21 > 1 and/or QV/A21 > 1, when the
medium is optically thick or semi-infinite. We verified that both
the core-wing and FBF methods give identical results. Therefore,
all the solutions presented in this paper are computed with the
core-wing method.

5.3. Numerical computation of J̄12 (u, τ)

The full non-LTE formalism gives us access to the VDF f2
of the upper level, which depends on J̄12(u, τ) (see Eq. (3) of
Paletou et al. 2023). In the case of a two-level atom with broad-
ened upper level, the computation of J̄12(u, τ) is numerically
more complex than the CS case considered in Paletou et al.
(2023). This is because, in the case of CS, the integrand in
J̄12(u, τ) contained a delta function (see their Eq. (1)), while the

integrand in the present case involves a Lorentzian function (see
Eq. (7)). Integrals involving Lorentzian are known to be noto-
riously difficult to evaluate due to the sharp peaked nature of
the Lorentzian function. Therefore, we need to devise a suitable
method to evaluate such integrals accurately. Here we describe
such a numerical method following Bommier (1997a,b).

In terms of the adimensional frequency x, the quantity
J̄12(u, τ) is given by (cf. Eq. (7))

J̄12(u, τ) =
∮

dΩ
4π

∫ +∞
−∞

a
π

1
(x − u ·Ω)2 + a2 I(x, µ, τ) dx. (36)

The dot product of the velocity vector u with the ray directionΩ
is evaluated using Eq. (9) of Paletou et al. (2023), which requires
us to construct the corresponding quadratures for polar angles
θu and θr. As the radiation field is axisymmetric, it is sufficient
to construct the quadrature directly for the azimuth difference
(ϕr − ϕu). The dot product u ·Ω can take both positive and neg-
ative values. Thus, the frequency integral in Eq. (36) has to
include the entire range from −∞ to +∞. The intensity for the
negative x values can be easily obtained from the corresponding
positive values using the symmetry relation. We used 13 Gauss-
Legendre nodes for the direction cosines corresponding to both
the ray and velocity vector in the [0, 1] domain, and a quadrature
made up of 20 equally spaced points for their azimuth difference
(ϕr − ϕu) in the [0, 2π] domain. For each pair of θr, θu, and (ϕr −

ϕu), we first perform the frequency integral and then the angular
integration.

Evaluating integrals involving Lorentzian function poses
accuracy issues (see e.g., Fig. 1 of Paletou et al. 2020). In
the present paper, we apply a method originally developed by
Bommier (1997a,b) to compute the angle-dependent type-III
PFR function of Hummer (1962), which is known to involve
an integration over the Lorentzian function (see e.g., Eq. (61)
of Bommier 1997b). Following the method used by this latter
author, we computed the frequency integral in Eq. (36) using
the trapezoidal method with varying integration steps. The inte-
gration begins from the center of the Lorentzian (namely, at
x = u ·Ω), and proceeds symmetrically thereafter. The integra-
tion step is originally set as one-tenth of the damping width a
and is multiplied by 1.05 at each step of the integration (a geo-
metric progression). As discussed above, the quantity u · Ω is
evaluated as described in Paletou et al. (2023, see their Eq. (9)).
Thus, the integration needs to be performed for each value of
u and γ (which is the cosine of the angle between the velocity
vector and the ray direction). As the frequency integration step
size is varied as described above, the intensity computed on a
standard frequency grid used for radiative transfer needs to be
interpolated at every step of the frequency integration. We use
the spline interpolation for this purpose.

However, the method described above to compute J̄12(u, τ) is
somewhat slow. For a typical case of a semi-infinite atmosphere
with 10 points per decade, 65 frequency points, and the angu-
lar quadrature mentioned above, it requires about 67 minutes of
computing time on a Intel(R) Xeon(R) Gold 5122 processor with
3.6GHz, 10.4 GT/s clock speed. Clearly, computing this quantity
and subsequently the VDF f2 of the upper level at every iteration
would be computationally very expensive. However, as the ALI
method described above does not require us to compute J̄12(u, τ)
and f2 at every iteration (see Eq. (29)), we compute these quan-
tities once the ALI solution has converged, which typically takes
15 seconds of computing time.
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Fig. 1. Validation of our iterative method for the full non-LTE trans-
fer problem (compare with Fig. 3c of Hummer 1969). The normalized
source function is displayed as a function of frequency at differ-
ent line center optical depths within the atmosphere: namely at τ =
0, 1, 10, 100, 103, and 104. For comparison, we also show the cor-
responding CFR source function (constant with frequency) as dashed
lines.

6. The numerical results

In this section, we first validate our iterative method by reproduc-
ing the benchmark result of Hummer (1969), and then illustrate
the new quantities, namely the VDF of the upper level and the
emission profiles together with source function with and without
elastic and/ or velocity-changing collisions. We also illustrate
a comparison of the normally emergent intensity profiles for
the cases of a two-level atom with infinitely sharp upper and
lower levels considered in Paletou et al. (2023), and a two-
level atom with broadened upper level considered in this paper,
along with the corresponding CFR standard non-LTE models.
For the numerical studies presented here, we consider a one-
dimensional, isothermal, semi-infinite, planar atmosphere with
a total optical thickness at line center of T = 106 and ϵ = 10−4.
The radiative width of the upper level parameterized as aR =
A21/(4π∆νD) is chosen to be 10−3; it is related to the total damp-
ing parameter via a = aR[1 + (QI + QE)/A21]. Unless otherwise
mentioned, both the rates qE/A21 and QV/A21 are set to zero.

6.1. Validation

For the atmospheric model described above, the standard non-
LTE source function for the RII−A PFR model is illustrated in
Fig. 3c of Hummer (1969). In order to validate our numerical
method, we reproduced this benchmark result in our Figure 1,
which displays the source function S (x, τ) for different optical
depths as a function of frequency. These solutions are computed
with the ALI method presented in Section 5 together with the
core-wing method (cf. Section 5.2) for calculating the source
function corrections. A comparison of our Fig. 1 with Fig. 3c of
Hummer (1969), clearly shows that our numerical method satis-
factorily reproduces the benchmark solutions, thereby validating
our iterative method. This is expected, as the source func-
tion derived from full non-LTE formalism is equivalent to the

Fig. 2. Departure of emission profile ψ(x, τ) from CFR for the case of
scattering on a two-level atom with radiatively broadened upper level.
Different lines correspond to ψ(x, τ)/φ(x) at different line-center opti-
cal depths within the atmosphere (indicated in the figure legend). For
comparison ψ(x, τ = 1)/φ(x), corresponding to scattering on a two-level
atom with infinitely sharp upper and lower levels (namely CS in the
atomic frame), is shown as a dashed line.

corresponding standard non-LTE PFR model when velocity-
changing collisions are neglected (cf. Section 3).

Unlike the standard non-LTE PFR model considered by
Hummer (1969), the full non-LTE model considered here gives
access to the VDF of the upper level. The emission profile on the
other hand can be obtained from both the above-mentioned for-
malisms; however, it is rarely shown in the literature. Therefore,
in this paper, we illustrate both the emission profile and the VDF
of the upper level. Figures 2 and 3 exhibit respectively the ratios
ψ(x, τ)/φ(x) and f2(u, τ)/ f M(u) for different line center optical
depths within the atmosphere. Figure 3 in the present paper is
equivalent to Fig. 3 in Paletou et al. (2023), but for the case of
scattering on a two-level atom with naturally broadened upper
level. For ease of comparison, in Figs. 2 and 3, we also show as
dashed lines the corresponding quantities at τ = 1 for CS in the
atomic frame (namely the case of a two-level atom with infinitely
sharp lower and upper levels) considered in Paletou et al. (2023).

For the standard non-LTE CFR model, the emission and the
absorption profiles are identical (Hubeny & Mihalas 2014). Thus,
to demonstrate the departure of the emission profile from CFR,
we plot in Fig. 2 the ratio ψ(x, τ)/φ(x) at different line center
optical depths within the atmosphere. Clearly, the emission pro-
file departs from CFR for x > 1. As the optical depth increases,
this departure from CFR decreases. Furthermore, the differences
in ψ(x, τ)/φ(x) between the present and CS cases are significant
(compare green solid and gray dashed lines in Fig. 2).

Because we consider an angle-averaged emission profile
here, the VDF of the excited atom depending only on the mod-
ulus of velocity u is illustrated. As in the CS case, deviation
from the Maxwellian distribution is significant for u > 2 and for
optical depths close to the surface, which then decreases with
increasing optical depth (compare the Fig. 3 here with Fig. 3
of Paletou et al. 2023). However, unlike the CS case, the over-
population of the excited level for u > 2 is relatively small in
the present case of a two-level atom with a naturally broadened
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Fig. 3. Departure of the VDF of the naturally broadened upper level
( f2(u, τ)) of a two-level atom from the Maxwellian equilibrium distribu-
tion f M(u) at different line center optical depths within the atmosphere
(indicated in the figure legend). For comparison, the corresponding
quantity at τ = 1 for the CS case is shown as a dashed line. There is
clearly a greater overpopulation of f2 at large u in the CS case than in
the present case of a two-level atom with a naturally broadened upper
level.

upper level (compare green solid and gray dashed lines in Fig. 3).
We note here that a departure of the VDF of the upper level
from the Maxwellian distribution was also obtained by Bommier
(2016b, see her Section 5.3) through a self-consistent solution
of the statistical equilibrium equations for each velocity class of
the velocity-dependent atomic density matrix elements and the
radiative transfer equation for the polarized radiation in the case
of Na I D1 and D2 lines. This departure can be attributed to the
radiative processes between the interacting atom and the inci-
dent radiation field, which is spectrally structured (i.e., nonflat)
within the radiative width of the upper level.

Figure 4 displays a comparison of the normally emergent
intensity for the CS and the present case of a two-level atom
with a radiatively broadened upper level. We also plot the corre-
sponding CFR cases, namely for the damping parameter a = 0
and a = 10−3. While the CS and the corresponding CFR (a = 0)
cases nearly coincide (compare orange and green lines in Fig. 4),
significant differences are seen in the wings for x > 3 between
the CS and PFR cases (compare green and blue lines). Moreover,
the PFR intensity differs significantly from the corresponding
CFR intensity for x > 2 (compare blue and red lines in Fig. 4).
In particular, we recover the lowering/dip of emergent inten-
sity in the wings before finally reaching the continuum level, a
well-known effect of PFR (RII−A).

6.2. Impact of velocity-changing collisions (QV/A21)

Unlike the standard non-LTE PFR formalism, the full non-LTE
formalism of Oxenius (1986) takes into account the influence
of velocity-changing collisions characterized here by QV/A21.
To highlight the impact of velocity-changing collisions, here we
consider the extreme limit of α = 0, corresponding to the case
of strong collisions (in the kinetic sense; see Hubeny & Cooper
1986). When α = 0, the total elastic collision rate QE is entirely
provided by QV , which leads to simultaneous phase and velocity
changes. In this respect, QV here actually represents the effective

Fig. 4. Comparison of normally emergent intensity computed using the
full non-LTE model for a two-level atom with infinitely sharp levels
(CS) and radiatively broadened upper level (PFR) and standard non-LTE
model with CFR. We note that the intensity for CS and the correspond-
ing CFR (a = 0) case nearly coincide.

velocity-changing collision rate. Figures 5–7 display the influ-
ence of QV/A21 on the source function, emission profile, and the
VDF of the upper level at optical depth τ = 1, respectively. The
model parameters used are the same as those for Figures 1–3,
but we now vary QV/A21 from 0 to 50 in much the same way as
ζ is varied in Section 7 of Paletou et al. (2023) for the CS case.
As we have chosen ϵ = 10−4, the ratio QI/A21 is relatively small,
such that ζ (see Eq. (13)) is nearly the same as QV/A21. Thus, our
Fig. 5 is equivalent to Fig. 4 of Paletou et al. (2023), but for the
case of the broadened upper level. However, unlike the CS case,
the frequency grid is much more extended in the present case.
This is to take into account the fact that the absorption profile is
now a Voigt function with rather broad damping wings. As in the
CS case, the source function at τ = 1 approaches the CFR limit
with increasing values of QV/A21 or ζ (see Fig. 5). This is also
in general the trend exhibited by the emission profile (see Fig. 6)
and the VDF of the upper level (see Fig. 7). As discussed in
Section 4, the velocity-changing collisions are non-negligible in
the lower solar atmosphere, wherein QV/A21 or ζ may take mod-
erate values when full non-LTE formalism has to be adopted for
an accurate determination of the source function (cf. Fig. 5) and
the radiation field.

6.3. Impact of phase-changing elastic collisions (qE/A21)

The phase-changing elastic collisions that are normally
accounted for in spectral line formation theory through their
effect on broadening the spectral line and leading to CFR in the
atomic frame are characterized by qE/A21. By considering α = 1,
here we present its impact on the source function, emission pro-
file, and the VDF of the upper level at τ = 1. When α = 1,
the total elastic collision rate QE is entirely contributed by the
phase-changing collisions, which are weak collisions (Hubeny
& Cooper 1986). The dependence of the source function on
qE/A21 is known from the standard non-LTE PFR formalism.
With an increase in qE/A21, the source function approaches the
CFR limit, which is indeed the case as seen from Fig. 8. This
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Fig. 5. Influence of velocity-changing collisions on the normalized
source function at τ = 1. As expected, with increasing values of QV/A21,
the source function approaches the CFR limit, which is shown as a hor-
izontal dashed line.

Fig. 6. Dependence of the ratio of emission to absorption profile
at τ = 1 (namely, ψ(x, τ = 1)/φ(x)) on velocity-changing collisions.
As expected, the emission profile approaches the CFR limit, namely
ψ(x, τ)→ φ(x) with increasing values of QV/A21.

is also true for the emission profile, namely ψ(x, τ)→ φ(x) with
increasing values of the phase-changing elastic collision rate (see
Fig. 9). Regarding the VDF of the upper level, its departure from
the Maxwellian distribution initially increases until qE/A21 = 0.5
and then decreases with further increase in qE/A21 (see Fig. 10).

7. Conclusions

Full non-LTE radiative transfer, although formulated in the
1980s (Oxenius 1986), has remained largely unexplored because
of the complexity involved in its numerical implementation (see
however Borsenberger et al. 1986, 1987; Atanackovič et al. 1987,
who considered the limiting case of a pure Doppler profile).
More recently, Paletou & Peymirat (2021) reconsidered this
problem, and expressed its basic elements in terms of the pre-
vailing standard notations in this field of research. Paletou et al.
(2023) then made a numerical implementation of this formalism
for the case of CS in the atomic frame using the usual numerical

Fig. 7. Dependence of the ratio of the VDF of the upper level to
the Maxwellian distribution at τ = 1 (namely, f2(u, τ = 1)/ f M(u)) on
velocity-changing collisions. With increasing values of QV/A21, the
departure of the f2 from Maxwellian initially increases for QV/A21 =
0.25 in the regime of intermediate velocities and then decreases.

Fig. 8. Influence of phase-changing elastic collision rate qE/A21 on the
normalized source function at τ = 1. As expected, the source func-
tion approaches the CFR limit (shown as horizontal dashed line) with
increasing values of qE/A21.

iterative methods that are in use for the standard non-LTE trans-
fer problem. In the present paper, we solve, for the first time, a
full non-LTE radiative transfer problem considering the case of
a two-level atom with infinitely sharp lower level and broadened
upper level. For this purpose, we applied, after suitable modi-
fications, the well-known operator perturbation methods devel-
oped for standard PFR models (Paletou & Auer 1995, see also
Sampoorna & Trujillo Bueno 2010; Lambert et al. 2016). We val-
idate our iterative method against the standard non-LTE transfer
problem with an angle-averaged RII−A PFR function (Hum-
mer 1962, 1969). We illustrate the new quantities, namely the
emission profile and the VDF of the upper level, and also
make a comparison with the case of a two-level atom with
infinitely sharp lower and upper levels (namely the CS case
considered in Paletou et al. 2023). We clearly demonstrate the
influence of phase-changing elastic collisions (qE , which lead
to spectral line broadening and CFR in the atomic frame) and
the velocity-changing collisions (QV ) on the source function,
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Fig. 9. Dependence of the ratio of the emission to absorption profile at
τ = 1 (namely, ψ(x, τ = 1)/φ(x)) on the phase-changing elastic collision
rate qE/A21 (indicated in the figure legend). As expected, the emission
profile approaches the CFR limit (namely, ψ(x, τ)→ φ(x)) with increas-
ing phase-changing elastic collision rate.

Fig. 10. Dependence of the ratio of the VDF of the upper-level to the
Maxwellian distribution at τ = 1 (namely, f2(u, τ = 1)/ f M(u)) on the
phase-changing elastic collision rate qE/A21 (indicated in the figure leg-
end). With increasing values of qE/A21, the departure of the f2 from
Maxwellian initially increases (until qE/A21 = 0.5) and then decreases.

emission profile, and the VDF of the upper level. In particular,
we show that for moderate values of QV/A21 (or equivalently
ζ; see Eq. (13)), one has to adopt the full non-LTE formalism
presented here to accurately determine the source function (see
Fig. 5) and the radiation field. Results presented in this paper
may serve as benchmarks for future works on this topic (and will
be made available upon request to the corresponding author).

In the present paper, we show that in the absence of velocity-
changing collisions, the full non-LTE formalism is equivalent to
the standard non-LTE PFR formalism, thereby validating the use
of the numerically relatively simple standard non-LTE PFR for-
malism. However, unlike this latter, the full non-LTE formalism
can also account for the velocity-changing collisions, which may
become significant in the lower solar atmosphere (see Section 4).
Given this, the accurate determination of velocity-changing col-
lision rates for astrophysical applications becomes crucial. Until
such calculations become available, the hard-sphere collision
model provides an excellent way to determine the cross-section
for velocity-changing collisions.

For computational simplicity, in the present paper we
consider the angle-averaged emission profile (cf. Eq. (18)),
and thereby the angle-averaged redistribution functions (cf.
Eq. (20)). A near-future goal would be to relax this assumption,
which would allow us to explore the angular dependence of the
VDF of the excited level.

The next crucial step will be to consider the full non-LTE
transfer problem for multilevel atoms. In particular we intend to
take this work forward by considering a three-level atom, which
would involve dealing with three distributions, one for the photon
and two more for the excited atoms. Further, another impor-
tant step would be to relax the usual assumption of Maxwellian
velocity distribution for the free electrons.
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